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A B S T R A C T   

The reasonable disposal of plant biomass containing heavy metals (HMs) is a difficult problem for the phytor-
emediation technology. This review summarizes current literature that introduces various disposal and utiliza-
tion methods (heat treatment, extraction treatment, microbial treatment, compression landfill, and synthesis of 
nanomaterials) for phytoremediation plants with HMs. The operation process and technical parameters of each 
disposal method are different. HMs can migrate and transform in different disposal processes. Some disposal and 
utilization methods can get some by-products. The main purpose of this paper is to provide reference for tech-
nical parameters and characteristics of various disposal and utilization methods, so as to choose and use the 
appropriate method for the treatment of plant biomass containing HMs after phytoremediation.   

1. Introduction 

Heavy metal (HM) pollution of soil and water is a worldwide concern 
because of its harmful effect on human health. Currently, remediation 
technologies based on physical, chemical and biological approaches are 
widely used to remove HMs from contaminated soil and water (Hu and 
Zhang, 2012; Khalid et al., 2017). Phytoremediation, which uses green 
plants to remove HMs from soil, sediments and water, attracted a lot of 
attention from scientists and engineers worldwide during recent years. 
The advantages of phytoremediation compared with traditional physical 
and chemical remediation methods are low cost, simplicity and envi-
ronmental friendliness (Lee et al., 2017; Liu et al., 2020a, 2020b). Types 
of phytoremediation include phytoextraction, phytovolatilization, phy-
tofiltration, phytostabilization, phytodegradation, and rhizosphere 
bioremediation (Yadav et al., 2018). The HMs and plant species often 
used in phytoremediation are listed in Table S1. Traditional phytor-
emediation techniques often require hyperaccumulators and increasing 
numbers of crop cycles, which is applicability for low/moderately 
contaminated sites (Khalid et al., 2017). In recent years, many re-
searchers have utilized assisted measures such as adding plant growth 
agents and microorganisms, HM accelerators, and transgenic plants, 
which can significantly and positively enhance overall 

phytoremediation (Mesa et al., 2015; Kuan et al., 2016; Park et al., 2017; 
Kumar et al., 2017; Wang et al., 2017b, 2017c, 2017a; Liu et al., 2018a; 
Arnao and Hernández-Ruiz, 2018; Fasani et al., 2018; Uraguchi et al., 
2019; Mousavi et al., 2021). Some field applications of phytor-
emediation technology have been implemented in the past 20 years. Yin 
et al. (2014) used Solanum nigrum L. in the phytoremediation of cad-
mium (Cd) contaminated field soils (Shenyang Zhangshi Cd sewage 
irrigation area in China) and the field experiment period was 2 years. 
Solanum nigrum L. had an obvious effect on the removal of Cd in the 
surface and subsurface of field soils, and it had a good effect on the 
remediation of light and moderate Cd contaminated field soils (Yin 
et al., 2014). Ma (2015) used Ricinus communis L. and Helianthus annuus 
L. in the phytoremediation of Cd and zinc (Zn) contaminated field soils 
(Shanghai Pudong New Area factory relocation site in China) (Ma, 
2015). Ricinus communis L. and Helianthus annuus L. had an obvious ef-
fect on the removal of Cd and Zn in the field soils (Ma, 2015). Zhou 
(2016) used Pennisetum giganteum in the assisted phytoremediation of Cd 
and copper (Cu) contaminated field soils (surrounding area of Guixi 
Smelter of Jiangxi Cu Group in China) and the site area was about 1.3 
km2 (Zhou, 2016). Pennisetum giganteum could absorb and transfer 
454.3 g Cu and 9.5 g Cd in about 666.7 m2 soils each year (Zhou, 2016). 
Two field surveys (2-ha survey and 8-ha survey in Portugal and Russia) 
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over 2 years were carried out by Kikuchi et al. (2011) in order to un-
derstand the multiple-metal (Cu, lead (Pb), nickel (Ni)) effect on phy-
toremediation. Both field tests in Portugal and Russia suggested that the 
efficiency of phytoremediation was high and the root system was more 
important than the leaf system in the evaluation of remediation effi-
ciency (Kikuchi et al., 2011). Zhang (2019) used Suaeda Salsa in the 
phytoremediation of Cu, Zn, arsenic (As) and chromium (Cr) contami-
nated field soils (Qinhuangdao wetland in China). The content of 
extractable HMs (Cu, Zn, As and Cr) decreased in soils after the field 
experiment (Zhang, 2019). At present, there are few field applications of 
phytoremediation for mercury (Hg) pollution. 

Phytoremediation involves contaminant accumulation in the crop 
biomass during plant growth (Attinti et al., 2017). Harvesting these 
plants creates highly contaminated bio-waste (Gong et al., 2018), which 
could easily become a secondary pollution source if mishandled. The 
bio-waste is hazardous waste. Thus, appropriate disposal and utilization 
methods for such biowaste are required. Therefore, this paper reviews 
published reports discussing various disposal and utilization methods 
(heat treatment, extraction treatment, microbial treatment, compression 
landfill, and synthesis of nanomaterials) for phytoremediation plants 
with HMs. Our main goal is to provide a summary, which could be used 
for reference purposes and describes the advantages and disadvantages 

of various disposal and utilization steps following the phytoremediation 
process. 

2. Heat treatment 

Heat treatment is the most commonly method using heat energy to 
dispose plants contaminated by HMs and includes incineration, pyrol-
ysis, and gasification, as well as hydrothermal carbonization, liquefac-
tion and gasification (Cui et al., 2021; Fu et al., 2021). The technical 
parameters of these methods differ slightly, as shown in Table 1. The 
incineration, pyrolysis, and gasification temperatures are typically 
higher than hydrothermal carbonization, liquefaction, and gasification, 
which require a pressurized environment (Table 1). Hydrothermal re-
actions often require higher pressure compared to incineration, pyrol-
ysis, and gasification (Table 1). Pyrolysis is conducted in an inert 
atmosphere, but incineration and gasification is performed under 
oxidative conditions (Cui et al., 2021). The medium of hydrothermal 
carbonization and hydrothermal liquefaction is subcritical water, how-
ever, The medium of hydrothermal gasification is supercritical water 
(Table 1). Hydrothermal carbonization usually needs longest heating 
time among all heat treatment methods (Table 1). 

Table 1 
Technical parameters of various heat treatment methods.  

Heat treatment 
method Plants with HMs Device 

Heating 
temperature 
(◦C) 

Heating 
time (min) Medium 

Gas flow (L/ 
min) References 

Incineration 

Sedum plumbizincicola (Zn, Pb, Cd) 
Leersia hexandra Swartz (Cr) 
Ryegrass (Cd, Pb, Zn) 
Pteris vittata L. (As) 

Tube furnace 
Tube furnace 
Tube furnace 
Incinerator 

350–950 
350–800 
600–900 
850 

/ 
15–45 
10 
/ 

O2 

O2 

O2 

O2 

0.5–1.2 
0.12 
3.33 
/ 

Zhong et al. 
(2015) 
Wen et al. 
(2018) 
Zhu et al. 
(2019) 
Lei et al. 
(2019) 

Pyrolysis 

Sedum plumbizincicola (Zn, Cd, Pb) 
Pteris vittata L. (As) 
Arundo donax (As, Cd, Pb) 
Leersia hexandra Swartz (Cr) 
Brassica juncea (Zn, Pb, Cd) 
Ceratophyllum demersum L., Myriophyllum 
verticillatum L., Hydrocotyle vulgaris, and 
Oenanthe javanica (Bl.) DC. (Cu, Cd) 
Willow (Cu, Ni) 

Tube furnace 
Tube furnace 
Muffle oven 
Tube furnace 
Muffle oven 
Muffle oven 
Vertical solar 
furnace 

450–750 
400–900 
250–600 
350–800 
350–750 
350 
600–1600 

/ 
30 
30–180 
15–45 
60 
60–180 
5 

N2 

N2 

O2-limited 
N2 

N2 

N2 

Ar 

/ 
0.3 
/ 
0.12 
0.2 
0.2 
9 

Zhong et al. 
(2016) 
Duan et al. 
(2017) 
Liu et al. 
(2017a), 
(2017b) 
Wen et al. 
(2018) 
Huang et al. 
(2018) 
Liu et al. 
(2019) 
Zeng et al. 
(2019) 

Gasification 

Pteris vittata L. (As) 
Sedum alfredii (Zn, Cd, Pb) 
Sedum plumbizincicola (Zn, Cd, Pb), Pteris 
vittata L. (As, Pb) 

Tube furnace 
Fixed bed 
gasifier 
Customized 
microwave oven 

400–900 
300–900 
700–900 

30 
/ 
40 

CO2 

Air, CO2, N2 

Steam 

0.3 
0.3 
0.4 × 10− 3- 
10− 3 

Duan et al. 
(2017) 
Cui et al. 
(2018) 
Zhang et al. 
(2019) 

Hydrothermal 
carbonization 

Wheat straw (with no HMs) 
Rice straw (with no HMs) 
Hydrocotyle verticillata, Myriophyllum 
spicatum, Canna indica (with no HMs) 
Helianthus annuus (Cd, Cu, Ni, Pb, Zn) 

High pressure 
reactor 
High pressure 
reactor 
High pressure 
reactor 
High pressure 
reactor 

190–250 
200 
200–260 
160–260 

60–360 
240–840 
120 
30 

Subcritical 
water 
Subcritical 
water 
Subcritical 
water 
Subcritical 
water 

Saturated 
pressure 
Saturated 
pressure 
Saturated 
pressure 
Saturated 
pressure 

Funke et al. 
(2013) 
Dai et al. 
(2014) 
Cui et al. 
(2020) 
Lee and Park 
(2021) 

Hydrothermal 
liquefaction 

Phytolacca americana L. (Mn, Cr, Zn) 
Sedum plumbizincicola (Zn) 

High pressure 
reactor 
High pressure 
reactor 

320–380 
190–310 

30 
120 

Subcritical 
water 
Subcritical 
water 

High 
pressure 
High 
pressure 

Deng et al. 
(2014) 
Qian et al. 
(2018) 

Hydrothermal 
gasification 

Timothy grass (with no HMs) 
Pteris vittata L. (As, Cd, Pb, Zn) 

High pressure 
reactor 
High pressure 
reactor 

450–650 
395–445 

15–45 
10–40 

Supercritical 
water 
Supercritical 
water 

High 
pressure 
High 
pressure 

Nanda et al. 
(2016) 
Li et al. 
(2018b)  
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2.1. Incineration 

Incineration involves the high-pressure oxidation and combustion 
reaction between forced air and phytoremediation residues containing 
HMs. The biomass of these plants will be concentrated in the incinera-
tion residue (ash, etc.) (Fig. 1). Thus, the biomass volume will be 
reduced (Samolada and Zabaniotou, 2014), which is very beneficial for 
the transportation and storage aspect of phytoremediation. Lei et al. 
(2019) reported that total weight loss of Pteris vittata L. after incarnation 
was over 94%. Wen et al. (2018) observed 90.6% weight loss after 
incinerating Leersia hexandra Swartz. Zhong et al. (2015) demonstrated 
89.4% weight loss for incinerated Sedum plumbizincicola. All these data 
revealed that different kinds of plants containing HMs lose their weight 
differently upon incineration. Yet, incineration temperature also affects 
plant weight loss. The incineration of plants could be divided into three 
stages (Zhong et al., 2015; Fig. 1). During the first stage (which spans 
from room temperature to 185 ◦C), water evaporates from the plants 
completely (Zhong et al., 2015). The second stage is from 185◦ to 400◦C 
and is characterized by the decomposition of cellulose and hemicellu-
lose, which decreases the plant weight significantly (Zhong et al., 2015). 
During the third stage (typically in the 400–697 ◦C range), the carbon in 
the plants decomposes further; however, the weight loss at this stage 
slows down (Zhong et al., 2015). Additionally, the heat released during 
the plant incineration can be utilized for other applications (e.g. power 
generation) as well. 

When phytoremediation residues are burned, fly ash containing 
HMs, CO, NOx and other pollutants are discharged, which could cause 
secondary pollution if not caught or handled properly (Wang et al., 
2021). HMs entering the combustion chamber could either (1) remain in 
the combustion chamber as the bottom ash, (2) form solid particles in 
the flue gas (also known as fly ash) (3) as well as in the exhaust, also 
known as flue gas (Kovacs and Szemmelveisz, 2017). Wen et al. (2018) 
reported that the content of Cr in the bottom ash was > 90% after Leersia 
hexandra Swartz containing Cr was incinerated at 350 ◦C. At the same 
time, Cr contents in the bottom ash, fly ash, and flue gas were equal to 
77.6%, 11.2% and 11.2% after 45 min incineration at 800 ◦C according 

to Wen et al. (2018), who also suggested maintaining the burning 
temperature below 800 ◦C to avoid the Cr emission into the atmosphere. 
Zhong et al. (2015) found ~70% of initial Cd present in the Sedum 
plumbizincicola in the fly ash after burning it at 350 ◦C. Later, Zhu et al. 
(2019) demonstrated a 64.4% Cd recovery rate in bottom ash after the 
ryegrass was incinerated at 675 ◦C. Zhong et al. (2015) were able to 
volatilize Pb and Zn from Sedum plumbizincicola above 650 ◦C, followed 
by their condensation below 650 ◦C. Lei et al. (2019) found As in the 
bottom ash after burning Pteris vittata L. containing As at 850 ◦C. 
However, this amount accounted for only 9.0–23.5% of the initial As 
content in the biomass feedstock (Lei et al., 2019). Typically, the higher 
the temperature, the higher the HM vaporization rate is, and more 
metals concentrate in fly ash and flue gas, contents of which correlate 
with the HM volatilization behavior (Zhong et al., 2015). The metal 
contents in fly ash typically exceed legally allowable limits, making fly 
ash less suitable for the consequent reuse (Bonanno et al., 2013). The 
metals from the compounds remaining in the bottom ash could be easily 
leached, limiting the bottom ash reuse (Wang et al., 2021). In fact, weak 
mobility was observed for the Cd, Zn, and Pb left in the bottom (Zhong 
et al., 2015). Zhu et al. (2019) reported that higher incineration tem-
peratures are beneficial to reduce Cd leaching capacity. Bonanno et al. 
(2013) reported that the metal contents in the bottom ash were 1.5–3 
times higher than in the Phragmites australis and Arundo donax tissues. 
However, metal-enriched ash showed significantly lower metal contents 
than the legal limits in ash for its reutilization in agriculture and 
forestry. Thus, this biomass ash could be considered a fertilizer rather 
than hazardous waste (Bonanno et al., 2013). 

Some additives can prevent HMs in the phytoremediation residues 
from being transferred into the gas phase (Wu et al., 2013; Wen et al., 
2018; Zhu et al., 2019; Lei et al., 2019). Wu et al. (2013) reported that 
91.2% of Cd and 88.1% of Zn were removed by kaolin from the gas 
phase while 99.1% Zn, 97.6% Cd and over 99% of polycyclic aromatic 
hydrocarbons were removed from the flue gas by activated carbon. The 
kaolin presence can also reduce NOx content in the flue gas to the levels 
established by the Chinese emission standards (Wu et al., 2013). Wen 
et al. (2018) added zeolite and CaO to the Leersia hexandra Swartz and 

Fig. 1. Heat treatment process.  
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then incinerated it for 30 min at 800 ◦C. The Cr recovery rate in bottom 
ash increased by 12.2% and 8.8%, respectively, relative to the plant 
without additives. The addition of kaolin, montmorillonite, and γ-Al2O3 
provides active Si- or Al-containing groups capable of binding Cd and, 
thus, preventing its evaporation (Zhu et al., 2019), which also reduces 
Cd concentration in the leaching solution. Montmorillonite was found to 
be more efficient in Cd retention than kaolin above 900 ◦C. The com-
bustion trials with CaO addition demonstrated that the retained As 
contents in the bottom ash increased by 21.6–39.2% (Lei et al., 2019). 
Jagodzińska et al. (2019) reported that ammonium sulfate was effective 
in Cr, Cu and Hg capture while halloysite bonded with Cd, cobalt (Co), 
vanadium (V) and manganese (Mn). Kaolinite was the most effective in 
binding with Pb. 

The primary mechanism of these additives in reducing fly ash 
amounts and inhibiting HM volatilization during incineration is gov-
erned by the physical and chemical adsorption of the HMs (Wen et al., 
2018). At high temperatures, HMs react with these additives forming 
nonvolatile substances (Wang et al., 2012). For example, zeolite bonded 
Zn and Cr into nonvolatile silicates and aluminosilicates (Wang et al., 
2012). A eutectic melting on the additive surface allows the HMs to 
diffuse into the structure of the additives (Gale and Wendt, 2005). 
Interaction of As with CaO occurs through physical adsorption; how-
ever, it results in an irreversible chemical reaction that yields Ca–As–O 
products, including Ca3(AsO4)2 and Ca2As2O7 (Sterling and Helble, 
2003; Li et al., 2007). During real-life applications, the fly ash from 
incineration could easily block and corrode the flue gas collection sys-
tem (Wang et al., 2021). At the same time, the bottom ash remaining at 
the furnace bottom could cause its corrosion (Wang et al., 2021). Thus, 
these drawbacks of incineration biowaste as a utilization method need to 
be solved in the future. 

2.2. Pyrolysis 

Pyrolysis involves the anaerobic decomposition of biomass at 
moderately elevated temperatures. The yields of the resulting products, 
which are typically biochar, bio-oil, and pyrolysis gases (Cui et al., 2021; 
Fig. 1), vary as a function of pyrolysis conditions (e.g., temperature, 
ramp rate, time). There are four types of pyrolysis recognized by sci-
entists and engineers: slow, intermediate, fast, and flash (Ahmad et al., 
2014; Mohan et al., 2014; Liu et al., 2017a, 2017b, 2020a, 2020b; 
Table S2). Slow pyrolysis is characterized by its moderate temperatures 
(300–700 ◦C), long heating times (5–720 min) and biochar production 
(Mohan et al., 2014; Table S2). Fast pyrolysis, typically performed at 
very high temperatures and times below 5 s, generally results in the 
formation of bio-oils (which account for 60–70% of the total final 
products formed, (Mohan et al., 2014; Table S2). Because of the neces-
sary control over the anaerobic conditions, pyrolysis is typically per-
formed in close containers, which, combined with moderate 
temperatures, confines the generated airborne pollutants (Conesa et al., 
2009). Wen et al. (2018) and Zhong et al. (2015) observed maximum 
mass losses of Leersia hexandra Swartz and Sedum plumbizincicola after 
their pyrolysis to be equal to ~80% and 74%, respectively, which were 
lower than after their incinerated analoges. Similar to incineration, the 
plant pyrolysis undergoes three stages (Zhong et al., 2015; Fig. 1) with 
the following temperatures ranges: (1) 170 ◦C and below, (2) 
170–400 ◦C, and (3) above 400 ◦C (Zhong et al., 2015). 

The significant drawbacks of wider practical applications of pyrolysis 
are the need for sophisticated facilities and their operating difficulty 
(Samolada and Zabaniotou, 2014), all of which make pyrolysis very 
expensive to run. However, the cost could be reduced by the directed 
production and usage of high value-added byproducts such as biochar, 
bio-oil, and pyrolysis gas (Cui et al., 2021). Bio-oil and gases generated 
by biomass pyrolysis could be used to generate power or to synthesize 
valuable chemicals (Xiu and Shahbazi, 2012; Debalina et al., 2017), 
while biochar, a multi-functional material, is beneficial for applications 
where carbon sequestration, environmental remediation, and soil 

improvements are required (Biederman and Harpole, 2013; Ahmad 
et al., 2014; Cui et al., 2016). The main predicament of biochar utili-
zation is the HM leaching risk, especially when the biochar contains an 
excess amount of HMs. An environmental safety assessment of the bio-
char should be implemented before it is used for the utilization. The poor 
yield and quality of the crude bio-oil obtained after biomass pyrolysis 
also introduce some challenges (Cui et al., 2021). It was recently 
demonstrated that HMs such as Zn, Pb, and Ni catalyze bio-oil produc-
tion by promoting the corresponding hydrogenation process and organic 
acids formation (Wang et al., 2013; Yu et al., 2014). Zeng et al. (2019) 
applied solar flash pyrolysis to burn willow biomass to study how HMs 
affected biogas production and discovered that 14.8% and 34.5% more 
H2 and CO were produced, respectively, during 5 min pyrolysis at 
1200 ◦C. Ni presence in the hyperaccumulator modified the bio-oil 
composition by enhancing the formation of N-containing compounds 
such as triacetoneamine (Doroshenko et al., 2019). Thus, the properties 
of bio-oil derived from certain hyperaccumulators can be enhanced by 
adding Zn, Pb, and Ni, which would act as catalysts (Cui et al., 2021). 
Zhong et al. (2016), while studying how the pyrolysis temperature 
affected the compositions of bio-oils derived from S. plumbizincicola, 
obtained an increased bio-oil yield (from 22.0% to 31.7%) when the 
temperatures were increased from 450◦ to 650◦C. However, this yield 
decreased to 15.9% at 750 ◦C due to the cracking effect (Zhong et al., 
2016). At 450 ◦C, the major components of the produced bio-oil were 
acids, the yields of which declined as the pyrolysis temperature was 
increased. The highest alkene yield was observed at 650 ◦C for the py-
rolyzed biomass containing a minimum of the oxygenated compounds 
(Zhong et al., 2016). 

When phytoremediation residues are pyrolyzed, HMs enter biochar, 
bio-oil, and pyrolysis gas, and their distribution is very similar to the one 
obtained for incarcerated biomass, as it was in the case of Cr-containing 
pyrolyzed plants, which was also incinerated at 350 ◦C for comparison 
(Wen et al., 2018). As the pyrolysis temperature was increased, the Cr 
content in the bottom ash increased relative to its incinerated counter-
part (Wen et al., 2018). However, Cr content in the gas during biomass 
pyrolysis was slightly lower than in the residue obtained by the incin-
eration of the same biomass at 350 ◦C (Wen et al., 2018). Because of HM 
toxicity, the environmental reliability of the hyperaccumulator-derived 
biochar, bio-oil, and pyrolysis gas should be evaluated before their 
further applications. Several studies indicated that the residues of the 
pyrolyzed biomass possessed smaller risks of HM leaching risk (Wang 
et al., 2017c; Cui et al., 2018). Additionally, fewer HMs are typically 
observed in the hyperaccumulator-derived biochar, which is beneficial 
for its safe disposal (Wang et al., 2017c; Cui et al., 2018). To further 
control these risk factors of biochar, one needs to optimize temperature, 
time, additive and entrained flow during the pyrolysis (Liu et al., 2020a, 
2020b). Just increasing the pyrolysis temperature would not minimize 
the leachable content of different HMs in biochar (Shi et al., 2017; Li 
et al., 2017; Gong et al., 2018; He et al., 2019). However, the optimized 
temperature is one of the key factors of decreasing the biochar potential 
risks. This optimized temperature could also vary for different plants 
and also with different HMs and their contents (Liu et al., 2020a, 
2020b). Chami et al. (2014) recovered almost all Ni and Zn in the char 
during slow pyrolysis. However, during flash pyrolysis, they could only 
recover some metals from the char. In general, additives (such as cal-
cium dihydrogen phosphate, NaOH, CaCO3, Al2O3, FeCl3) can reduce 
the HM leaching from biochar (Shi et al., 2017; Liu et al., 2017a, 2017b, 
2019). As was mentioned earlier, some additives can react with HMs in 
the biomass and form stable compounds during pyrolysis (Liu et al., 
2020a, 2020b). Recently, it was demonstrated that some biochar could 
also be used as additives during phytoremediation of HM-contaminated 
soil: they stimulate plant growth and improve biochemical properties of 
these soils. However, the applicability and feasibility of this approach 
(including long-term) need further assessment (Paz-Ferreiro et al., 2014; 
Lu et al., 2015; Gascó et al., 2019). To obtain a clean residue, HMs 
accumulated in the bio-oil can be removed by cation exchange, solvent 
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extraction, sorption, etc. (Yang et al., 2010; Carrier et al., 2011; Wang 
et al., 2013). Moisture in the biomass also affects the yield and calorific 
value of the pyrolysis products, and ideally, it should be below 10% 
(Wang et al., 2021). The tar produced by pyrolysis can block the pipe-
line, the repair of which is expensive (Wang et al., 2021). All these 
drawbacks prevent pyrolysis from widespreading to industrial scales. As 
a result, pyrolysis-based phytoremediation is still in its infancy (Wang 
et al., 2021). 

2.3. Gasification 

During gasification, solids heated to a certain temperature convert 
into syngas, which is a mixture of CO, H2, etc. Typically, reactive gasi-
fying agents (e.g., steam, air, CO2) are used during gasification to form 
char, ash, and tar (Situmorang et al., 2020; Cui et al., 2021; Fig. 1). The 
main difference between gasification and pyrolysis is their reaction 
conditions (Cui et al., 2021). Pyrolysis is conducted in an inert atmo-
sphere, while the gasification is performed under oxidative conditions 
(Cui et al., 2021). Unlike the slow pyrolysis method, gasification is 
implemented at 550–900 ◦C. This temperature becomes even higher 
(1000–1600 ◦C) after gasifying agents are introduced (Arena, 2012). 
The reduction of phytoremediation biomass processed by gasification is 
higher than after the pyrolysis but lower than after the incineration 
(Wang et al., 2021). Typically, biomass gasification is divided into four 
stages (Cui et al., 2018), characterized by the following temperature 
ranges: (1) < 190 ◦C, 190–410 ◦C, 410–650 ◦C, and 650–900 ◦C (Cui 
et al., 2018). Boudouard reaction is thermodynamically favorable above 
710 ◦C (Kwon et al., 2014). The high-temperature weight loss of phy-
toremediation residues could be described by the Boudouard reaction, 
the initiation of which starts with the tar cracking reaction (Cui et al., 
2018). In practical applications, the gasification is performed above 
750 ◦C (Shen et al., 2013). 

The syngas produced during biomass gasification is often used to 
generate electricity using fuel cells or gas turbines (He et al., 2009). CO 
and H2 from the syngas could also be used as initial materials to produce 
high value-added chemicals and fuels (Arena, 2012). CO2 can be used to 
produce CO above 700 ◦C via the following gasification reaction: char +
CO2 → 2CO. In some cases, the CO accounted for 77.8% of the total gases 
formed and released at 900 ◦C (Cui et al., 2018). The syngas formed 
during the gasification of S. alfredii at 500–800 ◦C was used for fuel 
production via the Fischer–Tropsch process because of its favorable 
H2/CO ratio (in the 1.26–2.46 range, Cui et al., 2018). Gasification could 
also be self-sustaining because of its heat release but only if the optimum 
equivalence ratio (ER) is in the 0.3–0.4 range (Zhang et al., 2011). Such 
no-external-heat gasification was demonstrated using a fluidized pilot 
bed reactor by Arena and Di Gregorio (2014)). However, the major 
obstacle to the stable functioning of the gasifier is the feedstock het-
erogeneity, both in composition and size (Cui et al., 2021). Sun and Wu 
(2020) proposed a new autothermal CaO biomass gasification technol-
ogy, which uses CO2 as the gasification agent. The combination of CaO 
and high CO2 levels releases significant heat needed for biomass gasi-
fication. As a result, the syngas output increases from 0.21 to 0.90 kg/h. 
Zhang et al. (2019) gasified (for 10 min at 500 ◦C and 23 MPa) cyano-
bacteria in supercritical water and obtained 2.92 mol/kg of H2, which 
accounted for the 33.3% of the total gas. 

To make gasification reliable for the phytoremediation efforts and to 
obtain clean syngas with desired composition and properties, the 
migration and transformation of HMs during gasification should be 
thoroughly studied (Cui et al., 2021). Duan et al. (2017) reported that 
the transformation behavior of As had the same trend with increasing 
the temperature during pyrolysis and gasification, and about 60% of As 
in P. vittata was released at 600 ◦C. Lin et al. (2019) investigated how the 
addition of silica sand, zeolite, calcium oxide, calcined coal and acti-
vated carbon affected the volatilization of HMs and H2 production 
during the fluidized-bed gasification. The activated carbon captured the 
most HMs, and under its presence, 53.1% of the gas produced was H2 

(Lin et al., 2019). Jiang et al. (2016) applied entrained flow technology 
to gasify a variety of remediation plants. At gasification temperatures 
below 1000 ◦C, Cd, Pb, Zn and As were volatile, while Mn, Cu, Co and Ni 
were not (Jiang et al., 2016). The volatilization of HMs and their com-
pounds are affected not only by the reaction temperature but also by the 
reaction gas velocity, bed material type, particle size and reaction 
pressure (Froment et al., 2013; Wu et al., 2014; Jiang et al., 2016). A 
recently demonstrated microwave-assisted chemical looping gasifica-
tion (MACLG) method showed promise in syngas production from 
hyperaccumulator biomass (Zhang et al., 2019). Hematite presence with 
its high O content enhanced H2 and CO yield during MACLG of 
S. plumbizincicola and P. vittata (Zhang et al., 2019). The residues still 
contained substantial amounts of HMs, but they were removed by the 
activated carbon (Zhang et al., 2019). Chen et al. (2020a) reported that 
calcium based (CaSO4) oxygen carriers with SiO2 and Al2O3 as inert 
carriers could reduce the volatilization content of HMs (Cd, Pb, Zn) in 
the gasification process. Too much tar dust in gasification gas can lead to 
energy waste, gasification efficiency reduction, gasification equipment 
corrosion, and gas pipeline blockage (Xiao et al., 2017). 

2.4. Hydrothermal modification 

Hydrothermal modification is a technology that uses supercritical or 
subcritical water to convert biomass into high calorific value fuel in an 
autoclave (Wang et al., 2021; Fu et al., 2021; Ahmad et al., 2021). Hy-
drothermal modification includes hydrothermal carbonization (HTC), 
hydrothermal liquefaction (HL), and hydrothermal gasification (HTG). 

HTC involves biomass conversion into a solid carbonaceous sub-
stance often called hydrochar. HTC is performed at moderate tempera-
tures (160–260 ◦C) and saturated pressures (2–10 MPa) (Cui et al., 
2021; Table 1). The reduction of phytoremediation biomass processed 
by HTC is lower than after the incineration, pyrolysis and gasification (Li 
et al., 2018a; Wang et al., 2021). The hydrochar yield and properties 
strongly depend on the reaction temperature, pressure, and feedstock 
(Cui et al., 2020). The yield of hydrochars declines from 46.0− 46.5 to 
22.8− 29.2% with increasing hydrothermal temperature from 200 ◦C to 
260 ◦C, which is ascribed to the temperature-dependent degradation of 
cellulose and hemicellulose during the HTC process (Cui et al., 2020; 
Fig. 1). Cui et al. (2020) reported that M. spicatum-derived hydrochars 
had a lower carbon content and a higher ash content as compared with 
hydrochars derived from H. verticillata and C. indica. 

Like biochar, hydrochar can also adsorb contaminants and assist in 
energy production (Lee and Park, 2021). The main predicament of 
hydrochar utilization is also the HM leaching risk, especially when the 
hydrochar contains an excess amount of HMs. An environmental safety 
assessment of the hydrochar should be implemented before it is used for 
the utilization. Hydrochar’s pH and energy density are moderate and 
high, respectively (Kambo and Dutta, 2015). Unlike pyrolysis, HTC is 
conducted at lower temperatures and under the water presence. Thus, 
HTC can be successfully used for phytoremediation of treating hyper-
accumulator plants with high water contents. Lee and Park (2021) re-
ported that the concentration of Cd, Cu, Ni, Pb and Zn in hydrochars 
decreased compared to sunflower raw biomass after HTC treatment. In 
addition, as HMs were not decomposed but converted to unstable forms 
during HTC, the HMs that were separated from the sunflower biomass 
remained in the liquid phase (Lee and Park, 2021). However, a lot of 
research still needs to be undertaken to establish how HMs are distrib-
uted and in what chemical form in the hydrochar and the liquid phase. 
This data would be critical in determining whether the resulting 
hydrochar could be utilized. Mai et al. (2017) reported that Zn slowed 
down the degradation of the phenolic hydroxyl group during HTC of the 
corresponding biomass, which affected the redox functionality of the 
resulting hydrochar. HTC also exhibits stronger economic prospects 
since it requires less energy and no pre-drying steps. However, the 
resulting raw hydrochar-slurry still needs to be filtered and dried for 
further use. Another drawback is that HTC is conducted using batch and 
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semi-continuous setups, both of which need to be adapted for large-scale 
and consequent commercialization. The salt formed in the reaction 
process has low solubility in subcritical water or supercritical water and 
is easy to precipitate (Wang et al., 2021). When these precipitates 
combine with coke, the reactor can be blocked and the operation cost of 
the equipment can be increased (Wang et al., 2021). 

HL is performed at 190–380 ◦C and 5–20 MPa in subcritical water 
conditions (Cui et al., 2021; Table 1). The resulting product is hydrochar 
and an organic liquid which is also called “bio-oil” (Qian et al., 2018; Cui 
et al., 2021; Fig. 1). The reduction of phytoremediation biomass pro-
cessed by HTC is lower than after the incineration, pyrolysis and gasi-
fication (Li et al., 2018a; Wang et al., 2021). 

Recent research efforts focused on HM separation from hyper-
accumulators using HL (Carrier et al., 2011; Deng et al., 2014; Qian 
et al., 2018). These efforts were accompanied by HMs, bio-oil, and 
hydrochar reclamation (Carrier et al., 2011; Deng et al., 2014; Qian 
et al., 2018). When the particle size, the liquid-solid ratio, the pressure, 
the temperature, the reaction time, and the catalyst are 75 µm, 13.3: 1, 
23 Mpa, 373 ◦C, 30 min, and 0.1 mol/L K2CO3, more than 97% of Mn 
and other harmful metals in stems and leaves of Phytolacca americana L. 
can be separated into aqueous solution, and 86.24% of biomass can be 
converted into crude bio-oil (Deng et al., 2014). Qian et al. (2018) re-
ported that about 90% of Zn was released from the S. plumbizincicola 
biomass during HL at an optimized temperature of 220 ◦C, and the 
release risk was mitigated via HL reaction for hydrochar production. 
However, more research still needs to be undertaken to establish how 
HMs are distributed and in what chemical form in the hydrochar and the 
liquid phase. HL-derived liquid fuel possesses higher heating values as 
well as lower oxygen and higher carbon contents than similar fuels 
obtained from pyrolyzed biomass (Huber et al., 2006). Bio-oils can not 
be used directly as a transportation fuel. However, they can be blended 
or upgraded to then be used to fabricate diesel-based fuels. Upgradation 
to generate liquid fuel from bio-oils could be performed catalytically, 
which is reviewed and summarized elsewhere (Tekin et al., 2014; Kumar 
et al., 2018). HM (e.g., Zn, Pb, and Ni) presence in the hyper-
accumulators preceding these bio-oils was also reported to catalytically 
promote hydrogenation reaction and organic acids production from 
these bio-oils as initial materials (Yu et al., 2014; Wang et al., 2013). The 
HL of Zn/Pb/Ni-hyperaccumulator resulted in the in-situ up-gradation 
of the bio-oil, especially if the released HM compounds could be isolated 
and/or recovered. Similar to HTC, HL has a problem of blocking the 
reactor and increasing the operation cost of the equipment (Wang et al., 
2021). 

HTG decomposes the biomass under the supercritical water presence 
typically at pressures and temperatures above 22.1 MPa and 374 ◦C, 
respectively, and is compatible with the wet biomass (Cui et al., 2021; 
Table 1). Compared with reaction temperature, the reaction time is less 
effective, while the pressure is least effective on the conversion effi-
ciency and product yields (Li et al., 2018b). The main gas products are 
H2 and CH4 (Cui et al., 2021; Fig. 1). The reduction of phytoremediation 
biomass processed by HTC is lower than after the incineration, pyrolysis 
and gasification (Li et al., 2018a; Wang et al., 2021). 

Supercritical water acts as both a medium and a reactant during 
HTG. HTG can treat fresh hyperaccumulator biomass directly without 
drying (Cui et al., 2021), and is very efficient in alleviating environ-
mental risks of HM leaking from the hyperaccumulator as well as 
achieving the energy recovery (Carrier et al., 2011; Li et al., 2018b). 
Relative to the subcritical water conditions during HTC, the solubility of 
HMs in supercritical water during HTG is lower (Sue et al., 1999), which 
is beneficial for the hyperaccumulator-derived liquid product treatment. 
HTG is classified into three sub-categories (Correa and Kruse, 2018). The 
first category includes processes, in which the aqueous phase reforming 
occurs at 215–265 ◦C with H2 and CO2 as final products (de Vlieger 
et al., 2012). The second category contains near-critical catalyzed 
gasification reactions occurring at 350–400 ◦C and producing CH4 
(Matsumura et al., 2005). The third category describes processes during 

which supercritical water gasification occurs at above 500 ◦C, and H2 
and CO2 are the final major products (Kruse et al., 2003). HTG produces 
more H2 from biomass no matter what its moisture content is, unlike 
general gasification routes. Additionally, the formation of high-pressure 
H2 further reduces the gas compression cost, typically acquired during 
storage of the released H2 (Demirbas, 2009). Unlike general gasification, 
HTG prevents HM volatilization because of its low temperatures (Huang 
and Yuan, 2016). For example, almost no HMs were detected in the gas 
formed during the HTG of Pteris vittata L. (Carrier et al., 2011; Li et al., 
2018b). Although Pb and Zn tended to accumulate in solid residues with 
a maximum increment of about 50% in the total content, they were 
mostly converted to more stable oxidizable and residual fractions, and 
thus the ecotoxicity and bioavailability were greatly mitigated with no 
obvious increase in direct toxicity fractions (Li et al., 2018b). Still, 
relatively extreme reaction conditions of HTG demand advanced setups, 
which increases the fabrication and operation costs. Other drawbacks 
preventing HTG commercialization are salt deposition and reactor 
corrosion. 

3. Extraction treatment 

Extraction treatment involves HMs removal from the phytor-
emediation residues using an extraction agent. The reduction of phy-
toremediation biomass processed by extraction is lower than after heat 
treatment (Li et al., 2018a). The residues can be pressed to remove the 
squeezed liquid or heat-treated prior to the extraction to concentrate 
HMs in the squeezed liquid or biomass (Wang et al., 2017b, 2021). HMs 
in the squeezed liquid need to be treated if the phytoremediation resi-
dues are pressed prior to the extraction. Wang et al. (2017b) reported 
that using flocculant can reduce the concentration of Cd in the squeezed 
liquid from 1.98 mg/L to 0.066 mg/L. The commonly used extractants 
are sulfuric acid, ammonium acetate, ammonium oxalate, ammonium 
Nitrate, EDTA, and pure water (Table 2). The HMs in the extraction 
solution treated by extraction method can be recycled. 

An et al. (2012) used distilled water to extract Cr, Cu, Zn and Pb in 
Buxus megistophylla Levl., and found that the vacuum degree, soaking 
time and decompression time have obvious effects on the removal of Cr, 
Cu, Zn and Pb. The maximum removal rate of Cr, Cu, Zn, and Pb in Buxus 
megistophylla Levl. is 78.8%, 93.3%, 65.9%, and 82.9% (An et al., 2012). 
Houzelot et al. (2018) studied the leachability of Ni and Mn from birch 
ash and found that the kinetics of acid leaching was not limited by 
external membrane diffusion or stirring speed but depended on the 
chemical elements present in the phytoremediation residues. However, 
the leachability and leaching rates could be significantly increased by 
elevating the temperature or by using concentrated acids (Houzelot 
et al., 2018). Núñez-López et al. (2008) performed leached Pb from 
Robinia pseudoacacia and established the following extraction intensity: 
EDTA > ammonium oxalate > water ~ ammonium nitrate > ammo-
nium acetate. The maximum removal rate of Pb in Robinia pseudoacacia 
is 99% by EDTA (Núñez-López et al., 2008). The favored complex in 
EDTA system was the soluble species PbEDTA2− , whereas for the oxalate 
system the favored species was the precipitate of lead oxalate Pb(COO)2S 
although a small fraction of lead oxalate can remain in solution as Pb 
[(COO)2]2

2− (Núñez-López et al., 2008). Ge et al. (2020) advised that 
the hydrochloric acid with low concentration could be used as extractant 
of HMs in peanut meal. The removal rate of Pb, Zn, Cu, and Cd in peanut 
meals can reach 74.43%, 93.13%, 96.36%, and 91.39% by extractant 
(Ge et al., 2020). In order to further improve the efficiency and reduce 
the cost, it is necessary to study the deep mechanism of extraction agent 
and HMs. 

The effective active components in hyperaccumulators may be 
recycled and used. The effective active components include essential 
oils, saponins, lignin, etc., as well as compounds with medicinal value. 
Traditional extraction technology is generally solvent extraction, but its 
safety and extraction rate is low. The new extraction technology has the 
advantages of high efficiency, energy saving and environmental 
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protection, including ultrasonic extraction, microwave extraction, su-
percritical fluid extraction, semi bionic extraction and so on (Wang 
et al., 2021). Xue (2016) used Folium Perillaes, a Cd hyperaccumulator, 
as the raw material to extract essential oil from leaves by various 
methods, which provided a more efficient way to extract essential oil 
from Folium Perillaes. Xing et al. (2012) used Sedum alfredii Hance, a 
hyperaccumulator of Zn and Cd, as the raw material, obtained a 
salidroside-type metabolite by ultrasonic assisted ethanol extraction and 
macroporous resin column (AB-8 type) separation technology, and 
contents of Zn and Cd in these metabolites were lower than national 
standards. Some hyperaccumulated plants are also medicinal plants, and 
the effective components extracted from them can be used as medicinal 
materials. However, before using these active substances, the HM con-
tent must be analyzed and evaluated. 

4. Microbial treatment 

Microbial treatment method is a technology to treat biomass through 
microbial stabilization and humification of organic matter (Li et al., 
2018a). Microbial treatment can be carried out under aerobic (compost) 
or anaerobic (fermentation) conditions (Table 3; Fig. 2). Aerobic or 
anaerobic microorganisms can decompose plant organic matter and 
transform it into microbial cell substances, organic acid, alcohol, CO2, 
H2O, NH3, H2S, CH4, PO4

2-, SO4
2- releasing energy (Fig. 2). The reduc-

tion of phytoremediation biomass processed by microbial treatment is 
lower than after heat treatment (Li et al., 2018a; Wang et al., 2021). 

Cao et al. (2010) used compost to treat Pteris vittata L. containing As, 
and found that the content of total As and water-soluble As in the 
composted residue decreased by 25% and 32%, respectively. Most of the 
lost As was transferred to the leachate, which needed high-cost tech-
nology for subsequent treatment to prevent secondary pollution (Cao 
et al., 2010). In order to improve the composting method and reduce the 
harm of HMs after composting, some researchers found that adding lime, 
fly ash from biomass incineration, biochar, red mud and other 

substances for mixed composting could increase the residual content of 
HMs in the residue, thus reducing the leaching of water-soluble HMs and 
reducing the environmental risk and subsequent treatment costs (Soares 
et al., 2015; Singh and Kalamdhad, 2016; Asquer et al., 2019). Wei et al. 
(2020) studied effects of humus from different compost sources and HM 
tolerant bacteria produced by compost on the absorption of HMs, and 
found that HM tolerant bacteria had better binding ability of HMs than 
humus, and humus as an activator could improve the diversity and 
biomass of HM tolerant bacteria, thus promoting the adsorption of HM 
ions. The synergistic effect of humus and HM tolerant bacteria could 
reduce the leaching of HMs by 60− 80% (Wei et al., 2020). Yang et al. 
(2019) reduced the content of HMs in the leachate by using functional 
bacteria with bed materials (sponge, zeolite, cotton). The combination 
of sponge and cotton with functional bacteria reduced the leaching of Cr 
by 19.1− 26.4% (Yang et al., 2019). Tang et al. (2006) composted 
Elsholtzia splendens Nakai with Cu, and applied it as basal fertilizer in Cu 
deficient soil. The results showed that it could significantly increase the 
plant height, biomass and grain weight of the wheat, which was an 
effective way of resource utilization (Tang et al., 2006). Cao et al. (2015) 
found that compared to normal plants with low Cu content, the plants 
used in remediation with increased Cu levels (100 mg/kg) not only 
promoted anaerobic digestion and required a shorter anaerobic diges-
tion time, but also increased the methane content in biogas. However, 
the duration of microbial treatment process is long (Table 3), and the 
reaction equipment is expensive. In addition, the residue and leachate 
after microbial treatment still contains high concentrations of HMs, 
which need to be further treated. In general, it is difficult to separate 
HMs from the plant body using microbial treatment. This method may 
be considered when the content of HMs in plants is low. When the 
content of HMs in plants is high, other disposal and utilization methods 
can be used to reduce the content of HMs in plants before microbial 
treatment. 

5. Compression landfill 

Compression landfill is the most common solid waste disposal 
method, which is simple and easy to operate (Wang et al., 2021). The 
compression landfill system is mainly divided into waste storage system, 
leachate collection system, and landfill gas collection system (Fig. 3). 
The complex of high concentration HMs and chelating agent can be 
produced when the phytoremediation plants are compressed (Wang 
et al., 2021). The reduction of phytoremediation biomass processed by 
microbial treatment is lower than after heat treatment (Li et al., 2018a; 
Wang et al., 2021). 

HMs mainly existed as soluble forms or bioavailable forms in the 
leachate produced by compression landfill of phytoremediation plants 
(Li et al., 2018a; Wang et al., 2021). Compared with microbial treatment 
method, the disposal time of compression landfill is shorter, but the 
leachate containing HMs produced by compression landfill has higher 
risk of secondary pollution (Wang et al., 2021). It is also a new problem 
whether the HM content of compressed phytoremediation plants can 
meet the standard of safe landfill (Wang et al., 2021). Before the 
large-scale application of the compression landfill method, it is neces-
sary to conduct a deeper research on the treatment of the leachate and 
reduce the operation cost of the compression landfill method (Li et al., 

Table 2 
Technical parameters of the extraction treatment method.  

Device Temperature 
(◦C) 

Extraction 
time (min) 

Medium Stirring 
speed (rpm) 

References 

Device with 
stirring 
function 

20–90 30–960 
Potassium citrate, potassium tartrate, hydrochloric acid, 
sulfuric acid, ammonium acetate, ammonium oxalate, 
ammoniumnitrate, EDTA, pure water 

100–700 
Núñez-López et al. (2008), Barbaroux et al. 
(2011), Hazotte et al. (2017), Houzelot et al. 
(2018), Ge et al. (2020) 

Device without 
stirring 
function 

16–60 60–120 Distilled water / An et al. (2012)  

Table 3 
Technical parameters of the microbial treatment method.  

Device 
Temperature 
(◦C) 

Processing 
time (d) Inoculum References 

Aerobic 
device 25–50 14–120 Mature biosolid 

Tang et al. 
(2006), Cao 
et al. (2010),  
Singh and 
Kalamdhad 
(2016), Yang 
et al. (2019) 

Anaerobic 
device 

37 50 

The biogas 
residue of a 
water hyacinth 
anaerobic 
digestion 
reactor at the 
Jiangsu 
Provincial 
Academy of 
Agricultural 
Science, China 

Cao et al. 
(2015)  
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2018a; Wang et al., 2021). 

6. Synthesis of nanomaterials 

The particles with size ranging from 1 to 100 nm are called nano-
materials, and among them, metal nanoparticles and metal oxide 
nanoparticles are considered to be the most effective ones, because they 
increase the surface area to volume ratio (Ahmed et al., 2017; Chausali 
et al., 2021). Metal nanoparticles and metal oxide nanoparticles can be 
widely used in the fields of electrochemistry, catalysis, medical 

treatment, aviation industry and so on (Ahmed et al., 2017; Zammit 
et al., 2019; Priyadarshini et al., 2020; He et al., 2021; Liu et al., 2021; 
Yang et al., 2021; Pei et al., 2021). Compared with the traditional syn-
thesis technology of metal nanoparticles, which is expensive and 
harmful to the environment, the biosynthesis of metal nanoparticles by 
phytoremediation plants has gradually become a new method (Ahmed 
et al., 2016). The phytosynthesis of nanoparticles and its mechanism is 
dependent on phytochemicals such as alkaloids, phenols, flavonoids, 
tannins, saponins, terpenoids, carbohydrates (Ahmed et al., 2017). The 
reduction rate of phytoremediation biomass processed by synthesis of 

Fig. 2. Principle of microbial treatment (a: compost; b: fermentation).  

Fig. 3. Schematic diagram of landfill site.  
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nanomaterials can be 100%, which is higher than other disposal 
methods (Li et al., 2018a; Wang et al., 2021). 

Qu et al. (2014) synthesized metal carbon nanotubes with particle 
size of 110 nm loaded with Cu and ZnO using phytoremediation plants 
containing Zn and Cu. Wang et al. (2016) synthesized ZnO nanoparticles 
with photocatalytic activity for organic pollutants from Sedum alfredii 
Hance. Producing HM nanoparticles generally includes the concen-
trating of HMs and the combination of concentrated HMs and substances 
(such as chlorophyllin, Na2S) (Fig. 4). Chen et al. (2020b) made CdS@C 
nanocomposites with hexagonal structure using Sedum plumbizincicola 
by pyrolysis and hydrothermal vulcanization process, which have good 
photocatalytic activity and can degrade pigment wastewater. At present, 
there is not much research of synthesis of nanomaterials using phytor-
emediation plants containing HMs. More studies about the preparation 
of nanomaterials from different plant species containing different kinds 
of HMs are needed. However, synthesis of nanomaterials for phytor-
emediation residues is complex and costly. 

7. Future perspectives 

The disposal and utilization methods (heat treatment, extraction 
treatment, microbial treatment, compression landfill, and synthesis of 
nanomaterials) have their own advantages and disadvantages. A com-
parison between various disposal and utilization methods for phytor-
emediation plants with HMs is listed in Table S3. The reduction rate of 
plant biomass with HMs is high using synthesis of nanomaterials, 
incineration, gasification, or pyrolysis (Table S3). The environmental 
risk of secondary pollution is low using extraction and synthesis of 
nanomaterials (Table S3). On the other hand, other methods (heat 
treatment, microbial treatment, and compression landfill) have rela-
tively high risk of secondary pollution (Table S3). Synthesis of nano-
materials incineration, pyrolysis, and gasification are especially suitable 
for the disposal of high biomass plants (e.g. Ricinus communis L., Pteris 
vittata L., Brassica juncea) with HMs because of the strong capacity of 
plant biomass reduction. Hydrothermal modification, extraction, and 
microbial treatment are suitable for the disposal of low biomass plants 
(e.g. Oxalis corniculata L.) due to the low reduction rate of plant biomass. 
Incineration and gasification are especially suitable for the disposal of 
plants with high boiling point HMs (e.g. Ni, Cr, Cu), considering the 
secondary pollution caused by the transformation of HMs into gaseous 
state. Pyrolysis and hydrothermal modification is especially suitable for 
the disposal of plants with medium and high boiling point HMs (e.g. Pb, 
Cd, Zn, Ni, Cr, Cu). Extraction and synthesis of nanomaterials are 
especially suitable for the disposal of plants with low boiling point HMs 
(e.g. Hg, As) for the low risk of secondary pollution by extraction or 
synthesis of nanomaterials. Microbial treatment and compression 

landfill are suitable for the disposal of plants with low contents of HMs, 
as the disposal process can cause secondary pollution. All methods have 
by-products that can be recycled as resources. Each method has some 
shortcomings, which are the focus of future research. 

Although the migration and transformation of HMs in hyper-
accumulators during heat treatment processes have been studied in 
some research, analysis of the evolution pathway of different kinds of 
volatile HMs (such as Hg) should be further promoted. It is necessary to 
do more research about the mechanism of the migration and trans-
formation of HMs in hyperaccumulators during heat treatment pro-
cesses. In addition to conventional offline methods such as sequential 
chemical extraction and XRD analysis, some accurate and online 
detection technologies should be employed to deeply and accurately 
illuminate the behavior of HMs. The offline techniques are usually based 
on physicochemical analysis of biomass and solid/liquid products, 
whereas they can’t describe the time-resolved release of HMs and HM 
species in the gaseous products. Yields and quality of products of plant 
biomass treated by heat need to be further studied. What’s more, the 
content, and the risk of HMs in products of plant biomass treated by heat 
should also be further studied. 

At present, the research on the mechanism of extraction method for 
phytoremediation residues with HMs is insufficient. Therefore, more 
research about the deep mechanism of extraction agent and HMs is 
needed. Moreover, the treatment of the extraction solution also needs to 
be considered and studied. Metals and some useful substances can be 
extracted and recycled, and research in this area is also interesting. 

Microbial treatment and compression landfill have the problem that 
leaching solution or leachate contains a lot of HMs, which may cause 
secondary pollution. It is necessary to conduct a deeper research on the 
treatment of the leaching solution or leachate and reduce the operation 
cost of microbial treatment and compression landfill. When the content 
of HMs in plants is high, other disposal and utilization methods can be 
used to reduce the content of HMs in plants before microbial treatment 
and compression landfill. 

At present, the research on the mechanism of synthesis of nano-
materials for phytoremediation residues is insufficient. More research 
about the deep mechanism of synthesis of nanomaterials for phytor-
emediation residues is needed. Moreover, whether more simplified 
methods of can be found needs more research. 

As the disposal and utilization methods (heat treatment, extraction 
treatment, microbial treatment, compression landfill, and synthesis of 
nanomaterials) have their own advantages and disadvantages, the 
combination of some methods may bring their advantages into play and 
overcome their disadvantages. However, there are not many studies on 
this aspect. Thus, it is worth studying technical parameters and mech-
anism of the combination methods. 

Fig. 4. Schematic illustration of the procedures for HM synthesis (a: ZnO nanoparticles; b: CdS@C nanocomposites) (Ahmed et al., 2017; Chen et al., 2020b).  
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8. Conclusions 

Plant biomass derived from the phytoremediation of HM contami-
nated soils should be properly disposed. This review provides reference 
for technical parameters and characteristics of various disposal and 
utilization methods (heat treatment, extraction treatment, microbial 
treatment, compression landfill, and synthesis of nanomaterials) for 
phytoremediation plants with HMs. The reduction rate of plant biomass 
with HMs is high using synthesis of nanomaterials, incineration, gasifi-
cation, or pyrolysis. The environmental risk of secondary pollution is 
low using extraction and synthesis of nanomaterials. Solid, liquid and 
gas products produced in the treatment process can be used as resources. 
The disposal and utilization methods have their own advantages and 
disadvantages. More research is needed to address the shortcomings of 
these methods. The combination of some methods may bring their ad-
vantages into play and overcome their disadvantages, which may be a 
feasible choice. 
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