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Abstract—This paper contributes to the understanding of
snake robot locomotion by employing nonlinear system analysis
tools for investigating fundamental properties of snake robot
dynamics. The paper has five contributions: 1) A partially
feedback linearized model of a planar snake robot influenced by
viscous ground friction is developed. 2) A stabilizability analysis
is presented proving that any asymptotically stabilizing control
law for a planar snake robot to an equilibrium point must be
time-varying. 3) A controllability analysis is presented proving
that planar snake robots are not controllable when the viscous
ground friction is isotropic, but that a snake robot becomes
strongly accessible when the viscous ground friction is anisotropic.
The analysis also shows that the snake robot does not satisfy
sufficient conditions for small-time local controllability (STLC). 4)
An analysis of snake locomotion is presented that easily explains
how anisotropic viscous ground friction enables snake robots to
locomote forward on a planar surface. The explanation is based
on a simple mapping from link velocities normal to the direction
of motion into propulsive forces in the direction of motion. 5)
A controller for straight line path following control of snake
robots is proposed and a Poincaré map is investigated to prove
that the resulting state variables of the snake robot, except for
the position in the forward direction, trace out an exponentially
stable periodic orbit.

Index Terms—Biologically-Inspired Robots, Underactuated
Robots, Snake Robot, Motion Control, Poincaré maps.

I. INTRODUCTION

INSPIRED by biological snake locomotion, snake robots
carry the potential of meeting the growing need for robotic

mobility in unknown and challenging environments. These
mechanisms typically consist of serially connected joint mod-
ules capable of bending in one or more planes. The many
degrees of freedom of snake robots make them difficult to con-
trol, but they provide traversability in irregular environments
that surpasses the mobility of the more conventional wheeled,
tracked and legged forms of robotic mobility. Research on
snake robots has been conducted for several decades. However,
our understanding of snake locomotion so far is for the most
part based on empirical studies of biological snakes and
simulation-based synthesis of relationships between parame-
ters of the snake robot. This paper is an attempt to contribute
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to the understanding of snake robots by employing nonlinear
system analysis tools for investigating fundamental properties
of their dynamics.

There are several reported works aimed at analysing and
understanding snake locomotion. Gray [1] conducted empirical
and analytical studies of snake locomotion already in the
1940s. Hirose [2] studied biological snakes and developed
mathematical relationships characterizing their motion, such as
the serpenoid curve. Ostrowski [3] studied the controllability
properties of a wheeled snake robot on a purely kinematic
level. Prautsch et al. [4] modelled the dynamics of a wheeled
snake robot and proposed an asymptotically stable controller
for the position of the robot. Ma [5] modelled a planar snake
robot without wheels and optimized the motion of the robot
based on computer simulations. Date et al. [6] developed
controllers for wheeled snake robots aimed at minimizing the
lateral constraint forces on the wheels of the robot during
locomotion. Saito et al. [7] modelled a planar snake robot and
optimized the parameters of Hirose’s serpenoid curve based
on simulations. Hicks [8] investigated general requirements
for the propulsion of a three-linked snake robot. Nilsson [9]
employed energy arguments to analyse planar snake locomo-
tion with isotropic friction. Transeth et al. [10] proved that the
translational and rotational velocity of a planar snake robot
is bounded. Li et al. [11] studied the controllability of the
joint motion of a snake robot, but they did not consider the
position and orientation of the robot. Ishikawa [12] proposed
feedback control strategies (on a kinematic level) for a three-
linked wheeled snake robot based on Lie bracket calculations
and employed Poincaré maps to study the motion of the robot.

Research on control of robotic fish and eel-like mechanisms
is relevant to research on snake robots since these mechanisms
are very similar. The works in [13]–[15] investigate the con-
trollability of various fish-like mechanisms, synthesize gaits
for translational and rotational motion based on Lie bracket
calculations, and propose controllers for tracking straight and
curved trajectories.

This paper is based on results previously presented by
the authors in [16] and [17], and provides five distinct
contributions. The first contribution is a partially feedback
linearized model of a planar snake robot that builds on a
model previously presented in [18]. This approach resembles
the work in [11]. However, the feedback linearized model in
[11] does not include the position of the snake robot, which
is a key ingredient in this paper.

The second contribution is a stabilizability analysis for pla-
nar snake robots that proves that any asymptotically stabilizing
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control law for a planar snake robot to an equilibrium point
must be time-varying, i.e. not of pure-state feedback type (see
Theorem 3). This result is valid regardless of which type of
ground friction the snake robot is subjected to.

The third contribution is a controllability analysis for planar
snake robots influenced by viscous ground friction forces. The
analysis shows that a snake robot is not controllable when the
viscous ground friction is isotropic (see Theorem 5), but that
a snake robot becomes strongly accessible when the viscous
ground friction is anisotropic (see Theorem 6). The analysis
also shows that the snake robot does not satisfy sufficient
conditions for small-time local controllability (see Theorem 8).
To the authors’ best knowledge, no formal controllability
analysis has previously been reported for the position and
link angles of a wheelless snake robot influenced by ground
friction. Note that the work in [11] studies the controllability
of the joints of a snake robot under the assumption that one
joint is passive. However, the analysis does not consider the
position of the snake.

The fourth contribution is the development of a simple
relationship between link velocities normal to the direction
of motion and propulsive forces in the direction of motion.
This relationship explains how snake robots influenced by
anisotropic ground friction are able to locomote forward on
a planar surface. To the authors’ best knowledge, previously
published research on snake robots has not presented an
explicit mathematical description that easily explains how a
snake robot achieves forward propulsion.

Finally, the fifth contribution is a path following controller
that enables snake robots to track a planar straight path, and
the use of a Poincaré map to study the stability properties of
the motion along the path. The method of Poincaré maps [19]
represents a widely used tool for proving the existence and
stability of periodic orbits of dynamical systems (see e.g. [20]).
In this paper, a Poincaré map is employed to prove that all
state variables of the snake robot, except for the position in the
forward direction, trace out an exponentially stable periodic
orbit when the proposed controller is applied.

The paper is organized as follows. Section II introduces
some selected tools for analyzing controllability of nonlin-
ear systems. Section III gives an introduction to Poincaré
maps. Section IV presents a mathematical model of a planar
snake robot. Section V converts the model to a simpler form
through partial feedback linearization. Section VI and Section
VII studies, respectively, the stabilizability and controllability
properties of planar snake robots. Section VIII explains how
snake robots are able to move forward. Section IX proposes
a controller for the snake robot. Section X investigates the
stability of the proposed controller based on a Poincaré map.
Finally, Section XI presents concluding remarks.

II. INTRODUCTION TO NONLINEAR CONTROLLABILITY
ANALYSIS

This section presents a brief summary of selected tools for
analyzing the controllability of nonlinear systems. The sum-
mary given below is formulated in an intuitive form that aims
to be easily understandable for readers unaccustomed with

nonlinear controllability analysis. For a rigorous presentation,
the readers are referred to [21]–[23].

Analyzing the controllability of a linear system is straight-
forward and involves a simple test (the Kalman rank condition
[21]) on the constant system matrices. However, studying the
controllability of a nonlinear system is far more complex and
constitutes an active area of research. In the following, we
summarize important controllability concepts for control-affine
nonlinear systems, i.e. systems of the form

ẋ = f (x) +
m∑
j=1

gj (x) vj , x ∈ Rn, v ∈ Rm (1)

where the vector fields of the system are the drift vector field,
f (x), and the control vector fields, gj (x), j ∈ {1, ..,m}.

A nonlinear system is said to be controllable if there exist
admissible control inputs that will move the system between
two arbitrary states in finite time. However, conditions for this
kind of controllability that are both necessary and sufficient
do not exist. Nonlinear controllability is instead typically
analyzed by investigating the local behaviour of the system
near equilibrium points.

The simplest approach to studying controllability of a non-
linear system is to linearize the system about an equilibrium
point, xe. If the linearized system satisfies the Kalman rank
condition at xe, the nonlinear system is controllable in the
sense that the set of states that can be reached from xe

contains a neighborhood of xe [21]. Unfortunately, many
underactuated systems do not have a controllable linearization.
Moreover, a nonlinear system can be controllable even though
its linearization is not.

A necessary (but not sufficient) condition for controllability
from a state x0 (not necessarily an equilibrium) is that the
nonlinear system satisfies the Lie algebra rank condition
(LARC), also called the accessibility rank condition [21]. If
this is the case, the system is said to be locally accessible
from x0. This property means that the space that the system
can reach within any time T > 0 is fully n-dimensional,
i.e. the reachable space from x0 has a dimension equal to
the dimension of the state space. A slightly stronger property
is strong accessibility, which means that the space that the
system can reach in exactly time T for any T > 0 is fully
n-dimensional.

Accessibility of a nonlinear system is investigated by com-
puting the accessibility algebra, here denoted ∆, of the system.
Computation of ∆ requires knowledge of the Lie bracket
[21], which is now briefly explained. The drift and control
vector fields of the nonlinear system (1) indicate directions in
which the state x can move. These directions will generally
only span a subset of the complete state space. However,
through combined motion along two or more of these vector
fields, it is possible for the system to move in directions not
spanned by the original system vector fields. The Lie bracket
between two vector fields Y and Z produces a new vector field
defined as [Y,Z] = ∂Z

∂x Y −
∂Y
∂x Z. When Y and Z are any of

the system vector fields, the Lie bracket [Y, Z] approximates
the net motion produced when the system follows these two
vector fields in an alternating fashion. The classical example
is parallel parking with a car, where sideways motion of
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the car may be achieved through an alternating turning and
forward/backward motion. Note that Lie brackets can be
computed from other Lie brackets, thereby producing nested
Lie brackets. The accessibility algebra, ∆, is a set of vector
fields composed of the system vector fields, f and gj , the
Lie brackets between the system vector fields, and also higher
order Lie brackets generated by nested Lie brackets. The
LARC is satisfied at x0 if the vector fields in ∆ (x0) span
the entire n-dimensional state space (dim (span (∆)) = n).
The following result is proved in [21]:

Theorem 1: The system (1) is locally accessible from x0

if and only if the LARC is satisfied at x0. The system is
locally strongly accessible if the drift field f by itself (i.e.
unbracketed) is not included in the accessibility algebra.

Accessibility does not imply controllability since it only
infers conclusions on the dimension of the reachable space
from x0. Accessibility is, however, a necessary (but not suf-
ficient) condition for small-time local controllability (STLC)
[22]. STLC is desirable since it is in fact a stronger property
than controllability. If a system is STLC, then the control
input can steer the system in any direction in an arbitrarily
small amount of time. For second-order systems, STLC is only
considered from equilibrium states since it is generally not
possible for a second-order system to instantly move in one
direction if it already has a velocity in the opposite direction.

Sussmann presented sufficient conditions for STLC in [22].
These results were later extended by Bianchini and Stefani
[23]. We now summarize these conditions. For any Lie bracket
term B generated from the system vector fields, define the θ-
degree of B, denoted δθ (B), and the l-degree of B, denoted
δl (B), as

δθ (B)=
1
θ
δ0 (B)+

m∑
j=1

δj (B) , δl (B)=
m∑
j=0

ljδ
j (B) (2)

respectively, where δ0 (B) is the number of times the drift
vector field f appears in the bracket B, δj (B) is the number of
times the control vector field gj appears in the bracket B, θ is
an arbitrary number satisfying θ ∈ [1,∞), and lj is an arbitrary
number satisfying lj ≥ l0 ≥ 0, ∀ j ∈ {0, ..,m}. The bracket
B is said to be bad if δ0 (B) is odd and δ1 (B) , ..., δm (B) are
all even. A bracket is good if it is not bad. As an example, we
have that the bracket [gj , [f, gk]] is bad for j = k and good for
j 6= k. This classification is motivated by the fact that a bad
bracket may have directional constraints. E.g. the drift vector
f is bad because it only allows motion in its positive direction
and not in its negative direction, −f . A bad bracket is said
to be θ-neutralized (resp. l-neutralized) if it can be written
as a linear combination of good brackets of lower θ-degree
(resp. l-degree). The Sussmann condition and the Bianchini
and Stefani condition for STLC are now combined in the
following theorem:

Theorem 2: The system (1) is small-time locally control-
lable (STLC) from an equilibrium point xe ( f (xe) = 0)
if the LARC is satisfied at xe and either all bad brackets
are θ-neutralized (Sussmann [22]) or all bad brackets are l-
neutralized (Bianchini and Stefani [23]).

Fig. 1. Illustration of the Poincaré map corresponding to a Poincaré section
S.

III. INTRODUCTION TO POINCARÉ MAPS

This section gives a brief presentation of the Poincaré map
since this is used as a stability analysis tool in Section X. For
further details on the topic, the reader is referred to [19] and
[20].

A. General description of Poincaré maps

The Poincaré map represents a widely used tool for
analysing the existence and stability of periodic orbits of
dynamical systems. Consider an autonomous (not explicitly
dependent on time) n-dimensional dynamical system of the
form

ẋ = f (x) , x ∈ Rn (3)

where f (x) is assumed to be continuously differentiable.
Assume that the solution of this differential equation for a
particular initial condition is a limit cycle. This means that the
flow of x in the n-dimensional state space will return to the
initial condition after a time T , corresponding to the period of
the limit cycle.

We now define an (n−1)-dimensional hyperplane S (called
a Poincaré section) such that the limit cycle intersects and
passes through S at some instant in time. We denote by
x ∈ Rn−1 the (n − 1)-dimensional state vector when x
is constrained to S. The point on S where the limit cycle
intersects S is denoted x ∗ ∈ Rn−1. Assume now that we
initialize (3) on the hyperplane S somewhere close to x∗.
Due to the continuity of the solutions of (3) with respect to
the initial condition, the flow of x will, in approximately T
seconds, return to and intersect S somewhere close to x∗. This
is illustrated in Fig. 1. The mapping from an initial point x
on S to the next point where the flow of x intersects S is
called the Poincaré map and is denoted by P (x) ∈ Rn−1.
The Poincaré map is in other words a function that accepts an
initial point on a Poincaré section as input and outputs where
the Poincaré section will be intersected next by the flow of x.
This is written more formally as P : S → S . The point x∗ is
called a fixed point of the Poincaré map since the Poincaré map
maps x∗ back to itself. This is also illustrated in Fig. 1. We
only consider one-sided Poincaré maps, i.e. we only consider
crossings of S in directions corresponding to the direction of
ẋ when x initially left S.

The Poincaré map can be interpreted as a discrete-time
system with an (n − 1)-dimensional state space that evolves
on the Poincaré section. This is seen by denoting by x [k] ∈ S
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the point of the k-th intersection with S by the flow of x. The
Poincaré map may then be written as

x [k + 1] = P (x [k]) , x [0] ∈ S. (4)

The usefulness of the Poincaré map for stability analysis lies
in the fact that local exponential stability of the fixed point
x∗ on the Poincaré section is equivalent to local exponential
stability of the underlying periodic orbit [20], i.e. nearby orbits
converge exponentially to the periodic orbit. Note that the
stability is only asymptotic (i.e. not exponential) if f (x) in
(3) is continuous but not continuously differentiable [20]. The
problem of determining if a periodic orbit of the system (3) is
exponentially stable is, in other words, reduced to determining
if x∗ is an exponentially stable equilibrium point of the
discrete-time system in (4), which is a much simpler problem
to solve. A significant drawback of Poincaré maps is that they
provide little insight into properties of the system dynamics.

Note that the method of Poincaré maps may also be applied
to non-autonomous periodic systems, i.e. systems of the form
ẋ = f (x, t), by incapsulating the time t in an augmented
periodic state variable β = 2πt/T . This is performed for the
snake robot in Section X-A.

B. Practical application of Poincaré maps

This section provides an informal description of the practi-
cal use of Poincaré maps. The aim is to show how this method
can be employed in practice in order to investigate the stability
properties of a time-periodic dynamical system.

1) Calculating the Poincaré map: It is difficult to determine
the Poincaré map analytically since it requires the solution
of the differential equation (3). However, the Poincaré map
of (3) is simply the forward integration of this differential
equation. It is therefore possible to compute the Poincaré
map P (x0) numerically by initializing (3) on S at x0 and
simulating (3) until S is intersected. The state corresponding
to this intersection is the Poincaré map P (x0).

2) Locating fixed points of the Poincaré map: The easiest
way of locating a fixed point x∗ of the Poincaré map is to
simply let the simulation of (3) run until it reaches the steady
state. This is called the brute-force approach and has three
serious disadvantages. First of all, convergence to the fixed
point can be exceedingly slow. Secondly, the method can only
locate stable fixed points. Thirdly, it may be difficult to tell
when the steady state has been reached.

A more sophisticated method is to exploit the fact that
locating x∗ is equivalent to locating zeros of the error function

E (x) = P (x)− x, E (x) ∈ Rn−1 (5)

since we have that x∗ = P (x∗). The Newton-Raphson
algorithm [19] is a general algorithm for locating zeros of
a differentiable function, and it may therefore be employed
for locating x∗. By starting from an inital guess, xk, of the
fixed point, the Newton-Raphson algorithm calculates a more
accurate estimate of x∗ through the formula

xk+1 = xk − JE
(
xk
)−1

E
(
xk
)

(6)

where

JE =
∂E

∂x
=


∂E1
∂x1

· · · ∂E1
∂xn−1

...
. . .

...
∂En−1
∂x1

· · · ∂En−1
∂xn−1

 ∈ R(n−1)×(n−1) (7)

is the Jacobian of the error function E (x). The Jacobian
JE
(
xk
)

can be calculated numerically by defining

dxi =
[
0 · · · 0 ∆i 0 · · · 0

]T ∈ Rn−1 (8)

where the i-th element is non-zero, and ∆i is a small per-
turbation of xi along S. Column i of JE

(
xk
)

may then be
approximated numerically as

∂E

∂xi

(
xk
)
≈
E
(
xk + dxi

)
− E

(
xk
)

∆i
. (9)

This enables a column-wise construction of JE
(
xk
)
. If the

initial condition is within the basin of attraction of a periodic
orbit, the Newton-Raphson algorithm will converge rapidly
towards the fixed point x∗.

3) Analysing stability of a periodic orbit: As explained in
Section III-A, a fixed point x∗ of the Poincaré map corre-
sponds to a periodic orbit of the underlying dynamical system.
Once the fixed point has been found using e.g. the Newton-
Raphson algorithm, the stability of the periodic orbit may be
tested by investigating if the fixed point is a stable equilibrium
point of the Poincaré map. This is done by calculating the
Jacobian linearization of the Poincaré map about the fixed
point, i.e. by calculating the Jacobian JP (x∗) = ∂P

∂x

∣∣
x=x∗ ∈

R(n−1)×(n−1). JP (x∗) is calculated by following the same
procedure as for calculating JE

(
xk
)

in (7). The Poincaré
map linearized about the fixed point is thereby given as
x [k + 1] = JP (x∗)x [k]. This is a linear discrete-time system
which is exponentially stable if the magnitude of all the
eigenvalues of JP (x∗) are strictly less than one. The fixed
point x∗ of the Poincaré map, and thereby also the periodic
orbit of the underlying dynamical system, is therefore locally
exponentially stable if the magnitude of all the eigenvalues of
JP (x∗) are strictly less than one.

IV. A MODEL OF THE SNAKE ROBOT

This section summarizes a mathematical model of a planar
snake robot. For a more detailed presentation of this model,
the reader is referred to [18]. A feedback linearized form of
this snake robot model is developed in Section V in order to
simplify the controllability analysis presented in Section VII.

A. Notations and defined symbols

The snake robot consists of n links of length 2l intercon-
nected by n−1 joints. All n links have the same mass m and
moment of intertia J = 1

3ml
2. The total mass of the snake

robot is therefore nm. The mass of each link is uniformly
distributed so that the link CM (center of mass) is located
at its center point (at length l from the joint at each side).
The mathematical symbols defined in order to represent the
kinematics and dynamics of the snake robot are described in
Table I and illustrated in Fig. 2 and Fig. 3.
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Fig. 2. Kinematic parameters for the snake robot.

Fig. 3. Forces and torques acting on each link of the snake robot.

Vectors are either expressed in the global coordinate system
or in the local coordinate system of link i. This is indicated
by superscript global or link, i, respectively. If not otherwise
specified, a vector with no superscript is expressed in the
global coordinate system.

The following vectors and matrices are used in the subse-
quent sections:

Symbol Description Associated
vector

n Number of links.
l Half the length of a link.
m Mass of a link.
J Moment of inertia of a link.
θi Angle between link i and global x axis. θ ∈ Rn

φi Angle of joint i. φ ∈ Rn−1

(xi, yi) Global coordinates of CM of link i. x, y ∈ Rn

(px, py) Global coordinates of the CM of the
snake robot.

p ∈ R2

ui Actuator torque exerted on link i from
link i+ 1.

u ∈ Rn−1

ui−1 Actuator torque exerted on link i from
link i− 1.

u ∈ Rn−1

fR,x,i Friction force on link i in x direction. fR,x ∈ Rn

fR,y,i Friction force on link i in y direction. fR,y ∈ Rn

hx,i Joint constraint force in x direction on
link i from link i+ 1.

hx ∈ Rn−1

hy,i Joint constraint force in y direction on
link i from link i+ 1.

hy ∈ Rn−1

hx,i−1 Joint constraint force in x direction on
link i from link i− 1.

hx ∈ Rn−1

hy,i−1 Joint constraint force in y direction on
link i from link i− 1.

hy ∈ Rn−1

TABLE I
DEFINED MATHEMATICAL SYMBOLS.

A =


1 1

. .
. .

1 1

, D =


1 −1

. .
. .

1 −1


where A ∈ R(n−1)×n and D ∈ R(n−1)×n. Furthermore,

e =
[
1 . . 1

]T ∈ Rn, E =
[

e 0n×1

0n×1 e

]
∈ R2n×2,

sin θ=
[
sin θ1 .. sin θn

]
T∈Rn, Sθ = diag(sin θ) ∈ Rn×n,

cos θ=
[
cos θ1 .. cos θn

]
T∈Rn, Cθ = diag(cos θ)∈ Rn×n.

Note that the operator diag (·) produces a diagonal matrix
with the elements of its argument along its diagonal. Note
also that sin (·) and cos (·) are vector operators when their
argument is a vector and scalar operators when their argument
is a scalar value. As shown in Table I, we will use subscript i
to denote element i of a vector. When parameters of the links
of the snake robot are assembled into a vector, we associate
element i of this vector with link i.

B. Kinematics

The snake robot moves in the horizontal plane and has
a total of n + 2 degrees of freedom. The absolute angle,
θi, of link i is expressed with respect to the global x axis
with counterclockwise positive direction. As seen in Fig. 2,
the relative angle between link i and link i + 1 is given by
φi = θi − θi+1. The local coordinate system of each link is
fixed in the CM (center of mass) of the link with x (tangential)
and y (normal) axes oriented such that they are oriented in the
directions of the global x and y axis, respectively, when the
link angle is zero. The rotation matrix from the global frame
to the frame of link i is given by

Rglobal
link,i =

[
cos θi − sin θi
sin θi cos θi

]
. (10)

The position, p, of the CM (center of mass) of the snake robot
is given by

p =
[
px
py

]
=


1
nm

n∑
i=1

mxi

1
nm

n∑
i=1

myi

 =
1
n

[
eTx
eT y

]
. (11)

It is shown in [18] that the global frame position of the CM
of each link is given by

x =−lNT cos θ + epx
y = −lNT sin θ + epy

(12)

where
N = AT

(
DDT

)−1
D ∈ Rn×n. (13)

The linear velocities of the links are derived by differentiating
(12). This gives

ẋ = lNTSθ θ̇ + eṗx
ẏ = −lNTCθ θ̇ + eṗy.

(14)

An expression for the velocity of a single link may be found by
investigating the structure of each row in (14). The derivation
is not included here due to space restrictions, but it may be
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verified that the linear velocity of the CM of link i in the
global x and y directions is given by

ẋi = ṗx − σiSθ θ̇
ẏi = ṗy + σiCθ θ̇

(15)

where

σi =
[
a1 a2 ... ai−1

ai+bi

2 bi+1 bi+2 ... bn
]
∈ Rn

ai = l(2i−1)
n

bi = l(2i−1−2n)
n .

(16)

C. Viscous friction model

In this paper, we consider snake robots influenced by
viscous ground friction forces. In this section, we present the
viscous friction model, and in particular we present models
for the different cases of isotropic versus anisotropic viscous
friction.

1) Isotropic viscous friction: The friction forces are as-
sumed to act on the CM of the links only. The isotropic
viscous friction force on link i in the global x and y direction
is proportional to the global velocity of the link and is written

fR,x,i = −cẋi = −cṗx + cσiSθ θ̇

fR,y,i = −cẏi = −cṗy − cσiCθ θ̇
(17)

where c is the viscous friction coefficient, and the expression
for the link velocity is given by (15). The friction forces on
all links may be expressed in matrix form as

fR =
[
fR,x
fR,y

]
= −c

[
ẋ
ẏ

]
= −c

[
lNTSθ θ̇ + eṗx
−lNTCθ θ̇ + eṗy

]
(18)

where the expression for the link velocities is given by (14).
We disregard the friction torque caused by a link rotating with
respect to the ground since this torque only has a minor impact
on the motion.

2) Anisotropic viscous friction: Under anisotropic friction
conditions, a link has two viscous friction coefficients, ct and
cn, describing the friction force in the tangential (along link
x axis) and normal (along link y axis) direction of the link,
respectively. Using (10), the friction force on link i in the
global frame as a function of the global link velocity, ẋi and
ẏi, is given by

fglobal
R,i =Rglobal

link,i f
link,i
R,i =−Rglobal

link,i

[
ct 0
0 cn

]
vlink,i
i

= −Rglobal
link,i

[
ct 0
0 cn

](
Rglobal

link,i

)T [ẋi
ẏi

] (19)

where f link,i
R,i and vlink,i

i are, respectively, the friction force and
the link velocity expressed in the local link frame. Performing
the matrix multiplication and assembling the friction forces on
all links in matrix form gives

fR=−
[
ct (Cθ)

2 + cn (Sθ)
2 (ct − cn)SθCθ

(ct − cn)SθCθ ct (Sθ)
2 + cn (Cθ)

2

][
ẋ
ẏ

]
(20)

where fR=
[
fTR,x fTR,y

]T ∈ R2n. Note that (20) reduces to
(18) in the case of isotropic friction (ct = cn = c).

D. Equations of motion

This section presents the equations of motion of the snake
robot in terms of the acceleration of the link angles, θ̈, and the
acceleration of the CM of the snake robot, p̈. These coordinates
describe all n+ 2 DOFs of the snake robot.

The forces and torques acting on link i are visualized in
Fig. 3. The force balance for link i in global frame coordinates
is given by

mẍi = fR,x,i + hx,i − hx,i−1

mÿi = fR,y,i + hy,i − hy,i−1
(21)

while the torque balance for link i is given by

Jθ̈i = ui − ui−1

−l sin θi(hx,i + hx,i−1) + l cos θi(hy,i + hy,i−1).
(22)

Through straightforward calculations, it is shown in [18] that
(21) and (22) may be rewritten for all links and combined into
the following complete model of the snake robot:

Mθ̈ +Wθ̇2 − lSθNfR,x + lCθNfR,y = DTu (23)

nmp̈ = nm

[
p̈x
p̈y

]
= ET fR =

[
eT fR,x
eT fR,y

]
(24)

where θ and p represent the n+ 2 generalized coordinates of
the system, θ̇2 = diag(θ̇)θ̇, and

M = JIn×n +ml2 (SθV Sθ + CθV Cθ)
W = ml2 (SθV Cθ − CθV Sθ)

N = AT
(
DDT

)−1
D

V = AT
(
DDT

)−1
A.

(25)

The model of the snake robot may be written more compactly
as

ẋ =
[
θ̇T ṗT θ̈T p̈T

]T
= F (x, t) (26)

where we have introduced the state variable
x =

[
θT pT θ̇T ṗT

]T ∈ R2n+4 and also assumed
that u = u (x, t). The elements of F (x, t) are given by
solving (23) and (24) for θ̈ and p̈, respectively.

V. PARTIAL FEEDBACK LINEARIZATION OF THE MODEL

This section transforms the model (26) to a simpler form
through partial feedback linearization [24], [25]. This conver-
sion greatly simplifies the controllability analysis presented in
Section VII. Partial feedback linearization of underactuated
systems consists of linearizing the dynamics corresponding to
the actuated degrees of freedom of the system. In this section,
we show how a change of coordinates makes it possible to
employ this methodology by following the approach presented
in [26].

A. Partitioning the model into an actuated and an unactuated
part

Before partial feedback linearization can be carried out, the
model of the snake robot in (26) must be partitioned into
two parts representing the actuated and unactuated degrees
of freedom, respectively [26]. The acceleration of the CM of
the snake robot, p̈, belongs to the unactuated part since it
is not directly influenced by the input, u. The acceleration
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of the link angles, θ̈, represents one unactuated degree of
freedom and n − 1 actuated degrees of freedom since there
are n link accelerations (θ ∈ Rn) and only n − 1 control
inputs (u ∈ Rn−1). However, it is not possible to partition
the equation for θ̈ in (23) into an actuated and an unactuated
part since the matrix DT in front of the control input gives
a direct influence between u and all the link accelerations.
We therefore seek a form of the model where there is a
direct influence between u and only n− 1 link accelerations.
This is achieved by modifying the choice of generalized
coordinates from absolute link angles to relative joint angles.
The generalized coordinates of the model in (26) are given by
the absolute link angles, θ, and the CM position of the snake
robot, p. We now replace these coordinates with

q =
[
φ
p

]
∈ Rn+2 (27)

where

φ =
[
φ1 φ2 · · · φn−1 θn

]T ∈ Rn (28)

contains the n − 1 relative joint angles of the snake robot
and the absolute link angle, θn ∈ R, of the head link. The
relative joint angles are defined in Fig. 2. The coordinate
transformation between absolute link angles and relative joint
angles is easily shown to be given by

θ = Rφ (29)

R =


1 1 1 · · · 1 1
0 1 1 · · · 1 1
...

...
0 0 0 · · · 0 1

 ∈ Rn×n. (30)

The dynamic model in the new coordinates is found by
inserting (29) into (23) and (24). This gives

MRφ̈+W diag
(
Rφ̇
)
Rφ̇− lSθNfR,x

+lCθNfR,y = DTu
nmp̈ = ET fR

(31)

where we have used that θ̇2 = diag(θ̇)θ̇ = diag
(
Rφ̇
)
Rφ̇.

Finally, we premultiply the first matrix equation in (31) with
RT in order to achieve the desired form of the input mapping
matrix on the right-hand side by making the last of the n
equations independent of the control input. This enables us to
write the complete model of the snake robot as

M (φ) q̈ +W
(
φ, φ̇

)
+G (φ) fR

(
φ, φ̇, ṗ

)
= Bu (32)

where

q =
[
φ
p

]
∈ Rn+2 (33)

M (φ) =
[
RTM (φ)R 0n×2

02×n nmI2

]
(34)

W
(
φ, φ̇

)
=

[
RTW (φ) diag

(
Rφ̇
)
Rφ̇

02×1

]
(35)

G (φ) =

−lRTSRφN lRTCRφN
−eT 01×n
01×n −eT

 (36)

B =
[
In−1

03×n−1

]
(37)

and where SRφ = Sθ and CRφ = Cθ. It is interesting to
note that premultiplying the first matrix equation in (31) with
RT both causes the input mapping matrix to attain a desirable
form and produces a symmetrical inertia matrix. Had we left
the model in the form of (31), the inertia matrix would not
have been symmetrical.

The first n− 1 equations of (32) represent the dynamics of
the relative joint angles of the snake robot, i.e. the actuated
degrees of freedom of the snake robot. The last three equations
represent the dynamics of the absolute orientation and position
of the snake robot, i.e. the unactuated degrees of freedom. The
model may therefore be partitioned as

M11q̈a +M12q̈u +W 1 +G1fR = u (38)

M21q̈a +M22q̈u +W 2 +G2fR = 03×1 (39)

where qa =
[
φ1 · · · φn−1

]T ∈ Rn−1 represents the
actuated degrees of freedom, qu =

[
θn px py

]T ∈
R3 represents the unactuated degrees of freedom, M11 ∈
R(n−1)×(n−1), M12 ∈ R(n−1)×3, M21 ∈ R3×(n−1), M22 ∈
R3×3, W 1 ∈ Rn−1, W 2 ∈ R3, G1 ∈ R(n−1)×2n, and
G2 ∈ R3×2n. Note that M (φ) only depends on the relative
joint angles of the snake robot and not on the absolute
orientation of the head link, θn. Formally, this is a result of the
fact that θn is a cyclic coordinate [27]. Less formally, this is
quite obvious since it would not be reasonable that the inertial
properties of a planar snake robot be dependent on how the
snake robot is oriented in the plane. We therefore have that
M = M (qa).

B. Partial feedback linearization

We are now ready to present an input transformation that
linearizes the dynamics of the actuated degrees of freedom
in (38). M22 is an invertible 3 × 3 matrix as a consequence
of the uniform positive definiteness of the complete system
inertia matrix, M (qa). We may therefore solve (39) for q̈u as

q̈u = −M−1

22

(
M21q̈a +W 2 +G2fR

)
. (40)

Inserting (40) into (38) gives(
M11 −M12M

−1

22 M21

)
q̈a +W 1 +G1fR

−M12M
−1

22

(
W 2 +G2fR

)
= u.

(41)
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Consequently, the following linearizing controller

u =
(
M11 −M12M

−1

22 M21

)
v +W 1

+G1fR −M12M
−1

22

(
W 2 +G2fR

) (42)

enables us to rewrite (38) and (39) as

q̈a = v (43)
q̈u = A (q, q̇) + B (qa) v (44)

where

A (q, q̇) = −M−1

22

(
W 2 +G2fR

)
∈ R3 (45)

B (qa) = −M−1

22 M21 ∈ R3×(n−1). (46)

This model may be written in the standard form of a control-
affine system by defining x1 = qa, x2 = qu, x3 = q̇a, x4 = q̇u,
and x =

[
xT1 xT2 xT3 xT4

]T ∈ R2n+4. This gives

ẋ =


ẋ1

ẋ2

ẋ3

ẋ4

 =


x3

x4

v
A (x) + B (x1) v


= f (x) +

n−1∑
j=1

gj (x1) vj

(47)

where

f (x) =


x3

x4

0(n−1)×1

A (x)

 , gj (x1) =


0(n−1)×1

03×1

ej
Bj (x1)

 (48)

and where ej denotes the jth standard basis vector in Rn−1

(the jth column of In−1), and Bj (x1) denotes the jth column
of B (x1).

VI. STABILIZABILITY PROPERTIES OF PLANAR SNAKE
ROBOTS

This section presents a fundamental theorem concerning
the properties of an asymptotically stabilizing control law for
snake robots to any equilibrium point. The equation (47) maps
the state, x, and the controller input, v, of the robot into the
resulting derivative of the state vector, ẋ. For any equilibrium
point (x1 = xe1, x2 = xe2, x3 = 0, x4 = 0), where (xe1, x

e
2) is

the configuration of the system at the equilibrium point, we
have that ẋ = 0.

A well-known result by Brockett [28] states that a neces-
sary condition for the existence of a time-invariant (i.e. not
explicitly dependent on time) continuous state feedback law,
v = v (x), that makes (xe1, x

e
2, 0, 0) asymptotically stable, is

that the image of the mapping (x, v) 7→ ẋ contains some
neighbourhood of ẋ = 0. A result by Coron and Rosier
[29] states that a control system that can be asymptotically
stabilized (in the Filippov sense [29]) by a time-invariant dis-
continuous state feedback law can be asymptotically stabilized
by a continuous time-varying state feedback law. If, moreover,
the control system is affine (i.e. linear with respect to the
control input), then it can be asymptotically stabilized by a
time-invariant continuous state feedback law. We now employ

these results to prove the following fundamental theorem for
planar snake robots:

Theorem 3: An asymptotically stabilizing control law for a
planar snake robot described by (47) to any equilibrium point
must be time-varying, i.e. of the form v = v (x, t).

Proof: The result by Brockett [28] states that the
mapping (x1, x2, x3, x4, v) 7→ (x3, x4, v,A (x) + B (x1) v)
must map an arbitrary neighbourhood of
(x1 = xe1, x2 = xe2, x3 = 0, x4 = 0, v = 0) onto a neigh-
bourhood of (x3 = 0, x4 = 0, v = 0,A (x) + B (x1) v = 0).
For this to be true, points of the form (x3 = 0, x4 = 0,
v = 0,A (x) + B (x1) v = ε) must be contained in this
mapping for some arbitrary ε 6= 0 because points of this form
are contained in every neighbourhood of ẋ = 0. However,
these points do not exist for the system in (47) because x3 = 0,
x4 = 0, and v = 0 means that A (x) + B (x1) v = 0 6= ε.
Hence, the snake robot cannot be asymptotically stabilized
to (x1 = xe1, x2 = xe2, x3 = 0, x4 = 0) by a time-invariant
continuous state feedback law. Moreover, since the system
in (47) is affine and cannot be asymptotically stabilized by
a time-invariant continuous state feedback law, the result by
Coron and Rosier [29] proves that the system can neither be
asymptotically stabilized by a time-invariant discontinuous
state feedback law. We can therefore conclude that an
asymptotically stabilizing control law for a planar snake robot
to any equilibrium point must be time-varying, i.e. of the
form v = v (x, t).

Remark 4: Theorem 3 is independent of the choice of
friction model and applies to any planar snake robot described
by a friction model with the property that A (xe) = 0 for any
equilibrium point xe.

VII. CONTROLLABILITY ANALYSIS OF PLANAR SNAKE
ROBOTS

This section studies the controllability of planar snake
robots influenced by viscous ground friction.

A. Controllability with isotropic viscous friction

We begin the controllability analysis of the snake robot by
first assuming that the viscous ground friction is isotropic. In
this case, it turns out that the equations of motion take on a
particularly simple form that enables us to study controllability
through pure inspection of the equations of motion. From (24),
we have that the acceleration of the CM (center of mass) of
the snake robot is given by

[
p̈x
p̈y

]
=
[

1
nme

T fR,x
1
nme

T fR,y

]
=

1
nm


n∑
i=1

fR,x,i
n∑
i=1

fR,y,i

 . (49)

Inserting (17) into (49) gives

[
p̈x
p̈y

]
=

c

nm

−nṗx +
(

n∑
i=1

σi

)
Sθ θ̇

−nṗy −
(

n∑
i=1

σi

)
Cθ θ̇

 = − c

m

[
ṗx
ṗy

]
(50)
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because it may be shown that
n∑
i=1

σi = 0. This enables us to

state the following theorem:
Theorem 5: A planar snake robot influenced by isotropic

viscous ground friction is not controllable.
Proof: In order to control the position, the snake robot

must accelerate its CM (center of mass). From (50) it is clear
that the CM acceleration is proportional to the CM velocity.
If the snake robot starts from rest (ṗ = 0), it is therefore
impossible to achieve acceleration of the CM. The position of
the snake robot is in other words completely uncontrollable in
this case, which renders the snake robot uncontrollable.

B. Controllability with anisotropic viscous friction

The equations of motion of the snake robot in (47) become
far more complex under anisotropic friction conditions. We
therefore employ the controllability concepts presented in Sec-
tion II and begin by computing the Lie brackets of the system
vector fields. The drift and control vector fields of the snake
robot are given in (48). As explained in Section II, Lie bracket
computation involves partial derivatives of the components
of the vector fields. These computations can be carried out
without dealing with the complex expressions contained in
A (x) and B (x1) given by (45) and (46), respectively, since
we only need to know which variables each row of the
vector fields depend on. As an example, consider column j
of B (x1). Since we know that it only depends on x1, we
may immediately write ∂Bj(x1)

∂x =
[
∂Bj(x1)
∂x1

03×(n+5)

]
. This

methodology enables us to compute the following Lie brackets
of the system vector fields (evaluated at an equilibrium point):

[f, gj ]
q̇=0 =


−ej
−Bj

0(n−1)×1

−Cj

, [f, [f, gj ]]q̇=0 =


0(n−1)×1

Cj
0(n−1)×1
∂A
∂x4
Cj

,

[[f, gj ] , [f, gk]]q̇=0 =


0(n−1)×1

Djk
0(n−1)×1

Ejk


(51)

where j, k ∈ {1, ..., n− 1} and

Cj = ∂A
∂x3

ej + ∂A
∂x4
Bj , Djk = ∂Bk

∂x1
ej − ∂Bj

∂x1
ek,

Ejk= ∂Ck

∂x1
ej−∂Cj

∂x1
ek+∂Ck

∂x2
Bj−∂Cj

∂x2
Bk+∂Ck

∂x4
Cj−∂Cj

∂x4
Ck.

(52)

The Lie brackets have been evaluated at zero velocity (q̇ = 0)
since we are interested in controllability from an equilibrium
point. The above vector fields represent our choice of vector
fields to be contained in the accessibility algebra, ∆, of the
system. To construct ∆ of full rank, we need to find (2n+ 4)
independent vector fields since the snake robot has a (2n+ 4)-
dimensional state space. Each of the four types of vector fields
above represent (n−1) vector fields. Solving 4(n−1) ≥ 2n+4
gives that our analysis is only valid if the snake robot has
n ≥ 4 links. This is a mild requirement, however, since a
snake robot generally will have more than four links. In the
remainder of this section, we assume that the robot consists
of exactly n = 4 links (and thereby n − 1 = 3 active joints)
and argue that the following controllability results will also be

valid for snake robots with more links. In particular, a robot
with n > 4 links can behave as a robot with n = 4 links
by fixing (n − 4) joint angles at zero degrees and allowing
the remaining three joint angles to move. This means that
controllability of the robot with n = 4 is a sufficient although
not necessary condition for controllability with n > 4.

With n = 4 links, the system has a (2n+ 4) = 12-
dimensional state space. The system satisfies the Lie algebra
rank condition (LARC) if the above vector fields span a 12-
dimensional space. We therefore assemble the 12 vector fields
into the following matrix, which represents the accessibility
algebra of the system evaluated at an equilibrium point xe:

∆ (xe) = [g1, g2, g3, [f, g1] , [f, g2] , [f, g3] ,
[f, [f, g1]] , [f, [f, g2]] , [f, [f, g3]] ,

[[f, g1] , [f, g2]] , [[f, g1] , [f, g3]] , [[f, g2] , [f, g3]]]

=


03×3 −I3 03×3 03×3

03×3 −B C D
I3 03×3 03×3 03×3

B −C ∂A
∂x4
C E

 ∈ R12×12

(53)

where

C = ∂A
∂x3

+ ∂A
∂x4
B ∈ R3×3,

D =
[
D12 D13 D23

]
, E =

[
E12 E13 E23

]
.

(54)

We now state the following theorem regarding the accessi-
bility of the snake robot:

Theorem 6: A planar snake robot with n ≥ 4 links in-
fluenced by anisotropic viscous ground friction (ct 6= cn)
is locally strongly accessible from any equilibrium point xe

(q̇ = 0) satisfying det (C) 6= 0 and det
(
E− ∂A

∂x4
D
)
6= 0,

where det (∗) denotes the determinant evaluated at xe.
Proof: By Theorem 1, the system is locally strongly

accessible from xe if ∆ (xe), given by (53), has full rank,
i.e. spans a 12-dimensional space. The proof is complete if
we can show that this is the case as long as det (C) 6= 0 and
det
(
E− ∂A

∂x4
D
)
6= 0 at xe. The matrix ∆ (xe) has full rank

when all its columns are linearly independent. By investigating
the particular structure of ∆ (xe), we see that the first and third
row contains an identity matrix and then zeros in the remaining
elements of these rows. It is therefore impossible to write
the columns containing the two identity matrices as linear
combinations of other columns. We can therefore conclude
that any linear dependence between the columns of ∆ (xe)
must be caused by linear dependence between the columns of
the following submatrix of ∆ (xe):

∆̃ (xe) =
[
C D

∂A
∂x4
C E

]
∈ R6×6. (55)

Linear dependence between columns of a square matrix causes
its determinant to become zero. We therefore calculate the
determinant of ∆̃ (xe) by employing the following well-known
mathematical relationship concerning the determinant of a
block matrix (see e.g. [30]):

det
([
A B
C D

])
= det (A) det

(
D − CA−1B

)
(56)
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where A and D are any square matrices and A is non-singular.
This gives

det
(

∆̃ (xe)
)

= det (C) det
(
E− ∂A

∂x4
D
)
. (57)

The determinant of ∆̃ (xe) is zero when det (C) = 0 or
when det

(
E− ∂A

∂x4
D
)

= 0. This means that ∆̃ (xe), and
thereby also ∆ (xe), has full rank whenever det (C) 6= 0 and
det
(
E− ∂A

∂x4
D
)
6= 0. This completes the proof.

The requirement regarding the two determinants in The-
orem 6 is not very restrictive, but it implies that the snake
robot can attain configurations that are singular, i.e. certain
shapes of the snake robot are obstructive from a control
perspective since the dimension of the reachable space from
these configurations is not full-dimensional. These singular
configurations are revealed by the following property:

Property 7: The accessibility algebra ∆ (xe) of the system
drops rank at equilibrium points where all relative joint angles
are equal (φ1 = φ2 = ... = φn−1).

This property can be shown to hold with a mathematical
software tool such as Matlab Symbolic Math Toolbox since
it can be verified that det (C)

∣∣
φ1=φ2=...=φn−1

= 0, thereby
violating the full rank conditions that are stated in Theorem 6.
Property 7 is interesting since it implies that the joint angles of
a snake robot should be out of phase during snake locomotion.
This claim has been stated in several previous works [1], [2],
[8], [31], but no formal mathematical proof was given.

We now show that the snake robot does not satisfy sufficient
conditions for small-time local controllability (STLC).

Theorem 8: At any equilibrium point xe (q̇ = 0), a planar
snake robot with n ≥ 4 links influenced by viscous ground
friction does not satisfy the sufficient conditions for small-time
local controllability (STLC) stated in Theorem 2.

Proof: The proof is complete if we can show that there
are bad brackets of the system vector fields that cannot
be neither θ-neutralized nor l-neutralized (see Theorem 2).
The bad brackets with the lowest θ-degree and the lowest
l-degree (except for f , which vanishes at any equilibrium
point) are [gj , [f, gj ]], j ∈ {1, 2, 3}. Theorem 2 requires these
vectors to be written as linear combinations of good brackets
with either lower θ-degree or lower l-degree. The only such
good brackets are gj , [f, gj ] , [f, [f, gj ]] , .., [f, [· · · [f, gj ]] · · · ],
j ∈ {1, 2, 3}. Brackets of the form [gk, gj ] are not considered
because [gk, gj ] = 0, j, k ∈ {1, 2, 3}. For a proper choice
of θ and lj , j ∈ {0, 1, 2, 3}, these brackets have both lower
θ-degree and lower l-degree. It is straightforward to verify
that [gj , [f, gj ]] ∈ R2n+4=12 is a vector of all zeros except
for element number 2n + 2 = 10. The only way to write
this vector as a linear combination of the good brackets listed
above is if these good brackets span the entire 12-dimensional
state space. This is not the case, however, because the vectors
[f, [f, gj ]] , .., [f, [· · · [f, gj ]] · · · ] are linearly dependent, as can

be seen by assembling the following matrix:

[[f, [f, gj ]] , [f, [f, [f, gj ]]] , [f, [f, [f, [f, gj ]]]] , · · · ]

=


03×3 03×3 03×3 · · ·

C − ∂A
∂x4
C

(
∂A
∂x4

)2

C · · ·
03×3 03×3 03×3 · · ·
∂A
∂x4
C −

(
∂A
∂x4

)2

C
(
∂A
∂x4

)3

C · · ·

 (58)

and noting that the fourth row is a multiple of the second
row. It is therefore not possible to either θ-neutralize nor l-
neutralize the bad brackets of the system in (47). The linear
dependence in (58) is also present for n > 4 links since the
six non-zero rows of (58) concern the position and head angle
of the snake while the 2n − 2 remaining rows will be zero
regardless of n. This completes the proof.

Note that Theorem 8 does not claim that the snake robot is
not STLC. In other words, the snake robot may be STLC even
though the sufficient conditions of Theorem 2 are violated.
Note also that STLC is not a requirement for controllability
since, as described in Section II, it is in fact a stronger property
than controllability. In summary, the above results do not
enable us to conclude that a wheelless snake robot influenced
by anisotropic ground friction is controllable. However, the
above results are hopefully an important step towards formally
proving that such mechanisms are controllable, which the
authors consider highly likely to be the case.

We end this section with a note on Theorem 6. This theorem
clearly shows that anisotropic friction is an important property
for a snake robot. In the snake robot literature, it is common
for snake robots to possess the property cn � ct. The extreme
case of this property is realized by installing passive wheels
along the snake body since this ideally means that ct = 0
and cn = ∞. However, from Theorem 6 it is clear that the
only requirement for strong accessibility is that the friction
coefficients are not equal. The property ct > cn is therefore
also valid. This means that the passive wheels commonly
mounted tangential to the snake body may equally well be
mounted transversal to the snake body. The resulting motion
will of course be different, but the strong accessibility property
is still preserved.

VIII. EXPLANATION AND SYNTHESIS OF SNAKE
LOCOMOTION

This section presents an analysis of snake locomotion that
explains how anisotropic viscous ground friction enables snake
robots to locomote forward on a planar surface. The analysis
is subsequently used to synthesise how the snake robot links
should be moved in order to propel the snake robot forward.

A. Analysis of propulsive forces during snake locomotion

Anisotropic friction generally means that the friction co-
efficients in the tangential and normal direction of the links
are different (ct 6= cn). However, we will only focus on the
commonly assumed property of snake robots that the normal
direction friction is larger than the tangential friction (ct < cn).

We first derive an expression for the total force propelling
the CM (center of mass) of the snake robot forward as a
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function of the linear link velocities. We will call this the
propulsive force on the snake robot and denote it by Fprop.
The forward direction of motion is assumed to be along the
global positive x axis. As described in Section IV-B, the angle
θi of link i is expressed with respect to the global x axis with
counterclockwise positive direction. The propulsive force is
simply the sum of all external forces on the snake robot in the
global x direction and is given from (24) as

Fprop = nmp̈x = eT fR,x. (59)

Inserting fR,x from (20) into (59) gives

Fprop =−eT
((
ct(Cθ)

2+cn(Sθ)
2
)
ẋ+(ct−cn)SθCθẏ

)
. (60)

The purpose of the vector eT is to sum up the friction force
contributions from all the links. We may therefore write (60)
as a summation in order to investigate the force contribution
from a single link.

Fprop = −
∑n
i=1

((
ct cos2 θi + cn sin2 θi

)
ẋi

+ (ct − cn) sin θi cos θiẏi) .
(61)

The propulsive force from a single link, Fprop,i, is in other
words given by

Fprop,i = −Fx (θi) ẋi − Fy (θi) ẏi (62)

where
Fx (θi) = ct cos2 θi + cn sin2 θi
Fy (θi) = (ct − cn) sin θi cos θi.

(63)

We see from (62) that Fprop,i consists of two components, i.e.
one involving the linear velocity of the link in the forward
direction of motion, Fx (θi) ẋi, and one involving the linear
velocity normal to the direction of motion, Fy (θi) ẏi. Due to
the minus signs in (62), the products Fx (θi) ẋi and Fy (θi) ẏi
provide a positive contribution to the propulsive force only
if they are negative. Since the viscous friction coefficients,
ct and cn, are always positive, the expression Fx (θi) is
obviously always positive. We assume that the snake robot
is not generating waves that involve x direction velocities of
any of the links opposite to the direction of motion. When the
snake robot is moving in the forward direction (ṗx > 0), we
therefore have that ẋi > 0, which means that the product
Fx (θi) ẋi of the propulsive force is always positive. This
product is therefore not contributing to the forward propulsion
of the robot, but rather opposing it. This is also expected since
the snake robot must naturally be subjected to a friction force
in the opposite direction of the motion.

Any maintained propulsive force in the forward direction
of motion must therefore be produced by the sideways motion
of the links, i.e. the product Fy (θi) ẏi. A plot of Fy (θi) for
different values of the normal friction coefficient cn, while
keeping the tangential friction coefficient ct fixed, is shown
in Fig. 4. For each plot, the angle between the link and the
forward direction, θi, is varied from −90◦ to 90◦.

The sideways motion of the links have no effect on the
propulsive force on the snake robot when the friction coeffi-
cients are equal since this gives Fy (θi) = 0. However, when
cn > ct, Fig. (4) reveals that Fy (θi) is negative as long as θi is
positive, and vice versa. This means that the product Fy (θi) ẏi

Fig. 4. The mapping from sideways link motion to forward propulsion for
different viscous friction coefficients.

is negative as long as sgn (θi) = sgn (ẏi). The sideways mo-
tion of a link is in other words contributing to the propulsion of
the snake robot as long as θi is positive during leftward motion
of the link (left with respect to the direction of motion) and
negative during rightward motion of the link (right with respect
to the direction of motion). This fundamental relationship may
be written sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)).

It is straightforward to calculate that the extrema of Fy (θi)
occur at θi = ±45◦. This is also seen from Fig. 4. This means
that, for a given ẏi, a link produces its highest propulsive force
when it forms an angle of ±45◦ with the forward direction of
motion. It is also evident from (62) that the magnitude of
Fy (θi) ẏi, and thereby the magnitude of the propulsive force,
|Fprop,i|, is increased by increasing cn with respect to ct, or
by increasing the magnitude of the sideways link velocity, |ẏi|.

It should now be clear that the function Fy (θi) maps the
link velocities normal to the direction of motion into force
components in the direction of motion. The following simple
analogy may help understand this result. Imagine a small,
hand-held, wheeled wagon of some sort. The direction of the
wheels corresponds to the tangential direction of a snake robot
link. Obviously, the friction coefficient of the wagon in the
direction of the wheels is smaller than the friction coefficient
normal to the wheels. Now assume that you push the wagon
across a table in the direction of the wheels. While maintaining
constant direction of motion, assume that you slowly rotate the
wagon about the vertical axis, thereby forcing the wheels to
slip. The hand that push and rotate the wagon will now feel a
tendency of the wagon to move sideways in the same direction
towards which the wagon was rotated. This is in accordance
with the results presented above. The above analysis proves
the following propositions:

Proposition 9: A planar snake robot with anisotropic
ground friction properties achieves forward propulsion through
the sideways (with respect to the forward direction) velocity
components of its links.

Proposition 10: The direction of the propulsive force gen-
erated by the sideways motion of link i is given by the fun-
damental relationship sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)).

Proposition 11: The function Fy (θi) maps the link veloc-
ities normal to the direction of motion into force components
in the direction of motion.

Proposition 12: The magnitude of the propulsive force gen-
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erated by link i, |Fprop,i|, is increased by increasing cn with
respect to ct, or by increasing the magnitude of the sideways
link velocity, |ẏi|.

Proposition 13: For a given ẏi, a link produces its highest
propulsive force when it forms an angle of θi = ±45◦ with
the forward direction of motion.

Note that these results are general in the sense that no
assumptions have been made regarding the actual motion
pattern displayed by the snake robot.

B. Synthesis of propulsive motion for the snake robot

The analysis from the previous section enables us to deduce
how the snake robot links should be moved in order to
propel the snake robot forward along the positive x axis. The
following analysis focuses on manipulating the magnitude,
|Fprop,i|, and direction, sgn (Fprop,i), of the propulsive force
from each link.

Theorem 3 in Section VI suggests that the angle of each
link should be time-varying. Furthermore, Proposition 9 shows
that propulsive forces are generated by moving the links in
the normal direction with respect to the desired direction of
motion. We therefore conclude that the links must have a
periodic velocity component normal to the direction of motion.
This suggests that each link should be moved alternatingly
to the left and right with respect to the direction of motion,
which can be achieved by letting the trajectory of each link
angle have the form

θi = α sin (ωt) , i ∈ {1, .., n} (64)

where α > 0 is the maximum amplitude of the link angles
during the locomotion, ω > 0 is the angular frequency of the
periodic motion, and t denotes time. For simplicity, we assume
that α and ω are constant and identical for all links.

In accordance with Property 7 in Subsection VII-B, the joint
angles should be out of phase during snake locomotion since
this improves the controllability properties of the robot. This
suggests that (64) should be modified to

θi = α sin (ωt+ (i− 1) δ) , i ∈ {1, .., n} (65)

where δ is the phase shift between adjacent links. For sim-
plicity, we assume a constant phase shift between the links.

We now investigate how α, ω, and δ affect |Fprop,i| and
sgn (Fprop,i) as the snake robot moves along the global x
axis. To simplify the analysis, we assume that the snake robot
consists of only n = 3 links. This is the minimum number of
links required to achieve propulsion since phase shift between
joints requires at least two joints. The below analysis for n = 3
links also apply to robots with n > 3 links since a snake
robot can be regarded as a connection of multiple three-linked
segments. The link angle trajectories are given from (65) as

θ1 = α sin (ωt)
θ2 = α sin (ωt+ δ)
θ3 = α sin (ωt+ 2δ)

(66)

which, when differentiated with respect to time, gives the
following angular link velocities:

θ̇1 = αω cos (ωt)
θ̇2 = αω cos (ωt+ δ)
θ̇3 = αω cos (ωt+ 2δ) .

(67)

The normal direction velocity of each link is given from (14).
We disregard the normal direction velocity of the snake robot
by setting ṗy ≈ 0. This approximation is a fairly accurate
during motion along the global x axis, which is the case for
this analysis. Inserting (66) and (67) into (14) gives

ẏ1 = −αωl3 (2 cos (ωt) cos (α sin (ωt)))
−αωl3 (3 cos (ωt+ δ) cos (α sin (ωt+ δ)))
−αωl3 (cos (ωt+ 2δ) cos (α sin (ωt+ 2δ)))

(68)

ẏ2 = αωl
3 (cos (ωt) cos (α sin (ωt)))

−αωl3 (cos (ωt+ 2δ) cos (α sin (ωt+ 2δ)))
(69)

ẏ3 = αωl
3 (cos (ωt) cos (α sin (ωt)))

+αωl
3 (3 cos (ωt+ δ) cos (α sin (ωt+ δ)))

+αωl
3 (2 cos (ωt+ 2δ) cos (α sin (ωt+ 2δ))) .

(70)

Proposition 12 tells us that |Fprop,i| is increased by increas-
ing |ẏi|. From (68)-(70), it is therefore clear that |Fprop,i|
is increased by increasing α and/or ω. We now determine
if δ should be positive or negative in order to achieve
sgn (Fprop,i) = 1, which is necessary to propel the snake
robot forward along the global x axis. From Proposition 10,
we know that sgn (Fprop,i) = 1 requires sgn (θi) = sgn (ẏi).
Considering ẏ2 in (69) (since this expression is easy to
analyze), it is seen through pure inspection that ẏ2 = 0 when
ωt = −δ. When ωt = −δ, we see from (66) and (67) that
θ2 = 0 and θ̇2 = αω > 0. θ2 is in other words about
to become positive, which means that we also require ẏ2 to
become positive. This is the case if ÿ2 > 0 when ωt = −δ.
Differentiating (69) with respect to time gives

ÿ2

∣∣
ωt=−δ = 2α2ω2l

3 cos2 (δ) sin (α sin (δ))
+ 2αω2l

3 sin (δ) cos (α sin (δ))
(71)

from which it is easily seen that ÿ2 > 0 when δ > 0, i.e.
sgn (Fprop,i) = 1 when δ > 0. This indicates that the links
generate positive propulsive forces if δ > 0.

In order to verify that forward propulsion requires δ > 0,
we have plotted (66) and (68)-(70) together in Fig. 5-7 for
α = 70◦, ω = 70◦, and for different positive values of δ
over a period of ωt from 0 to 2π. The figures show that
sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)) = 1 is always satisfied
for link 2, but only satisfied over about half the period for links
1 and 3 when δ is small. As δ is increased, sgn (Fprop,i) = 1
is satisfied over a larger portion of the period. We do not
attempt to determine the optimal choice of δ in this analysis,
but conclude that positive propulsive forces requires δ > 0.

The above analysis proves the following propositions:
Proposition 14: A snake robot with anisotropic friction

properties on a flat surface achieves forward propulsion by
moving its links according to θi = α sin (ωt+ (i− 1) δ)
where i ∈ {1, .., n}, α > 0, ω > 0, and δ > 0.
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Fig. 5. The relation between θ1 and ẏ1 for α = 70◦, ω = 70◦, and δ = 10◦

(dotted) , 40◦ (dashed) , 70◦ (solid).

Fig. 6. The relation between θ2 and ẏ2 for α = 70◦, ω = 70◦, and δ = 10◦

(dotted) , 40◦ (dashed) , 70◦ (solid). The plot is zoomed in.

Fig. 7. The relation between θ3 and ẏ3 for α = 70◦, ω = 70◦, and δ = 10◦

(dotted) , 40◦ (dashed) , 70◦ (solid).

Proposition 15: Increasing α and/or ω increases the mag-
nitude of the propulsive force generated by link i, |Fprop,i|.

Note that the expression for the link angle trajectories in
(65) has previously been deduced by Hirose [2] based on
empirical studies of biological snakes. The above study shows
that it is possible to develop logical arguments merely from
an analysis of the equations of motion of a snake robot and
thereby arrive at similar conclusions as Hirose.

IX. PATH FOLLOWING CONTROL OF SNAKE ROBOTS

Based on the motion pattern developed in the previous
section and summarized in Proposition 14, we propose in this
section a control law for straight line path following control
of snake robots. To this end, we define the global coordinate
system so that the global x axis is aligned with the desired
straight path. The position of the snake robot along the global
y axis, py , is then the shortest distance from the robot to the
desired path (i.e. the cross-track error) and the heading of the
robot is the angle that the robot forms with the desired path.

Proposition 14 states that forward locomotion is achieved
through sinusoidal motion of the n absolute link angles of
the robot while maintaining a positive phase shift δ between
adjacent links. However, since the snake robot is underactuated
with only n− 1 control inputs, it is not possible to control all
n link angles independently. We therefore choose to control
the n− 1 relative joint angles (the angle of joint i is denoted
by φi as described in Section IV-B) in order to generate a
phase shifted sinusoidal motion of the n absolute link angles,
and we introduce a joint angle offset in order to control the
heading of the robot. The reference motion of φi is therefore
given by

φi,ref = α sin (ωt+ (i− 1) δ) + φoffset (72)

where α, ω, and δ were defined in Section VIII-B, φoffset

is the joint angle offset, and i ∈ {1, .., n − 1}. The offset
is identical for all joints and affects the direction of the
motion by making the link motion asymmetrical with respect
to the current heading of the robot. This joint angle reference
trajectory was first introduced in [2].

We denote the heading of the snake by θ and calculate it
as the mean of the link angles, i.e. as

θ =
1
n

n∑
i=1

θi. (73)

In order to steer the snake robot towards the desired straight
path (i.e. the global x axis), we employ the Line-of-Sight
(LOS) guidance law

θref = − arctan
(py

∆

)
(74)

where py is the cross-track error, and ∆ > 0 is a design
parameter referred to as the look-ahead distance that influ-
ences the rate of convergence to the desired path. This LOS
guidance law is commonly used during e.g. path following
control of marine surface vessels [32]. As illustrated in Fig. 8,
the LOS angle θref corresponds to the orientation of the snake
robot when it is headed towards the point located a distance
∆ ahead of itself along the desired path. To steer the heading
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Fig. 8. The Line-of-Sight (LOS) guidance law.

θ according to the LOS angle in (74), we set the joint angle
offset according to

φoffset = kθ
(
θ − θref

)
(75)

where kθ > 0 is a controller gain. To make the joints track the
reference angles given by (72), we use a PD-controller and set
the actuator torque of joint i ∈ {1, .., n− 1} as

ui = Kp (φi,ref − φi)−Kdφ̇i (76)

where Kp > 0 and Kd > 0 are controller gains, and where
we have chosen to set φ̇i,ref = 0 since the purpose of the
derivative part is simply to damp the motion if the velocities
become large.

X. STABILITY ANALYSIS OF THE PATH FOLLOWING
CONTROLLER BASED ON THE POINCARÉ MAP

In this section, we employ the theory of Poincaré maps
(see Section III) to prove that the controller in (76) generates
a locally exponentially stable periodic orbit in the state space
of the snake robot as it moves along the global x axis.

A. Converting the snake robot model to a time-periodic au-
tonomous system

During locomotion along the global positive x axis, our goal
is that the x axis position of the snake robot, px, increases,
while all other states of the snake robot in (26) trace out a
stable limit cycle in the state space. We therefore exclude px
from the Poincaré map of the snake robot. This corresponds
to a partial Poincaré map [20]. Exclusion of px has no effect
on the other state variables since px is not present in any
of their derivatives in (26). The analysis of snake locomotion
in Section VIII, which is the basis of the controller in (76),
enables us to argue that forward motion along the x axis
(increase of px) is achieved as long as the remaining state
variables trace out a stable periodic orbit.

Stability analysis of the time-periodic state variables of the
snake robot by use of Poincaré maps requires the model of
the snake robot in (26) to represent an autonomous system,
i.e. a system not explicitly dependent on time. The controller
in (76), however, makes the system non-autonomous since
time t is present in the expressions for the joint torque inputs.
We therefore follow the approach described in [19] in order
to convert the snake robot model to an autonomous system
by simply augmenting the state vector x with an extra state
β = 2πt/T , where T = 2π/ω is the period of the cyclic

locomotion generated by the controller in (76). We make β
periodic by enforcing that 0 ≤ β < 2π, i.e. we set β to zero
each time β = 2π. The model (26) with the controller (76)
can therefore be written as the following autonomous system:

ẋ = F
(
x, T2πβ

)
, x (t0) = x0,

β̇ = 2π
T , β (t0) = 2πt0

T .
(77)

We have, in other words, encapsulated time t in the new state
variable β, which is periodic since 0 ≤ β < 2π.

B. Specification of the Poincaré section for the snake robot

We choose the global x axis as the Poincaré section S of
the system in (77). Since px is not included in the Poincaré
map, we write S =

{(
θ, py, θ̇, ṗ, β

)
|py = 0

}
. Following the

notation in Section III, the vector of independent time-periodic
states constrained to S is given by

x =
[
θT θ̇T ṗT β

]T ∈ R2n+3. (78)

Note that the considered Poincaré map is one-sided, i.e. the
Poincaré section is crossed when py switches from a positive
to a negative value.

C. Stability analysis of the Poincaré map

We considered a three-linked snake robot where n = 3, l =
0.07 m, m = 1 kg, and J = 0.0016 kgm2. The ground friction
coefficients were ct = 1 and cn = 10, and the parameters of
the controller in (76) were α = 70◦, ω = 70◦/s, δ = 70◦,
Kp = 20, Kd = 5, kθ = 0.3, and ∆ = 0.42 m.

The Poincaré map of the snake robot model in (77) was
calculated as described in Section III-B1 using Matlab R2008b
on a laptop running Windows XP. The ode45 solver in Matlab
was used with a relative and absolute error tolerance of 10−6.
The Newton-Raphson algorithm described in Section III-B2
calculated the fixed point, x∗ ∈ R9, of the Poincaré map as

x∗ = [ −15.0◦ −32.6◦ 27.6◦ −72.4◦/s
13.7◦/s 66.7◦/s 4.6cm/s −1.2cm/s 182.5◦ ]T . (79)

A plot of the cyclic locomotion of the snake robot over one
period is shown in Fig. 9. The initial state of the snake robot
was given by x∗ and the initial position was p = 0. After
one period of the motion, the state variables returned to their
initial value, x∗. At this point, however, the position of the
snake robot along the x axis had increased, which was also
our goal. To clearly illustrate the limit cycle behaviour of the
periodic state variables in (78), a 3D plot of the three absolute
link angles over one period is given in Fig. 10.

The Jacobian linearization of the Poincaré map about the
fixed point (79) was calculated as described in Section III-B3.
The magnitude of the eigenvalues of JP (x∗) ∈ R9×9 was

|eig (JP (x∗))| = [ 0.78 0.78 0.0022
2.1× 10−4 4.9× 10−5 4.1× 10−5

9.6× 10−6 2.9× 10−6 1.6× 10−6 ].
(80)

The magnitude of all the eigenvalues are strictly less than
one. The periodic orbit traced out by the variables in (78)
is therefore locally exponentially stable for the given choice
of controller parameters. All initial states inside the basin of
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Fig. 9. The motion of the snake robot over one gait cycle.

Fig. 10. The limit cycle traced out by the link angles of the snake robot.

attraction of this periodic orbit will converge exponentially to
this periodic orbit.

We have now proven that the controller in (76) generates a
stable periodic orbit comprising all state variables, except the
position px. Based on the analysis in Section VIII, this implies
that the snake robot is locomoting forward. In particular,
Proposition 10 in Section VIII-A states that the direction of
the propulsive force on the robot from link i is given by
sgn (Fprop,i) = sgn (sgn (θi) sgn (ẏi)). A plot of θi and ẏi
(i = 1, 2, 3) over one period is given in Fig. 11, which
clearly shows that sgn (Fprop,i) = 1 over the majority of the
period. This means that the net propulsive force on the robot
is positive.

XI. CONCLUSIONS

This paper has investigated the controllability and stability
properties of planar snake robots influenced by viscous ground
friction forces. The first contribution of the paper has been a
partially feedback linearized model of a planar snake robot.
The second contribution has been a stabilizability analysis
proving that any asymptotically stabilizing control law for
a planar snake robot to an equilibrium point must be time-
varying. This result is valid regardless of which type of friction

Fig. 11. Plot of θi and ẏi (i = 1, 2, 3) over one gait cycle.

the robot is subjected to. The third contribution has been a
controllability analysis proving that planar snake robots are
not controllable when the viscous ground friction is isotropic,
but that a snake robot becomes strongly accessible when the
viscous ground friction is anisotropic. This analysis showed
that the joint angles of a snake robot should be out of phase
during locomotion. The analysis also showed that the robot
does not satisfy sufficient conditions for small-time local
controllability (STLC). The fourth contribution has been an
explanation of how anisotropic viscous ground friction condi-
tions enable snake robots to locomote forward on a planar
surface. The explanation was based on a simple mapping
from link velocities normal to the direction of motion into
propulsive forces in the direction of motion. The fifth and final
contribution of the paper has been a straight line path following
controller and the use of a Poincaré map to prove that the
state variables of the robot, except for the position in the
forward direction, trace out an exponentially stable periodic
orbit during motion along the desired path.
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maps,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2009, pp. 3623–3630.
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