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Lateral undulation of snake robots: A

simplified model and fundamental properties
Pål Liljebäck, Kristin Y. Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl

Abstract

This paper considers lateral undulation motion of snake robots. The first contribution of the paper is

a model of lateral undulation dynamics developed for control design and stability analysis purposes. The

second contribution is an analysis of the simplified model that shows that any asymptotically stabilizing

control law for the snake robot to an equilibrium point must be time-varying. Furthermore, the analysis

shows that a snake robot (with four links) is strongly accessible from almost any equilibrium point,

except for certain singular configurations, and that the robot does not satisfy sufficient conditions for

small-time local controllability (STLC). The third contribution is based on using averaging theory to

prove that the average velocity of the robot during lateral undulation will converge exponentially fast

to a steady state velocity which is given analytically as a function of the gait pattern parameters. From

the averaging analysis, we also derive a set of fundamental relationships between the gait parameters of

lateral undulation and the resulting forward velocity of the snake robot. The paper presents simulation

results and results from experiments with a physical snake robot that support the theoretical findings.

I. INTRODUCTION

Inspired by biological snake locomotion, snake robots carry the potential of meeting the growing need

for robotic mobility in unknown and challenging environments. These mechanisms typically consist of

serially connected joint modules capable of bending in one or more planes. The many degrees of freedom
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of snake robots make them difficult to control, but provide traversability in irregular environments that

surpasses the mobility of the more conventional wheeled, tracked and legged forms of robotic mobility.

There are several reported works aimed at analysing and understanding snake locomotion. Gray1

conducted empirical and analytical studies of snake locomotion already in the 1940s. Hirose2 studied

biological snakes and developed mathematical relationships characterizing their motion, such as the

serpenoid curve. Chirikjian3;4 modelled the kinematics of snake robots in terms of continuous backbone

curves that capture the macroscopic geometry of the robot. Gaits for the backbone curve were specified

with respect to environment constraints and the desired locomotion trajectory of the robot. Ostrowski5

studied the controllability properties of a wheeled snake robot on a kinematic level. Prautsch et al.6

modelled the dynamics of a wheeled snake robot and proposed an asymptotically stable controller for

the position of the robot. Ma7 modelled a planar snake robot without wheels and optimized the motion

of the robot based on computer simulations. Date et al.8 developed controllers for wheeled snake robots

aimed at minimizing the lateral constraint forces on the wheels of the robot during locomotion. Saito

et al.9 modelled a planar snake robot and optimized the parameters of Hirose’s serpenoid curve based

on simulations. Hicks10 investigated general requirements for the propulsion of a three-linked snake

robot. Nilsson11 employed energy arguments to analyse planar snake locomotion under isotropic friction

conditions. Matsuno and Sato12 considered trajectory tracking of snake robots where some, but not all,

of the links were assumed to be wheeled. Transeth et al.13 proved that the translational and rotational

velocity of a planar snake robot is bounded. Li et al.14 studied the controllability of the joint motion of

a snake robot, but did not consider the position and orientation of the robot. Hu et al.15 investigated the

frictional properties of snake skin both mathematically and experimentally, and showed that the friction

coefficients of a snake in the transversal and tangential direction of the body, respectively, are different.

The study also showed that the weight distribution of a snake during lateral undulation is not uniform, but

rather distributed so that the peaks of the body wave curve are slightly lifted from the ground. Hatton16

introduced the concept of a body velocity integral in order to easily approximate the net displacement of

a snake robot during a gait. The method requires that the system coordinates are properly chosen. The

authors have previously studied the stability properties of snake locomotion based on Poincaré maps and

investigated the controllability properties of a planar snake robot influenced by anisotropic friction17.

Research on control of robotic fish and eel-like mechanisms is relevant to research on snake robots

since these mechanisms are very similar. Vela et al.18, McIsaac and Ostrowski19, and Morgansen et

al.20 investigate the controllability of various fish-like mechanisms, synthesize gaits for translational and

rotational motion based on Lie bracket calculations, and propose controllers for tracking straight and
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curved trajectories.

The understanding of snake locomotion so far is for the most part based on empirical studies of

biological snakes and simulation-based synthesis of relationships between parameters of the snake. This

is due to the complexity of existing models of snake locomotion. This paper is an attempt to contribute to

the understanding of snake robot locomotion through systematic analytical investigations of the equations

of motion of such mechanisms. In particular, this paper considers the dynamics of snake robots moving

according to the gait pattern lateral undulation, which is the most common form of snake locomotion.

The paper has three distinct contributions. The first contribution is a simplified model of lateral

undulation dynamics developed to facilitate synthesis of new control strategies for snake robots. The

model is developed based on an analysis of an existing complex model of a snake robot that identifies a

set of essential properties of lateral undulation. The basic idea behind the simplified model is to capture

only these essential properties of the snake robot dynamics, i.e. the features that determine the overall

behaviour of the snake. The main difference between the simplified model and previous models proposed

in the snake robot literature concerns the choice of body shape coordinates. In particular, previous models

describe the body shape dynamics in terms of the rotational motion of the links of the snake robot, which

generally results in complex equations of motion which are challenging to analyse from a motion control

perspective. The model proposed in this paper, on the other hand, describes the body shape dynamics

in terms of the translational motion of the links, which significantly simplifies the equations of motion.

Note that there are several limitations of this modelling approach, which are elaborated in the paper. The

modelling approach is for instance limited to snake locomotion where the link angles are limited.

The second contribution is an analysis of the simplified model that shows that any asymptotically

stabilizing feedback control law for the snake robot to an equilibrium point must be time-varying.

Furthermore, the analysis shows that the snake robot is strongly accessible from almost any equilibrium

point, except for certain singular configurations, and that the robot does not satisfy sufficient conditions

for small-time local controllability (STLC). These conclusions agree with a similar analysis presented by

the authors21, which was based on a more complex model of snake locomotion.

The third contribution is based on using averaging theory to investigate the velocity dynamics of the

snake robot during lateral undulation. The average velocity of the snake robot is shown to converge

exponentially fast to a steady state velocity, and an analytical expression for calculating the steady state

velocity is presented as a function of the various controller parameters. To the authors’ best knowledge,

this is the first time the steady state velocity of a wheel-less snake robot with anisotropic ground friction

properties is derived analytically in terms of the gait pattern parameters. The averaging analysis also
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reveals a set of fundamental relationships between the gait parameters of lateral undulation and the

resulting forward velocity of the snake robot that are useful from a motion planning perspective. The

derived properties state that the average forward velocity of a planar snake robot 1) is proportional to the

squared amplitude of the sinusoidal motion of each joint, 2) is proportional to the angular frequency of

the sinusoidal motion of each joint, 3) is proportional to a particular function of the constant phase shift

between the joints, and 4) is maximized by the phase shift between the joints that also maximizes the

particular phase shift function. Note that the linear relationships under item 1) and 2) have been shown

in previous literature, for instance in the context of modelling and control of swimming robots19;22;23;24.

Each of the contributions described above are accompanied by simulation results that support the

theoretical findings. In addition, the derived relationships between the gait parameters of lateral undulation

and the resulting forward velocity are validated through experiments with a physical snake robot.

Note that this paper is based on and extends previous preliminary work by the authors25;26;27;28. The

extensions in this paper include an improved analytical justification of the simplified model, an improved

specification of the validity of the model, improved simulation results which illustrate the limitations of

the simplified modelling approach, and general improvements that provide a united presentation of the

results and the relations between them.

The paper is organized as follows. Section II presents an existing complex model of a snake robot.

The gait pattern lateral undulation is presented in Section III. Section IV analyses the complex model

in order to identify fundamental properties of lateral undulation motion, and these properties are used

in Section V to develop a simplified model of a snake robot during lateral undulation motion. Section

VI investigates the stabilizability properties of a snake robot described by the simplified model, while

the controllability properties are investigated in Section VII. Section VIII derives fundamental properties

of the velocity dynamics of the snake robot based on averaging theory. Sections IX, X, and XI present

simulation results in order to support the validity of the theoretical findings, while Section XII presents

experimental results in order to investigate the validity of the derived properties of the velocity dynamics.

Finally, Section XIII presents some concluding remarks.

II. A COMPLEX MODEL OF A PLANAR SNAKE ROBOT

This section summarizes an existing complex model of a planar snake robot17. The model will be

analysed in Section IV in order to identify some essential properties of lateral undulation motion. This

analysis will be used as a basis for the development of a simplified model of lateral undulation dynamics

in Section V.
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Fig. 1. Kinematic parameters of the snake robot.

Fig. 2. Forces and torques acting on each link of the snake robot.

A. Notation and defined symbols

We consider a planar snake robot consisting of N links of length l interconnected by N − 1 active

joints. The kinematics and dynamics of the snake robot are defined in terms of the mathematical symbols

described in Table I and illustrated in Fig. 1 and Fig. 2. All N links have the same mass m and moment

of inertia J . The total mass of the snake robot is therefore Nm. The mass of each link is uniformly

distributed so that the link CM (center of mass) is located at its center point.

The snake robot moves in the horizontal plane and has a total of N + 2 degrees of freedom. The

position of the CM (center of mass) of the snake robot is denoted by p = (px, p y) ∈ R2. The absolute

angle θi of link i is expressed with respect to the global x axis with counterclockwise positive direction.

As seen in Fig. 1, the relative angle between link i and link i+ 1 is given by φi = θi+1 − θi. The local

coordinate system of each link is fixed in the CM of the link with x (tangential) and y (normal) axis

oriented such that they are oriented in the directions of the global x and y axis, respectively, when the

link angle is zero. The rotation matrix from the global frame to the frame of link i is given by

Rglobal
link,i =

cos θi − sin θi

sin θi cos θi

 (1)
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TABLE I

PARAMETERS THAT CHARACTERIZE THE SNAKE ROBOT.

Symbol Description

N Number of links.

l Length of a link.

m Mass of each link.

J Moment of inertia of each link.

θi Angle between link i and the global x axis.

φi Angle of joint i.

(xi, yi) Global coordinates of the CM of link i.

(px, py) Global coordinates of the CM of the robot.

ui Actuator torque at joint i.

(fx,i, fy,i) Ground friction force on link i in the global frame.

(hx,i, hy,i) Joint constraint force on link i from link i+ 1.

−(hx,i−1, hy,i−1) Joint constraint force on link i from link i− 1.

The forces and torques acting on link i are visualized in Fig. 2. The ground friction force is denoted

by fi and acts on the CM of the link. The joint constraint forces from link i + 1 and link i − 1 are

denoted by (hx,i, hy,i) ∈ R2 and (−hx,i−1,−hy,i−1) ∈ R2, respectively. The actuator torque applied at

joint i is denoted by ui.

B. Ground friction model

In this paper, we consider snake robots influenced by viscous ground friction forces. A Coulomb friction

model, which assumes that the ground friction force on a link is proportional to the weight of the link, is

more accurate (from a physical point of view) than a viscous friction model. However, the predominant

factor which propels a planar snake robot forward during lateral undulation is the anisotropic ground

friction property of the links15, i.e. the property that the friction coefficients of a link in its tangential

and normal direction, respectively, are different. This friction property, which is exhibited by biological

snakes and also assumed in the majority of published research on snake robots, is independent of the

choice of ground friction model. We therefore conjecture that the motion of a snake robot is qualitatively

(although not quantitatively) similar with anisotropic viscous friction as with anisotropic Coulomb friction.
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Moreover, a viscous friction model is far less complex than a Coulomb friction model, which makes the

viscous model more suitable for control design and analysis purposes.

The viscous ground friction is characterized by the two friction coefficients ct and cn describing the

friction force in the tangential (along link x axis) and normal (along link y axis) direction of a link,

respectively. Using (1), the viscous friction force on link i in the global frame, denoted by f i∈ R2, can

be written as a function of the global link velocities, ẋi and ẏi, as

f i=R
global
link,i f

link,i
i =−Rglobal

link,i

ct 0

0 cn

vlink,ii

= −Rglobal
link,i

ct 0

0 cn

(Rglobal
link,i

)T ẋi
ẏi

 (2)

where f link,i
i and vlink,ii are, respectively, the friction force and the link velocity expressed in the local

link frame. This gives

f i =

fx,i
fy,i

 = −

 Fx(θi) Fxy(θi)

Fxy(θi) Fy(θi)

ẋi
ẏi

 (3)

where

Fx(θi) = ct cos
2 θi + cn sin

2 θi (4a)

Fxy(θi) = (ct − cn) sin θi cos θi (4b)

Fy(θi) = ct sin
2 θi + cn cos

2 θi (4c)

C. Equations of motion

As shown in previous work by the authors17, the equations of motion of the snake robot in terms of

the joint angles φ ∈ RN−1, the absolute angle of the head link θN ∈ R, the position of the CM of the

snake robot (px, py) ∈ R2, and a transformed control input u ∈ RN−1, can be written as

φ̈ = u (5a)

θ̈N = g(φ, θN , φ̇, θ̇N , ṗx, ṗy,u) (5b)

Nmp̈x =

N∑
i=1

fx,i (5c)

Nmp̈y =

N∑
i=1

fy,i (5d)
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where g(φ, θN , φ̇, θ̇N , ṗx, ṗy,u) ∈ R is a function of the state vector and the joint torques. The ground

friction force on each link, represented by fx,i and fy,i, is the viscous friction force defined in (3). The

model of snake locomotion given by (5) will not be detailed further here, but we note that the model is

very complex from a stability analysis perspective. This complexity is the main motivation behind the

simplified model developed in Section V.

III. THE GAIT PATTERN LATERAL UNDULATION

Lateral undulation, also called serpentine crawling, is the fastest and most common form of snake

locomotion. During lateral undulation, continuous horizontal waves are propagated backwards along the

snake body from head to tail. The body waves produce interaction forces between the snake body and

irregularities in the surface that push the snake forward. As proposed by Hirose2, lateral undulation is

achieved by controlling joint i ∈ {1, · · · , N − 1} of the snake robot according to the sinusoidal reference

φi,ref = α sin (ωt+ (i− 1) δ) + φo (6)

where α and ω are the amplitude and frequency, respectively, of the sinusoidal joint motion and δ

determines the phase shift between the joints. The parameter φo is a joint offset coordinate used to

control the direction of the locomotion. In this paper, we will assume that φo is a constant offset, so that

φ̇i,ref = αω cos (ωt+ (i− 1) δ) (7)

φ̈i,ref = −αω2 sin (ωt+ (i− 1) δ) (8)

To make the joints of the snake robot track the reference angles φref = [φ1,ref , · · · , φN−1,ref ]
T ∈ RN−1

defined in (6), we set the control input u according to the control law

u = φ̈ref + kd

(
φ̇ref − φ̇

)
+ kp (φref − φ) (9)

where kp > 0 and kd > 0 are scalar controller gains. By inserting (9) into (5a), the error dynamics of

the joints is given by (
φ̈ref − φ̈

)
+ kd

(
φ̇ref − φ̇

)
+ kp (φref − φ) = 0 (10)

which is clearly exponentially stable29.

IV. ANALYSIS OF LATERAL UNDULATION BASED ON THE COMPLEX MODEL

This section analyses the complex model given by (5) in order to identify a set of properties that

characterize the motion of a planar snake robot conducting lateral undulation. These properties will be

used as a basis for the development of a simplified model of lateral undulation motion in Section V.
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Fig. 3. The mapping from sideways link motion to forward propulsion for different viscous friction coefficients.

A. Analysis of propulsive forces during snake locomotion

We begin by investigating how a snake robot described by (5) is able to propel itself forward. We

assume that the forward direction of motion is along the global positive x axis. The total force propelling

the CM (center of mass) of the robot forward is therefore given from (5c) as

Nmp̈x =

N∑
i=1

fx,i (11)

Wee see that the total propulsive force on the snake robot is simply the sum of all external forces in the

global x direction. Inserting the expression for fx,i from (3) gives

Nmp̈x = −
N∑
i=1

Fx(θi)ẋi −
N∑
i=1

Fxy(θi)ẏi (12)

It is seen from (12) that the total propulsive force consists of two components, i.e. one involving the linear

velocities of the links in the forward direction of motion, Fx(θi)ẋi (since we assume that the forward

direction is along the x axis), and one involving the linear velocities normal to the direction of motion,

Fxy(θi)ẏi. Fx(θi) is given by (4a) and is clearly always positive. Furthermore, we assume that ẋi > 0

when the snake robot is moving forward (ṗx > 0), which is a valid assumption as long as the link angle

amplitudes are limited. Due to the minus signs in (12), this means that the component Fx(θi)ẋi is not

contributing to the forward propulsion of the robot, but rather opposing it. This is also expected since

the snake robot must naturally be subjected to a friction force in the opposite direction of the motion.

Any propulsive force on the snake robot must therefore be produced by the sideways motion of the

links, i.e. the product Fxy(θi)ẏi. A plot of Fxy(θi) for different values of the normal friction coefficient

cn, while keeping the tangential friction coefficient ct fixed, is shown in Fig. 3. For each plot, the angle

between the link and the forward direction, θi, is varied from −90◦ to 90◦. The sideways motion of the
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links have no effect on the propulsive force on the snake robot when the friction coefficients are equal

since this gives Fxy(θi) = 0. However, when cn > ct, Fig. 3 reveals that Fxy(θi) is negative as long

as θi is positive, and vice versa. With reference to (12), this means that the sideways motion of link i

produces a positive contribution to the propulsion of the snake robot through the product Fxy(θi)ẏi as

long as sgn(θi) = sgn(ẏi).

The function Fxy(θi) can be viewed as a mapping from link velocities normal to the direction of

motion into force components in the direction of motion. The extrema of Fxy(θi) occur at θi = ±45◦.

This means that, for a given ẏi, a link produces its highest propulsive force when it forms an angle of

±45◦ with the forward direction of motion.

The above analysis is summarized by the following properties of planar snake locomotion under viscous

friction conditions:

Property 1: For a snake robot described by (5) with cn > ct, forward propulsion is produced by the

link velocity components that are normal to the forward direction.

Property 2: For a snake robot described by (5) with cn > ct, the propulsive force generated by the

transversal motion of link i is positive as long as sgn (θi) = sgn (ẏi).

Property 3: For a snake robot described by (5) with cn > ct, the magnitude of the propulsive force

produced by link i increases when |θi| increases as long as |θi| < 45◦.

Note that these results are general in the sense that we have not yet made any assumptions regarding

the actual motion pattern displayed by the snake robot.

B. Analysis of turning motion during lateral undulation

Having determined in the previous subsection how propulsion is generally achieved with a snake robot,

we now investigate how a snake robot achieves turning motion. We assume that the robot moves according

to the gait pattern lateral undulation.

As described in Section III, lateral undulation is achieved by controlling the joints of the snake robot

according to (6). The simplest and most common approach for changing the direction of the motion

during this gait pattern is to use the parameter φo in (6), which represents a joint angle offset. The

reason why a non-zero φo induces rotational motion of a snake robot is illustrated in Fig. 4. In particular,

the analysis presented in the previous subsection implies that the net propulsive ground friction forces

produced by a link points in the direction about which the link angle oscillates. When φo = 0, we see

from the top of Fig. 4 that each link angle will oscillate about the forward direction of the robot. These

oscillations produce propulsive forces which propel the robot forward along a straight line. When φo is
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Fig. 4. The net propulsive ground friction forces produced by a link points in the direction about which the link angle oscillates.

By offsetting the joint angles, the direction of the net propulsive forces on the links will point along an arc, thereby inducing

rotational motion of the snake robot.

non-zero, on the other hand, we see from the bottom of Fig. 4 that the direction of the net propulsive

forces on the links will point along an arc, thereby inducing rotational motion of the snake robot.

To further investigate how a joint angle offset influences the turning motion of a snake robot, we have

simulated two trials of lateral undulation of a snake robot described by (5) with N = 10 links of length

l = 0.14 m, and with friction coefficients ct = 1 and cn = 10. In the first trial, the snake robot was

controlled according to (6) with α = 30◦, ω = 50◦/s, and δ = 40◦. The offset angle was set to φo = 5◦

in the time interval t ∈ [20, 30] and φo = −10◦ in the time interval t ∈ [50, 60]. The offset angle was

φo = 0◦ outside these two time intervals. The parameters of the second trial were identical to the first

trial except that we increased the frequency of the joint motion to ω = 80◦/s in order to increase the

forward velocity. The trace of the head during the motion from the first and the second trial is shown

in Fig. 5(a) and Fig. 5(b), respectively, while Fig. 5(c) shows the average joint angle during both trials,

which is defined as φ = 1
N−1

∑N−1
i=1 φi. The triangles pointing up and down in Fig. 5(a)-(b) indicate,

respectively, the beginning and end of the two time intervals where φo is non-zero.

Fig. 5 shows that the snake robot crawls forward without turning as long as the average joint angle,

φ, is zero. However, when the average joint angle is non-zero, the direction of the motion changes. We

see from the figure that a positive (resp. negative) average joint angle produces a counterclockwise (resp.

clockwise) rotation of the snake robot. We also see that the rate of directional change is increased by
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(a) Trace of the head of the snake robot at low

forward velocity (ω = 50◦/s).

(b) Trace of the head of the snake robot at high

forward velocity (ω = 80◦/s).

(c) The average joint angle during both trials.

Fig. 5. Two simulated trials of lateral undulation of a snake robot with N = 10 links. In both trials, a joint angle offset of

φo = 5◦ and φo = −10◦ is introduced at t = 20 s and t = 50 s, respectively.
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increasing the amplitude of the average joint angle. This result is supported by the directional controllers

for snake locomotion considered in e.g.9;30. Moreover, Fig. 5 also shows that the rate of directional

change is larger in the second trial. Since the only difference between the two trials is that the forward

velocity is larger in the second trial, we can conclude that the rate of directional change for some fixed

joint angle offset is also increased by increasing the forward velocity of the snake robot.

The following property summarizes the above analysis:

Property 4: During lateral undulation with a snake robot described by (5) with cn > ct, the overall

direction of the locomotion remains constant as long as the average joint angle is zero, but will change in

the counterclockwise (resp. clockwise) direction when the average joint angle is positive (resp. negative).

The rate of directional change of the locomotion is increased by increasing the amplitude of the average

joint angle and/or by increasing the forward velocity (assuming that the average joint angle is non-zero).

Remark 5: Although Property 4 was developed under the assumption that the snake robot moves

according to lateral undulation, we claim that the property also applies to other gait patterns. In particular,

we claim that any gait pattern which propels a snake robot forward along a straight line will induce

rotational motion of the robot if a non-zero joint angle offset is introduced at each joint.

C. Analysis of relative link motion during lateral undulation

From the results of the two previous subsections, it should be clear that planar snake locomotion

consists of periodic body shape changes that generate external forces that propel the snake forward.

These body shape changes can be characterized in terms of the joint angles φi = θi+1 − θi defined in

Section II-A. From Property 1, we know that the forward motion is induced by the motion of the links

normal to the forward direction. This result led the authors to wonder if the body shape changes can

be characterized in terms of the translational displacements of the links instead of the rotational joint

motion. The motivation behind this idea is that translational motion is generally less complex to model

than rotational motion. In particular, the model given by (5), which describes the rotational link motion

of a snake robot, is quite complex.

To elaborate this idea further, the motion of a snake robot described by (5) with N = 10 links of length

l = 0.14 m is shown in the top of Fig. 6. The robot conducts lateral undulation along the global x axis

in accordance with (6) with α = 30◦, ω = 30◦/s, δ = 40◦, and φo = 0◦. The two bottom plots in Fig.

6 show the relative displacement between the CM (center of mass) of two arbitrarily chosen links (links

4 and 5) in the global x and y direction, respectively. The plots indicate that, during lateral undulation,

the relative displacement between the CM of two adjacent links along the forward direction of motion
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Fig. 6. Top: Simulated motion of a snake robot with N = 10 links. Middle: Relative displacement between the CM of link

4 and link 5 in the global x direction. Bottom: Relative displacement between the CM of link 4 and link 5 in the global y

direction.

is approximately constant, while the relative displacement normal to the direction of motion oscillates

around zero. This observation is an important basis for the modelling approach described in Section V

and is summarized as follows:

Property 6: The change in body shape during lateral undulation consists mainly of relative displace-

ments of the CM of the links normal to the forward direction of motion. The relative displacements of

the CM of the links along the forward direction are approximately constant.

Remark 7: The relative link displacements normal to the direction of motion will not dominate over

the relative link displacements tangential to the direction of motion when the amplitudes of the link

angles become large. Property 6 is therefore valid only as long as the link angles are limited.

V. A SIMPLIFIED MODEL OF LATERAL UNDULATION

In this section, we employ the results from the previous section in order to develop a simplified model

of a planar snake robot conducting lateral undulation. The model is intended for control design and

stability analysis purposes.

A. Overview of the modelling approach

The idea behind the simplified model is illustrated in Fig. 7. The approach is basically to describe

the body shape changes of a snake robot as linear displacements of the links with respect to each other
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Fig. 7. The revolute joints of the snake robot are modelled as prismatic joints that displace the CM of each link transversal

to the direction of motion.

instead of rotational displacements. From Property 6, we know that these linear displacements should be

normal to the forward direction of motion. In addition, we know from Property 1 that these transversal

displacements of the links are what propel the snake robot forward. This essentially means that we will

model the revolute joints of a snake robot as prismatic (translational) joints. The rotational motion of the

links during body shape changes will in other words be disregarded. However, the model will still capture

the effect of the rotational link motion during body shape changes, which we know from Property 6 to

be primarily a linear displacement of the CM of the links normal to the forward direction of motion.

Remark 8: Property 1 makes no assumption regarding the gait pattern of the snake robot. Property 6,

however, is only valid for gait patterns where the relative link displacements normal to the direction of

motion dominate over the relative link displacements tangential to the direction of motion. The simplified

model should therefore only be used to study gait patterns with limited link angles with respect to the

forward direction. A discussion of the validity of the simplified model is provided in Section V-F.

Remark 9: We emphasize that the simplified model presented in this section is not intended as an

accurate simulation model of snake robot locomotion. The model is intentionally based on several

simplifying assumptions in order to arrive at equations of motion that are manageable for control design

and stability analysis purposes. To this end, the model only needs to be qualitatively similar to the

complex model presented in (5).

The kinematics and dynamics of the snake robot will be detailed in the following subsections in terms

of the mathematical symbols described in Table II and illustrated in Fig. 8 and Fig. 9. We will consider

a planar snake robot with N links of length l interconnected by N − 1 prismatic (translational) joints.

All N links have the same mass m, and the total mass of the snake robot is thus Nm.
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Fig. 8. Illustration of the two coordinate frames employed in the simplified model. The global x-y frame is fixed. The t-n

frame is always aligned with the snake robot.

Fig. 9. Symbols characterizing the kinematics and dynamics of the snake robot.

The following vectors and matrices are used in the development of the model:

A =


1 1

. .

. .

1 1

,D =


1 −1

. .

. .

1 −1


where A ∈ R(N−1)×N and D ∈ R(N−1)×N . Furthermore,

e =
[
1 . . 1

]T
∈ RN , e =

[
1 . . 1

]T
∈ RN−1,

D =DT
(
DDT

)−1 ∈ RN×(N−1).

The matrices A and D represent, respectively, an addition and a difference matrix, which will be used,

respectively, for adding and subtracting pairs of adjacent elements of a vector. Furthermore, the vectors

e and e represent summation vectors, which will be used for adding all elements of N -dimensional and

(N − 1)-dimensional vectors, respectively. The matrix D has been defined above since it appears several

times during the development of the model. We will use subscript i to denote element i of a vector.

February 26, 2013 DRAFT



17

TABLE II

PARAMETERS THAT CHARACTERIZE THE SNAKE ROBOT.

Symbol Description

N Number of links.

l Length of a link.

m Mass of each link.

φi Normal direction distance between links i and i+ 1.

vφ,i Relative velocity between links i and i+ 1.

θ Orientation of the snake robot.

vθ Angular velocity of the snake robot.

(ti, ni) Coordinates of the CM of link i in the t-n frame.

(pt, pn) Coordinates of the CM of the robot in the t-n frame.

(px, py) Coordinates of the CM of the robot in the global frame.

(vt, vn) Forward and normal direction velocity of the robot.

ui Actuator force at joint i.

(fx,i, fy,i) Friction force on link i in the global frame.

(ft,i, fn,i) Friction force on link i in the t-n frame.

When parameters of the snake robot links are assembled into a vector, we associate element i of this

vector with link i.

B. The kinematics of the snake robot

The snake robot moves in the horizontal plane and has a total of N +2 degrees of freedom. We define

the motion of the robot with respect to the two coordinate frames illustrated in Fig. 8. The x-y frame

is the fixed global frame. The t-n frame is always aligned with the snake robot, i.e. the t and n axis

always point in the tangential and normal direction of the robot, respectively. The origin of both frames

are fixed and coincide. We will denote the direction of the t axis as the tangential or forward direction

of the robot, and the direction of the n axis as the normal direction. Note that we do not refer to the t-n

frame as the body frame of the snake robot since the t-n frame is not fixed to the robot. However, if a

body frame fixed to the robot had been defined, the orientation of this frame would be identical to the

orientation of the t-n frame.

The position of the snake robot is described through the coordinates of its CM (center of mass). As
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seen in Fig. 8 and Fig. 9, the global frame position of the robot is denoted by (px, p y) ∈ R2, while the

t-n frame position is denoted by (pt, p n) ∈ R2. The global frame orientation of the robot is denoted by

θ ∈ R and is expressed with respect to the global x axis with counterclockwise positive direction. The

angle between the global x axis and the t axis is also θ since the t-n frame is always aligned with the

robot. Describing the position in a frame which is always aligned with the snake robot is inspired by

and similar to a coordinate transformation proposed by Pettersen and Egeland31.

Remark 10: There are many possible choices of orientation for a snake robot with revolute joints. In

order to study lateral undulation, it is useful to employ a choice of orientation which is aligned with the

forward direction of the snake robot. To this end, a common approach in previous literature has been

to describe the orientation of a snake robot as the mean of the absolute link angles16;15. The simplified

model proposed in this section provides a representation of orientation in terms of the scalar variable θ,

which is always aligned with the forward direction of the snake robot.

The relationship between the t-n frame position and the global frame position is given by

pt = px cos θ + py sin θ (13a)

pn = −px sin θ + py cos θ (13b)

As illustrated in Fig. 8, the forward and normal direction velocity of the CM of the snake robot are

denoted by vt ∈ R and vn ∈ R, respectively. Using (1), the relationship between the global frame

velocity of the robot and the t-n frame velocity is given by

ṗx = vt cos θ − vn sin θ (14a)

ṗy = vt sin θ + vn cos θ (14b)

and the inverse relationship is given by

vt = ṗx cos θ + ṗy sin θ (15a)

vn = −ṗx sin θ + ṗy cos θ (15b)

Differentiating (13) with respect to time and inserting (15) gives

ṗt = vt + pnθ̇ (16a)

ṗn = vn − ptθ̇ (16b)

We denote the t-n frame position of the CM of link i by (ti, n i) ∈ R2. The N − 1 prismatic joints of

the snake robot control the normal direction distance between the links. As seen in Fig. 9, the normal
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direction distance between link i and link i+ 1 is given by

φi = ni+1 − ni (17)

and represents the coordinate of joint i. The controlled distance φi replaces the controlled joint angle in

the original model given by (5). The link positions are constrained by the prismatic joints according to

ti − ti+1 + l = 0 (18a)

ni − ni+1 + φi = 0 (18b)

These holonomic constraints may be expressed in matrix form for all links as

Dt+ le = 0 (19a)

Dn+ φ = 0 (19b)

where D and e are defined in Section V-A, t = (t1, · · · , tN ) ∈ RN , n = (n1, · · · , nN ) ∈ RN , and

φ = (φ1, · · · , φN−1) ∈ RN−1. The t-n frame position of the CM of the snake robot can be written in

terms of the link positions as

pt =
1

N
eT t (20a)

pn =
1

N
eTn (20b)

where e is defined in Section V-A. Combining (19a), (19b), (20a) and (20b) gives D

1
N e

T

t =
 −le

pt

 ,
 D

1
N e

T

n =

 −φ
pn

 (21)

We can solve (21) for the link positions as

t = pte− lDe (22a)

n = pne−Dφ (22b)

where D = DT
(
DDT

)−1 ∈ RN×(N−1). By differentiating (22a) and (22b) with respect to time and

inserting (16a) and (16b), the individual link velocities are given as

ṫ =
(
vt + pnθ̇

)
e (23a)

ṅ =
(
vn − ptθ̇

)
e−Dφ̇ (23b)
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C. The ground friction model

In order to derive the ground friction forces in the simplified model, we use the viscous ground friction

model defined in (3) as a starting point. In particular, since the simplified model targets snake locomotion

with limited link angles with respect to the forward direction (see Remark 8), we approximate the friction

model in (3) under the assumption that the link angles are small.

Let us begin by considering a snake robot with revolute joints. When the robot is headed along the

global positive x axis, the angle of link i with respect to the forward direction is given by θi. Moreover,

when θi is small, the following approximations are valid:

sin2 θi ≈ 0 (24)

cos2 θi ≈ 1 (25)

sin θi cos θi ≈ θi (26)

The approximation in (26) is illustrated in Fig. 10, where we see that sin θi cos θi and θi are very close

for |θi| < 20◦ (≈ 0.34 rad) and start to deviate as |θi| approaches 30◦ (= 0.5 rad). Inserting (24), (25),

and (26) into the ground friction model (3) givesfx,i
fy,i

 = −

 ct (ct − cn) θi
(ct − cn) θi cn

ẋi
ẏi

 (27)

Since the snake robot is headed along the global x axis, the velocities ẋi and ẏi correspond to the velocity

of link i in the tangential and normal direction of the snake robot, respectively, while the forces fx,i

and fy,i correspond to the friction force on link i in the tangential and normal direction, respectively.

By denoting the friction force components on link i in the t-n frame of the simplified model by ft,i and

fn,i, respectively, and remembering from Section V-B that the t-n frame velocity components of link i

are given by ṫi and ṅi, respectively, we therefore have that

ẋi = ṫi, ẏi = ṅi (28)

fx,i = ft,i, fy,i = fn,i (29)

What now remains before we can use the friction model in (27) in the simplified model of the snake

robot is to write the link angle θi in terms of the simplified joint coordinates defined in (17). This is

achieved with the approximation illustrated in Fig. 11. In particular, we estimate θi as the angle of the

straight line from the CM of link i − 1 to the CM of link i + 1 with respect to the forward direction,
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Fig. 10. Plots which show that the approximations sin θi ≈ θi and sin θi cos θi ≈ θi are valid for limited link angles.

which is denoted by θ∗i in Fig. 11. We also see from Fig. 11 that the distance from the CM of link i− 1

to the CM of link i + 1 can be approximated as 2l when the link angles are limited. We can therefore

estimate the angle of link i as

θi ≈ sin θi ≈ sin θ∗i ≈
yi+1 − yi−1

2l
(30)

The fact that sin θi ≈ θi for limited link angles is shown in Fig. 10. Furthermore, since the joint coordinate

φi of the simplified model corresponds to the normal direction distance between link i and link i+1,we

have that

yi+1 − yi−1 = φi−1+φi (31)

By inserting the identities in (28), (29), (30), and (31) into (27), we can write the viscous ground friction

force on link i in the simplified model asft,i
fn,i

=
 −ct cp (φi−1+φi)

cp (φi−1+φi) −cn

 ṫi
ṅi


θ̇=0

(32)

where

cp =
cn − ct

2l
(33)

The parameter cp is a propulsion coefficient (p is short for propulsion) which maps the normal direction

link velocities and the joint coordinates into propulsive friction forces in the forward (tangential) direction

of the snake robot. The subscript θ̇ = 0 after the link velocity in (32) means that we choose to disregard

the link velocity components due to the angular velocity θ̇ of the snake robot (we are now considering
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Fig. 11. The body angle of link i is θi for a snake robot with revolute joints. For a snake robot with prismatic joints, we

approximate the body angle of link i based on the relative transversal distance to its two neighbouring links.

the simplified model of the snake robot, where θ denotes the orientation of the robot and not a link

angle). Calculating ṫi and ṅi under the assumption that θ̇ = 0 is a reasonable approximation since the

dynamics of the angular rotation of the snake robot will generally be much slower than the body shape

dynamics. This assumption also simplifies the ground friction model significantly.

The friction forces in (32) on all N links can now be written in matrix form asf t
fn

=
 −ctIN cp diag

(
ATφ

)
cp diag

(
ATφ

)
−cnIN

 ṫ
ṅ


θ̇=0

(34)

where f t ∈ RN and fn ∈ RN contain, respectively, the tangential and normal direction friction forces

on the links, IN is the N × N identity matrix, A is defined in Section V-A, and the operator diag (·)

produces a diagonal matrix with the elements of its argument along its diagonal. Inserting (23a) and

(23b) into (34) with θ̇ = 0 finally gives

f t = −ctvte+ cp diag
(
ATφ

) (
vne−Dφ̇

)
(35a)

fn = −cnvne+ cnDφ̇+ cpvt diag
(
ATφ

)
e (35b)

Note that a discussion related to the validity of the derived ground friction model is given in Section

V-F.

D. The dynamics of the snake robot

In this section, we derive the model of the translational and rotational acceleration of the snake robot.
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1) The translational dynamics of the snake robot: We use first principles to describe the translational

dynamics. In particular, we can see from Fig. 9 that the force balance for link i is given by

mẗi = ft,i + ht,i − ht,i−1 (36a)

mn̈i = fn,i − ui + ui−1 (36b)

where ft,i and fn,i are the ground friction forces defined in (32), ht,i and −ht,i−1 are the joint constraint

forces on link i from link i + 1 and link i − 1, respectively, and −ui and ui−1 are the actuator forces

exerted on link i from link i+1 and link i−1, respectively. The joint constraint forces, ht,i and −ht,i−1,

prevent relative motion between the links in the tangential direction and the actuator forces, −ui and

ui−1, produce relative motion between the links in the normal direction. The force balance for all links

can be written in matrix form as

mẗ = f t +D
Tht (37a)

mn̈ = fn −DTu (37b)

where D is defined in Section V-A, ht = (ht,1, · · · , ht,N−1) ∈ RN−1, and u = (u1, · · · , uN−1) ∈ RN−1.

Premultiplying (37b) by 1
mD gives

Dn̈ =
1

m
Dfn −

1

m
DDTu (38)

By differentiating (19b) twice with respect to time, it is easily seen that Dn̈ = −φ̈. We can therefore

write the body shape dynamics of the snake robot as

φ̈ = − 1

m
Dfn +

1

m
DDTu (39)

Inserting (35b) into (39) and using the easily verifiable relationsDe = 0,DD = IN−1, andD diag
(
ATφ

)
e =

−ADTφ, we get

φ̈ = −cn
m
φ̇+

cp
m
vtAD

Tφ+
1

m
DDTu (40)

The tangential and normal direction acceleration of the CM of the snake robot, denoted by v̇t and v̇n,

respectively, are given as the sum of all tangential and normal direction forces on the links divided by

the mass of the snake robot, Nm. This is written

v̇t =
1

Nm

(
eTmẗ

)
=

1

Nm
eTf t (41a)

v̇n =
1

Nm

(
eTmn̈

)
=

1

Nm
eTfn (41b)
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where we note that the joint constraint forces, ht, and the actuator forces, u, are eliminated when the

link accelerations are summed, i.e. eTDT = 0. Inserting (35a) and (35b) into (41a) and (41b), and using

the easily verifiable relations eT diag
(
ATφ

)
e = 2eTφ, eTD = 0, and eT diag

(
ATφ

)
D = φTAD,

we get

v̇t = −
ct
m
vt +

2cp
Nm

vne
Tφ− cp

Nm
φTADφ̇ (42a)

v̇n = −cn
m
vn +

2cp
Nm

vte
Tφ (42b)

2) The rotational dynamics of the snake robot: The translational motion of a snake robot with revolute

joints is produced by the translational displacements of the links (see Property 1). The essence of the

approach underlying the simplified model of the snake robot is therefore to disregard the rotational link

motion and instead only consider the translational displacements of the links. The rotational motion of a

snake robot, on the other hand, is determined by the orientation of the links. A drawback of disregarding

the rotational link motion is therefore that we remove the primary cause of the rotational motion of the

robot. For this reason, a pure first principles perspective on the rotational dynamics of a snake robot with

translational joints (as considered in the simplified model) will not produce a model which resembles

the rotational dynamics of a snake robot with revolute joints.

Instead of using first principles, we therefore choose to develop a simplified model of the rotational

dynamics of the snake robot based on our qualitative understanding of how the rotational motion is

produced. In particular, we will base the model on Property 4, which was derived in Section IV-B. This

property states that the direction of the forward motion changes when the average of the joint angles

is nonzero and that the rate of directional change is increased by increasing the average of the joint

angles and/or by increasing the forward velocity (assuming that the average of the joint angles is non-

zero). In the simplified model, the direction of the forward motion is given by the orientation θ, the

forward velocity is given by vt, and the average of the joint angles corresponds to the average of the

joint coordinates, eTφ�(N − 1). Property 4 therefore suggests that we can describe the overall torque

that induces the rotational motion of a snake robot as

θ̈rotation = λ2vt
eTφ

N − 1
(43)

where λ2 is some constant parameter which determines the scaling of the mapping from average joint

coordinate and forward velocity to rotational acceleration. Furthermore, there must necessarily act ground

friction forces on the snake robot which induce a ground friction torque that opposes the rotational motion.

Since the ground friction forces are of viscous type, we also assume that the rotational friction torque is
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viscous. We choose to model this viscous friction torque as

θ̈resistance = −λ1θ̇ (44)

where λ1 is some constant parameter which determines the scaling of the mapping from rotational velocity

to rotational acceleration. By combining (43) and (44), we can write the simplified model of the rotational

dynamics of the snake robot as

θ̈ = −λ1θ̇ +
λ2

N − 1
vte

Tφ (45)

Although the model of θ̈ is not based on first principles, we conjecture that the behaviour of this model

will be qualitatively similar to the behaviour of a snake robot with revolute joints, and also quantitatively

similar when the parameters λ1 and λ2 are properly chosen. This claim is supported by the stabilizability

and controllability analysis of the simplified model presented in Sections VI and VII, respectively, and

by the simulation results presented in Section IX.

Remark 11: Note that the model in (45) is very general and does not specify how to set the parameters

λ1 and λ2 as a function of the remaining parameters of the snake robot. We conjecture that λ1 is influenced

by the friction coefficient cn since the forces that induce the rotational friction torque are likely to act

normally to the snake robot. Moreover, since the induced rotation of the robot is tightly coupled with

the induced forward propulsion, we conjecture that λ2 is influenced by the propulsion coefficient cp.

E. The complete simplified model of the snake robot

This section summarizes the complete model of a planar snake robot with N links of mass m. Since

the snake robot has N +2 degrees of freedom, a state vector containing the generalized coordinates and

velocities of the robot will have dimension 2N + 4. We choose the state vector of the system as

x = (φ, θ, px, py,vφ, vθ, vt, vn) ∈ R2N+4 (46)

where φ ∈ RN−1 are the joint coordinates, θ ∈ R is the absolute orientation, (px, p y) ∈ R2 is the global

frame position of the CM, vφ = φ̇ ∈ RN−1 are the joint velocities, vθ = θ̇ ∈ R is the angular velocity,

and (vt, v n) ∈ R2 is the tangential and normal direction velocity of the snake robot. From (14), (40),

February 26, 2013 DRAFT



26

(42), and (45), we can write the complete model of the snake robot as

φ̇ = vφ (47a)

θ̇ = vθ (47b)

ṗx = vt cos θ − vn sin θ (47c)

ṗy = vt sin θ + vn cos θ (47d)

v̇φ = −cn
m
vφ +

cp
m
vtAD

Tφ+
1

m
DDTu (47e)

v̇θ = −λ1vθ +
λ2

N − 1
vte

Tφ (47f)

v̇t = −
ct
m
vt +

2cp
Nm

vne
Tφ− cp

Nm
φTADvφ (47g)

v̇n = −cn
m
vn +

2cp
Nm

vte
Tφ (47h)

where u ∈ RN−1 are the actuator forces at the joints, A, D, D, and e are defined in Section V-A, ct

and cn correspond, respectively, to the tangential and normal direction friction coefficient of the links in

the complex model of the snake robot, cp is the propulsion coefficient defined in (33), and λ1 and λ2

are positive scalar constants which characterize the rotational motion of the snake robot.

We will assume that the actuator forces are always set according to the linearizing control law

u = m
(
DDT

)−1
(
u+

cn
m
φ̇− cp

m
vtAD

Tφ
)

(48)

where u ∈ RN−1 is a new set of control inputs. This control law transforms the joint dynamics (47e)

into v̇φ = u, which is identical to the joint dynamics of the complex model given by (5a).

F. Discussion of the simplified model

In this section, we provided a discussion of limitations and accuracy issues related to the simplified

model of the snake robot.

1) Applications of the simplified model: The simplified model in (47) is not intended as an accurate

simulation model of snake robot locomotion. The model is intentionally based on several simplifying

assumptions in order to arrive at equations of motion which are manageable for control design and

stability analysis purposes. To this end, the model only needs to be qualitatively similar to the complex

model presented in (5). This qualitative similarity is supported by the stabilizability and controllability

analysis of the simplified model presented in Sections VI and VII, respectively. There is also a quantitative

similarity between the complex and the simplified model under conditions which are discussed in the

following.
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2) Accuracy issues of the simplified kinematics: The essence of the simplified modelling approach

is to describe the body shape changes of a snake robot as linear link displacements normal to the

forward direction of motion (i.e. to disregard the rotational link motion). This approach is only valid

for gait patterns where the relative link displacements normal to the direction of motion dominate over

the relative link displacements tangential to the direction of motion. Since the relative tangential link

displacements increase with increasing link angles, the simplified model should only be used to study

gait patterns with limited link angles with respect to the forward direction.

Note that there is an extension issue inherent in the simplified kinematics of the snake robot. As

illustrated in the top of Fig. 12, the body length of a snake robot in the complex model is constant and

equal to

Lcomp = Nl (49)

where N is the number of links and l is the link length. In the simplified model, however, the relative

distance between the prismatic joints in the tangential direction of the snake robot is assumed to be

constant and equal to the link length l. This assumption causes the total body length of the snake robot

to increase when the relative normal direction distances between the links are increased. As shown in

the bottom of Fig. 12, we can approximate the body length of the snake robot in the simplified model as

Lsimp = l +

N−1∑
i=1

√
l2 + φ2i (50)

We see that Lsimp = Lcomp when the snake robot is lying straight, but that Lsimp increases when the joint

coordinates are increased. We conjecture that the effects of this extension issue will be minimal as long

as the joint coordinates of the snake robot are limited.

3) Accuracy issues of the ground friction model: The assumptions made during the development of the

ground friction model in (32) are all valid for limited link angles. Unfortunately, it is difficult to derive

a precise bound for the range of link angles where the friction model is valid. However, Fig. 10 suggests

that (32) relies on approximations which are valid for link angles limited by approximately |θi| < 20◦.

It therefore seems reasonable to expect the ground friction model in (32) to be quantitatively similar to

the friction model in (3) for link angles satisfying this approximate bound.

Although the quantitative discrepancy between the models in (32) and (3) increases with increasing

link angles, the properties derived in Section IV-A regarding the qualitative behaviour of a snake robot

allow us to argue that the friction model in (32) is qualitatively similar to the friction model in (3)

also for large link angles. In particular, we can easily see from (32) that the propulsive ground friction
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Fig. 12. The body length of a snake robot with revolute joints (top) and of a snake robot with prismatic joints (bottom).

forces on link i that propel the robot forward are produced by the normal direction link velocity, ṅi.

This is in direct accordance with Property 1. Furthermore, we see from (32) that the magnitude of the

propulsive ground friction forces produced by link i is increased by increasing |φi−1+φi|, which, from

(30) and (31), corresponds to increasing |θi|. This is in direct accordance with Property 3. Finally, we

can see from (32) that the forward direction friction force component produced by ṅi is positive when

sgn (φi−1 + φi) = sgn (ṅi) and negative otherwise, which is in direct accordance with Property 2. In

summary, since the ground friction model in (32) directly captures the qualitative properties derived in

Section IV-A, we argue that the friction model in (32) is qualitatively similar to the friction model in (3)

also for large link angles.

Note that the quantitative discrepancy between the models in (32) and (3) will also increase when

the ratio between the friction coefficients cn and ct is increased. In particular, the ground friction model

in (32) is based on the approximation ct cos
2 θi + cn sin

2 θi ≈ ct, which is valid for small link angles.

However, this approximation becomes less valid when the ratio cn�ct is increased.

4) Accuracy issues of the rotation dynamics: As explained in Section V-D2, the rotation dynamics

of the snake robot in (45) was not derived from first principles. Instead, the model was developed to

directly capture the qualitative behaviour of a snake robot during rotational motion. The rotation model

in (45) is very general and does not specify how to set the parameters λ1 and λ2 as a function of the

remaining parameters of the snake robot. However, we conjecture that the behaviour of this model will

be qualitatively similar to the behaviour of a snake robot with revolute joints, and also quantitatively

similar when the parameters λ1 and λ2 are properly chosen.
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VI. STABILIZABILITY ANALYSIS OF THE SNAKE ROBOT

This section investigates the stabilizability properties of a snake robot described by the simplified

model. While the results alone are interesting, the main purpose with the analysis is to show a fundamental

similarity between the simplified and the complex model. This similarity is elaborated at the end of this

section.

The analysis in this section proves a fundamental theorem concerning the properties of an asymptoti-

cally stabilizing control law for the snake robot to any equilibrium point xe = (φe, θe, pex, pey, vφ = 0,

vθ = 0, vt = 0, vn = 0). A well-known result by Brockett32 states that a necessary condition for

the existence of a time-invariant (i.e. not explicitly dependent on time) continuous state feedback law,

u = u (x), that makes xe asymptotically stable, is that the image of the mapping (x,u) 7→ ẋ contains

some neighbourhood of ẋ = 0. A result by Coron and Rosier33 states that a control system that can be

asymptotically stabilized (in the Filippov sense33) by a time-invariant discontinuous state feedback law

can be asymptotically stabilized by a time-varying continuous state feedback law. If, moreover, the control

system is affine (i.e. linear with respect to the control input), then it can be asymptotically stabilized by

a time-invariant continuous state feedback law. We now employ these results to prove the following

fundamental result:

Proposition 12: An asymptotically stabilizing feedback control law for a planar snake robot described

by (47) to any equilibrium point must be time-varying, i.e. of the form u = u (x, t).

Proof: The result by Brockett32 states that the mapping (x,u) 7→ ẋ must map an arbitrary neigh-

bourhood of xe onto a neighbourhood of ẋ = 0. For this to be true, points of the form ẋ=(φ̇=0, θ̇=0,

ṗx=0, ṗy=0, v̇φ=0, v̇θ=0, v̇t=ε, v̇n=0) must be contained in this mapping for some arbitrary ε 6= 0

because points of this form are contained in every neighbourhood of ẋ = 0. However, these points do

not exist for the model (47) because v̇t = 0 6= ε when all the other derivatives of the state vector are

zero. Hence, the snake robot cannot be asymptotically stabilized to xe by a time-invariant continuous

state feedback law. Moreover, since the model is affine and cannot be asymptotically stabilized by a

time-invariant continuous state feedback law, the result by Coron and Rosier33 proves that the system

can neither be asymptotically stabilized by a time-invariant discontinuous state feedback law. We can

therefore conclude that an asymptotically stabilizing control law for the snake robot to any equilibrium

point must be time-varying, i.e. of the form u = u (x, t).

Remark 13: The authors have previously presented a similar stabilizability analysis17 that considered

a snake robot modelled by the complex model (5). This analysis produced an identical result as in
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Proposition 12.

VII. CONTROLLABILITY ANALYSIS OF THE SNAKE ROBOT

This section investigates the controllability properties of a snake robot described by the simplified

model. As for the previous section, our main intention is to show a fundamental similarity between the

simplified and the complex model. This similarity is elaborated at the end of this section.

A. Controllability of the linearized system

We assume that the joint dynamics has been linearized by the control law (48) so that v̇φ = u. This

enables us to rewrite the model of the snake robot (47) in the standard form of a control affine system

as

ẋ = f(x) +

N−1∑
j=1

gjuj (51)

where f (x) contains all the terms from (47) with u = 0(N−1)×1, uj is the jth element of the control

input vector u ∈ RN−1, and

gj =


0(N+2)×1

ej

03×1

 (52)

where ej denotes the jth standard basis vector in RN−1 (the jth column of IN−1). The linearization of

the model (51) about an equilibrium point xe can be written as

ż = Az + Bu (53)

where z = x−xe, A = ∂f(x)
∂x

∣∣∣
xe
∈ R(2N+4)×(2N+4), and B =

[
g1 · · · gN−1

]
∈ R(2N+4)×(N−1). The

controllability matrix of the linearized system is given by R =
[
B AB A2B · · · A2N+3B

]
and

does not have full rank since it can be verified that rank (R) = 2N + 1. The linearized model of the

snake robot is therefore not controllable since the Kalman rank condition34 is not satisfied. To study the

controllability of the snake robot, we must therefore consider nonlinear controllability concepts.

B. Controllability of the nonlinear system

In the following, we will investigate the controllability of the snake robot in terms of strong accessi-

bility34 and small-time local controllability (STLC)35. Strong accessibility means that the dimension of

the space that the system can reach in exactly time T for any T > 0 is equal to the dimension of the state

space. Accessibility does not imply controllability, but is a necessary (although not sufficient) condition
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for small-time local controllability (STLC). STLC is a stronger property than controllability and implies

that the control input can steer the system in any direction in an arbitrarily small amount of time. For

second-order systems, STLC is only possible from equilibrium states.

We assume that the snake robot consists of N = 4 links interconnected by N − 1 = 3 joints. The

model of this robot will have 2N + 4 = 12 states. We argue that the following controllability results

will also be valid for a snake robot with more links. In particular, a snake robot with N > 4 links can

behave as a snake robot with N = 4 links by fixing (N − 4) joint coordinates at zero and allowing

the remaining joints to move. By calculating Lie brackets of the system vector fields in (51), we can

construct the following accessibility algebra34 of the system evaluated at an equilibrium point xe:

∆ (xe) =
[
∆1 · · · ∆15

]
xe
∈ R12×15 (54)

where

∆1 = g1,∆2 = g2,∆3 = g3,

∆4 = [f , g1] ,∆5 = [f , g2] ,∆6 = [f , g3] ,

∆7 = [f , [f , g1]] ,∆8 = [f , [f , [f , g1]]] ,

∆9 = [f , [f , [f , [f , g1]]]] ,

∆10 = [g1, [f , [f , g2]]] ,

∆11 = [g1, [f , [f , [f , g2]]]] ,

∆12 = [g1, [f , [f , [f , [f , g2]]]]] ,

∆13 = [g1, [f , [f , [f , [f , [f , g2]]]]]] ,

∆14 = [g1, [f , [f , [f , [f , [f , g3]]]]]] ,

∆15 = [g2, [f , [f , [f , [f , [f , g3]]]]]] .

The accessibility algebra satisfies the following property:

Property 14: The accessibility algebra, ∆ (xe), has full rank (rank (∆ (xe)) = 12) as long as the sum

of the joint coordinates is nonzero, i.e. as long as eTφ 6= 0.

Due to space constraints, we cannot present the expressions contained in each column of ∆ (xe).

However, Property 14 can be shown to hold by employing a computer software for symbolic mathematics,

such as Matlab Symbolic Toolbox. Note that we have included three more columns than rows in ∆ (xe)

because different pairs of columns become linearly independent at certain configurations. Including three

redundant columns ensures that ∆ (xe) does not drop rank at these configurations. We are now ready to

state the following result:

February 26, 2013 DRAFT



32

Proposition 15: A planar snake robot described by (47) with N = 4 links is locally strongly accessible

from any equilibrium point xe satisfying eTφ 6= 0.

Proof: The system is locally strongly accessible from xe if the accessibility algebra of the system

evaluated at xe has full rank and does not contain the drift vector field f by itself (i.e. unbracketed)34.

By Property 14, the snake robot satisfies these conditions as long as eTφ 6= 0. This completes the proof.

We now show that the snake robot does not satisfy sufficient conditions for small-time local control-

lability (STLC). STLC requires that we classify the Lie brackets of the system vector fields in terms of

good and bad brackets. A Lie bracket is said to be bad if it contains the drift vector field f an odd

number of times and each control vector field gj an even number of times (0 is even). This classification

is motivated by the fact that a bad bracket may have directional constraints. E.g. the drift vector f is bad

because it only allows motion in its positive direction. The snake robot is STLC from an equilibrium

point xe if it is accessible from xe and all bad brackets of the system can be neutralized, i.e. written as

linear combinations of good brackets of lower θ-degree35 or lower l-degree36. The model of the snake

robot satisfies the following property:

Property 16: The brackets gj ,
[
f , gj

]
,
[
gj , [f , gk]

]
,
[
gj , [f , [f , gk]]

]
,
[[
f , gj

]
, [f , gk]

]
,
[
f ,
[
f , gj

]]
,[

f ,
[
f ,
[
f , gj

]]]
, · · · ,

[
f , [· · ·

[
f , gj

]]
· · · ], where j, k ∈ {1, 2, 3} and j 6= k, are all good brackets, but

does not span the entire 12-dimensional state space.

Due to space constraints, we are again unable to present the expressions contained in the brackets in

Property 16. However, the property can be shown to hold by employing a computer software for symbolic

mathematics, such as Matlab Symbolic Toolbox. Property 16 enables us to state the following result:

Proposition 17: A planar snake robot described by (47) with N = 4 links does not satisfy the sufficient

conditions for small-time local controllability (STLC) presented by Sussmann35 and by Bianchini and

Stefani36.

Proof: The bracket
[
gj ,
[
f ,
[
f ,
[
f , gj

]]]]
of the system, where j ∈ {1, 2, 3}, is a bad bracket. The

only good brackets of lower θ-degree or lower l-degree that can neutralize this bad bracket are of the

form gj ,
[
f , gj

]
,
[
gj , [f , gk]

]
,
[
gj , [f , [f , gk]]

]
,
[[
f , gj

]
, [f , gk]

]
,
[
f ,
[
f , gj

]]
,
[
f ,
[
f ,
[
f , gj

]]]
, · · · ,[

f , [· · ·
[
f , gj

]]
· · · ], where j, k ∈ {1, 2, 3} and j 6= k. By Property 16, these brackets do not span the

entire 12-dimensional state space. We therefore cannot express the bad bracket as a linear combination

of good brackets of lower θ-degree or lower l-degree. Since there are bad brackets of the system that

cannot be neutralized, the system does not satisfy the conditions for STLC presented by Sussmann35 and

by Bianchini and Stefani36.
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Remark 18: The authors have previously presented a similar controllability analysis17 that considered

a snake robot with N = 4 links modelled by the complex model (5). This analysis produced an identical

result concerning STLC, but showed that the accessibility algebra of the system has full rank except for

configurations where all joint coordinates are equal (φ1 = φ2 = ... = φN−1), which will be the case when

the snake robot is lying straight or forming an arc. The condition eTφ 6= 0 stated in Proposition 15 states

that a configuration is singular when the sum of the relative linear link displacements is zero. Since the

sum of the relative linear link displacements is zero for both straight and arc shaped snake robots with

revolute joints, the singular configurations of the complex model17 are actually contained in the singular

configurations stated in Proposition 15. This similarity supports the conjecture that the simplified model

proposed in this paper captures the essential part of the dynamics of planar snake locomotion. Note that

there are singular configurations of the simplified model that do not easily translate to the complex model.

A wave shape where the sum of the relative linear link displacements is zero is a singular configuration

in the simplified model, but is not singular to a snake robot with revolute joints. These additional singular

configurations of the simplified model arise since the sum of the joint coordinates is employed to model

the rotation of the snake in accordance with Property 4 in Section IV-B. Nonetheless, the most important

conclusion to be drawn from Proposition 15 is that the snake robot is locally strongly accessible from

almost any equilibrium point, except for certain singular configurations. This conclusion is in accordance

with the previous results by the authors17.

VIII. ANALYSIS OF THE VELOCITY DYNAMICS BASED ON AVERAGING THEORY

In this section, we will derive and investigate important properties of the velocity dynamics of a

snake robot during lateral undulation. The analysis is based on averaging theory37 since we are primarily

interested in the overall speed and direction of the locomotion. The periodic fluctuations about the average

trajectory of the snake is not of particular interest in this study.

A. Introduction to averaging theory

Consider a system of the form

ẋ = εf(t,x) (55)

where ε is a small positive parameter characterizing the magnitude of the perturbations of the system

and f(t,x) is T -periodic, i.e. f(t + T,x) = f(t,x). A system that, in ‘average’, behaves similarly to

the system in (55) is given by

ẋ = εfav(x) (56)
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where

fav(x) =
1

T

T∫
0

f(τ,x)dτ (57)

Note that the above integral should be calculated by treating the elements of the state vector x as

constants. The smallness requirement on ε ensures that x varies slowly with t relative to the periodic

excitation of the system. The system response will thereby be determined predominantly by the average

of the excitation. The following theorem follows directly from Theorem 10.4 in a book by Khalil29:

Theorem 19: Let f(t,x) and its partial derivatives with respect to x be continuous and bounded for

(t,x) ∈ [0,∞) × Rn. Suppose f is T -periodic in t for some T > 0 and ε is a positive parameter. Let

x (t, ε) and xav(t, ε) denote the solutions of (55) and (56), respectively. If the average system (56) has a

globally exponentially stable equilibrium point and ‖x (0, ε)− xav(0, ε)‖ ≤ k0ε for some k0 > 0, then

there exist k > 0 and ε∗ > 0 such that for all 0 < ε < ε∗,

‖x (t, ε)− xav(t, ε)‖ ≤ kε for all t ∈ [0,∞) (58)

This theorem basically says that, for sufficiently small ε, the solutions of the original system (55) and

the average system (56) remain close (of order ε) for all time if the initial conditions of the systems are

close and the average system is globally exponentially stable. This implies that the original system will

remain close to a trajectory which converges exponentially to the equilibrium point.

B. Model of the velocity dynamics of the snake robot

We will now study the velocity dynamics of the snake robot during lateral undulation (the gait pattern

defined in (6)). The velocity dynamics is defined by (47f), (47g), and (47h), which give the dynamics

of the forward direction velocity vt, the normal direction velocity vn, and the angular velocity vθ of the

snake robot. It was shown in Section III that we can achieve exponentially stable tracking of the joint

reference coordinates (6) with the control law (9). We will therefore assume that φ and vφ = φ̇ are

given by (6) and (7), respectively. Furthermore, in order to arrive at a model of the velocity dynamics

which is in the standard averaging form (55), we assume that the amplitude α and frequency ω of the

joint motion are always set according to the rule

ω =
kαω
α2

(59)

where kαω > 0 is a controller parameter. Note that α and ω are still independent parameters since any

choice of α and ω can be obtained by choosing kαω = α2ω. Using (6), (7), and (59), and introducing
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the velocity state vector v = (vt, vn, vθ) ∈ R3, the velocity dynamics can be written as

v̇ =


v̇t

v̇n

v̇θ

 = f(t,v) (60)

where

f(t,v) =


− ct
mvt +

2cp
Nmvnf1(ωt)−

cp
Nmf2(ωt)

− cn
m vn +

2cp
Nmvtf1(ωt)

−λ1vθ + λ2

N−1vtf1(ωt)

 (61)

f1(ωt) = (N − 1)φo +

N−1∑
i=1

α sin (ωt+ (i− 1) δ) (62)

f2(ωt) =
N−1∑
i=1

N−1∑
j=1

[
kαω
α φoaij cos (ωt+(j−1) δ)

+kαωaij sin (ωt+(i−1) δ) cos (ωt+(j−1) δ)]
(63)

and aij denotes element ij of the matrix AD. To transform the model (60) into the standard form of

averaging (55), we change the time scale from t to τ = ωt and define ε = 1/ω. Since d
dt = 1

ε
d

dτ , the

model (60) can now be written as
dv
dτ

= εf(τ,v) (64)

where

f(τ,v) =


− ct
mvt +

2cp
Nmvnf1(τ)−

cp
Nmf2(τ)

− cn
m vn +

2cp
Nmvtf1(τ)

−λ1vθ + λ2

N−1vtf1(τ)

 (65)

This model is in the standard form defined in (55). Note that when we require ε to be small, we

equivalently require that ω = 1/ε is large.

C. Averaged model of the velocity dynamics

The averaged model of (64) is calculated in accordance with (56) as

dv
dτ

= ε
1

2π

2π∫
0

f(τ,v)dτ (66)

It can be verified that
1

2π

2π∫
0

f1(τ)dτ = (N − 1)φo (67)
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1

2π

2π∫
0

f2(τ)dτ = −1

2
kαωkδ (68)

where the constant kδ ∈ R is defined as

kδ =

N−1∑
i=1

N−1∑
j=1

aij sin ((j − i) δ) (69)

The averaged model can therefore be written as

dv
dτ

= ε (Av + b) (70)

where

A = A (φo) =


− ct
m

2(N−1)
Nm cpφo 0

2(N−1)
Nm cpφo − cn

m 0

λ2φo 0 −λ1

 (71)

b = b (α, ω, δ) =


cp

2Nmkαωkδ

0

0

 (72)

By changing time scale back to t using that d
dτ = ε d

dt , the averaged model is given by

v̇ = Av + b (73)

We see that the averaged model of the velocity dynamics is a linear system characterized by the parameters

of the joint reference coordinates, i.e. by α, ω, δ, and φo.

Remark 20: The term average velocity will hereafter be used to denote the velocity described by the

averaged model (73). This average velocity evolves according to the average changes of the original

model (60) and will typically correspond to the average of the velocities of the original model over the

last cycle of the periodic gait pattern (i.e. the last T seconds). The average velocity can, in other words,

be regarded as a low-pass filtered version of the original velocity.

D. Stability analysis of the velocity dynamics

Before we determine the stability properties of the averaged model (73), we remove the constant offset

term b with the coordinate transformation z = v +A−1b. This gives

ż = v̇ = A
(
z −A−1b

)
+ b = Az (74)
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It can be shown that the eigenvalues of A are given by

eig (A) =


− ct+cn

2m −
√

(cnN−ctN)2+(4(N−1)cpφo)
2

2Nm

− ct+cn
2m +

√
(cnN−ctN)2+(4(N−1)cpφo)

2

2Nm

−λ1

 (75)

The equilibrium point z = 0 is globally exponentially stable if all eigenvalues of A are negative29, which

can easily be verified to be the case if

|φo| <
N

2 (N − 1)

√
ctcn (76)

The limit in (76) concerns the amplitude of the joint coordinate offset φo and is a function of the

friction coefficients ct and cn. This limit is not relevant to a snake robot with revolute joints since the

normal direction distance between the links of such mechanisms is physically constrained by the revolute

joints. The instability issue in (76) therefore suggests that the approach of modelling the link motion as

translational displacements breaks down when the displacements become large.

Assuming that we choose φo to satisfy the limit (76), then z will converge exponentially to zero,

which means that v will converge exponentially to −A−1b, which means that the average velocity will

converge exponentially to the steady state velocity

v = −A−1b =
[
vt vn vθ

]T
(77)

which is given analytically by

vt=kαωkδ
Ncncp

2
(
N2ctcn − (4N2 − 8N + 4) c2pφ

2
o

) (78a)

vn=kαωkδ
φo (N − 1) c2p

N2ctcn − (4N2 − 8N + 4) c2pφ
2
o

(78b)

vθ=kαωkδ
φoNcncpλ2

2λ1
(
N2ctcn − (4N2 − 8N + 4) c2pφ

2
o

) (78c)

We can see that the resulting steady state velocity of the snake robot is proportional to the controller

parameters kαω = α2ω and kδ, and that the velocity also depends on nonlinear terms involving the joint

coordinate offset φo.

Since the averaged model of the velocity dynamics given by (73) is globally exponentially stable

(assuming that (76) is satisfied), it follows from Theorem 19 that, for sufficiently small ε (i.e. for

sufficiently large ω), the average velocity given by (73) will approximate the exact velocity (60) for

all time, and that the error of this approximation is of order ε, i.e. bounded in accordance with (58). In

this paper, we will not investigate the lower limit of ω corresponding to some maximum error bound.
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However, the simulation results presented in Section X show that the exact and the average velocity agree

well when ω is set to values that are commonly used for snake robot locomotion.

We now summarize the above conclusions.

Proposition 21: Consider a planar snake robot described by (47). Suppose the joint coordinates φ are

controlled in exact accordance with (6) and (7), and that the joint coordinate offset φo satisfies (76). Then

there exist k > 0 and ω∗ > 0 such that for all ω > ω∗,

‖v(t)− vav(t)‖ ≤ k
ω for all t ∈ [0,∞) (79)

where v(t) denotes the exact velocity of the snake robot given by (60) and vav(t) denotes the average

velocity given by (73). Furthermore, the average velocity vav(t) of the snake robot will converge

exponentially fast to the steady state velocity v given by (77).

E. Fundamental relationships between the gait parameters and the forward velocity

Proposition 21 is a powerful result. First of all, it proves mathematically that lateral undulation enables

a wheel-less snake robot with anisotropic ground friction properties to achieve forward propulsion (under

the assumption that the body shape motion is modelled as translational link displacements). Second, the

result gives an analytical expression for the steady state velocity as a function of the controller parameters

α, ω, δ, and φo, i.e. the amplitude, frequency, phase shift and offset of the joint motion during lateral

undulation. This information is relevant for motion planning purposes. We can for example immediately

see from (77) that the steady state velocity of the snake robot when it conducts lateral undulation with

zero joint offset (φo = 0) is given by vt =
cp

2Nct
kαωkδ, vn = 0, and vθ = 0. A final powerful feature of

Proposition 21 is that it applies to snake robots with an arbitrary number of links N .

In the following, we will use Proposition 21 to deduce some fundamental relationships between the

forward velocity and the controller parameters of the snake robot. The forward velocity is seen from

(78a) to be proportional to the controller parameter kαω = α2ω, i.e. the forward velocity is proportional

to the square of the amplitude of the joint motion, α2, and also proportional to the angular frequency, ω,

of the joint motion. This information is useful from a motion planning perspective since it tells us that

an increase/decrease of the forward velocity by a certain factor can be achieved by increasing/decreasing

ω by the same factor or by increasing/decreasing α by the square root of this factor.

It is also seen from (78a) that the forward velocity of the snake robot is proportional to the function

kδ defined in (69). Since kδ is a function of the phase shift δ between the joints, this means that the

phase shift δ that will maximize the forward velocity can be determined as the δ that maximizes kδ.
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Fig. 13. The optimal phase shift δ that maximizes the forward velocity of a planar snake robot as a function of the number

of links N .

This is particularly interesting since we are now able to use the analytical expression of kδ to determine

the optimal phase shift δ that maximizes the forward velocity of a planar snake robot with an arbitrary

number of links N . Fig. 13 presents a plot of the maximum value of kδ as a function of the number of

links N . For each N , the maximum value of kδ was found using the mathematical computer software

Matlab. The optimal phase shift is e.g. δ = 90◦ for N = 3 links, δ = 50.4◦ for N = 5 links, δ = 24.1◦

for N = 10 links, and δ = 11.5◦ for N = 20 links.

The above results can be summarized as follows:

Proposition 22: Consider a planar snake robot with N links modelled by (47) and controlled in exact

accordance with (6) and (7). The average forward velocity of the snake robot given by (73) will converge

exponentially to a value which is proportional to:

- the squared amplitude of the sinusoidal joint motion, α2.

- the angular frequency of the sinusoidal joint motion, ω.

- the function of the constant phase shift, δ, between the joints given by

kδ =

N−1∑
i=1

N−1∑
j=1

aij sin ((j − i) δ) (80)

where aij denotes element ij of the matrix AD. Moreover, for a given α and ω, the phase shift, δ, that

maximizes the average forward velocity is given by the δ that maximizes kδ.

February 26, 2013 DRAFT



40

IX. SIMULATION STUDY: COMPARISON BETWEEN THE COMPLEX AND THE SIMPLIFIED MODEL

This section presents simulation results in order to compare the complex snake robot model given by

(5) with the simplified model given by (47).

Remark 23: As noted in Remark 11 in Section V-D2, we have not specified how to set the rotation

parameters λ1 and λ2 as a function of the remaining parameters of the snake robot. However, knowing

this mapping is not critical to the intended use of the simplified model for controller design purposes as

long as we know that the qualitative and the approximate quantitative behaviour of the complex model

is contained within the simplified model for some choice of numerical values of the parameters λ1 and

λ2. The purpose of this section is to illustrate this qualitative and quantitative similarity between the two

models.

A. Simulation parameters

Both models were implemented and simulated in Matlab R2011a on a laptop running Windows XP.

The dynamics was calculated using the ode45 solver in Matlab with a relative and absolute error tolerance

of 10−6. We considered a snake robot with N = 10 links of length l = 0.14 m and mass m = 1 kg.

The links of the snake robot in the complex model had moment of inertia J = 0.0016 kgm2. The ground

friction coefficients were ct = 1 and cn = 3, and the rotation parameters of the simplified model were

λ1 = 0.5 and λ2 = 20. Both models were simulated with the joint controller given by (9) with controller

gains kp = 20 and kd = 5. In order to compare the two models, we controlled the snake robot in both

models according to the gait pattern lateral undulation defined in (6). The angular frequency and phase

shift of the gait pattern were ω = 120◦/s and δ = 40◦, respectively, while the amplitude α and the joint

offset φo are presented with each simulation result below.

B. Relationship between the joint coordinates in the complex and simplified model

In order to illustrate the range of link angles where the simplified model agrees with the complex

model, we carried out simulations of lateral undulation where the amplitude of the link angles was

θi = 10◦, 15◦, 20◦, and 30◦, respectively, for i ∈ {1, · · · , N}. For the kinematic parameters and gait

parameters listed in Section IX-A, these link angle amplitudes are achieved in the complex model by

choosing the amplitude α in (6) as α = 7.1◦, 10.5◦, 13.9◦, and 21◦, respectively. Furthermore, these

link angle amplitudes will cause the amplitudes of the normal direction distance between the links (i.e.

the amplitude of the joint coordinates in the simplified model) to be yi+1 − yi = 2.3 cm, 3.4 cm, 4.5

cm, and 6.6 cm, respectively. These relationships are shown in Fig. 14 and were found through trial and
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error by simulating the complex model of the snake robot with the parameters listed in Section IX-A.

In particular, the figure shows a simulation of the complex model where the snake robot first conducts

lateral undulation with α = 7.1◦ for 30 s, then with α = 10.5◦ for 30 s, then with α = 13.9◦ for 30 s,

and finally with α = 21◦ for 30 s. Fig. 14(a) shows the maximum value of all the N link angles at each

timestep, while Fig. 14(b) shows the maximum value of the normal direction distance between the links

at each timestep. The link angle amplitude and the normal direction link distance corresponding to each

value of α were estimated as the average of the plotted values inside each 30 s time interval.

In summary, Fig. 14 shows that lateral undulation with the kinematic parameters and gait parameters

listed in Section IX-A, where the amplitude of the link angles are θi = 10◦, 15◦, 20◦, and 30◦, respectively,

is achieved in the complex model by choosing the amplitude α in (6) as α = 7.1◦, 10.5◦, 13.9◦, and

21◦, respectively, and is achieved in the simplified model by choosing the amplitude α in (6) as α = 2.3

cm, 3.4 cm, 4.5 cm, and 6.6 cm, respectively.

C. Comparison of straight motion

We begin by comparing the complex and the simplified model during lateral undulation along a straight

line. The amplitude α in (6) was set in intervals of 45 s according to the values derived for both models in

the previous subsection, i.e. α = 7.1◦, 10.5◦, 13.9◦, and 21◦, respectively, for the complex model and α =

2.3 cm, 3.4 cm, 4.5 cm, and 6.6 cm, respectively, for the simplified model. The joint offset φo in (6) was set

to zero in both models. The snake robot in the complex model started moving from (px = 0, py = −0.5),

while the snake robot in the simplified model started moving from (px = 0, py = 0.5). Both snake robots

were initially headed along the global x axis with zero joint coordinates.

The simulaton result is shown in Fig. 15, where the plots on the right side are normalized with respect

to body length in order to remove the effect of the body length extension issue explained in Section

V-F2. In particular, while the body length of the snake robot with revolute joints in the complex model

is constant and given by (49), the body length of the prismatic snake robot in the simplified model will

slightly increase according to (50) for increasing joint coordinates. In order to remove the effect of this

extension issue when comparing the two models, we normalize the simulation result by dividing the

simulated state values by the body length at each time step, given by (49) and (50) for the complex

and the simplified model, respectively. Each plot to the right in Fig. 15 is the normalized plot of the

corresponding plot to the left.

The motion of the CM of the two robots is plotted in Figures 15(a) and (b), where the configuration

of the snake robots is visualized in the middle of each 45 s time interval. Furthermore, Figures 15(c)-(f)
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(a) The link angle amplitudes θi = 10◦, 15◦, 20◦, and

30◦ are achieved by choosing the joint angle

amplitudes as α = 7.1◦, 10.5◦, 13.9◦, and 21◦,

respectively.

(b) The estimated amplitudes of the normal direction

distance between the links at each of the four joint

angle amplitudes are, respectively, yi+1 − yi = 2.3

cm, 3.4 cm, 4.5 cm, and 6.6 cm.

Fig. 14. A simulation of the complex model where the snake robot conducts lateral undulation at four different joint angle

amplitudes. The plots show the corresponding amplitudes of the link angles (top) and the amplitudes of the normal direction

distances between the links (bottom).
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show the CM velocity of the snake robots in the global x and y direction, respectively. The body length

of the snake robot at each time step is plotted in Fig. 16.

The simulation results indicate that the forward motion dynamics of the simplified model agrees well

with the complex model as long as the link angles are limited. In particular, there is a good agreement

between the two models in the two first time intervals, where the link angle amplitude is 10◦ and 15◦,

respectively. In the third time interval, where the link angle amplitude is increased to 20◦, the forward

velocity in the two models begin to deviate. This deviation is increased in the fourth and last time interval,

where the link angle amplitude is increased to 30◦. These observations also apply to the normalized plots

on the right side.

These simulation results agree very well with the predictions that were made in conjunction with

the derivation of the simplified model. In particular, Fig. 10 suggests that the ground friction forces in

the simplified model rely on approximations which are valid for link angles limited by approximately

|θi| < 20◦. The simulation result in Fig. 15 supports this conjecture. The agreement between the two

models is slightly improved in the normalized plots, but not to a very large extent, which supports our

conjecture in Section V-F2 that the effect of the extension issue of the prismatic snake robot is small as

long as the joint coordinates are limited.

Notice that the velocity plots from the complex model contain high-frequency components which

are not visible in the plots from the simplified model. This indicates that the complex model contains

nonlinear components which are not included in the simplified model. However, the similar behaviour of

the two models at limited link angles indicates that the simplified model captures the parts of the complex

model that determine the overall motion of the snake robot. This suggests that we may use the simplified

model to develop general analysis and control design results that will also apply to the complex model.

D. Comparison of turning motion

In the next simulation, we compare the complex and the simplified model during lateral undulation

involving turning motion. In order to induce turning motion, the joint offset φo in (6) was set to φo = 1
3α

in the time interval t ∈ [40, 70] and φo = −1
3α in the time interval t ∈ [130, 160]. The offset was

zero outside these two time intervals. To compare the models at different link angle amplitudes, the

simulation was carried out three times with link angle amplitude θi = 10◦, 20◦, and 30◦, respectively,

for i ∈ {1, · · · , N}. The corresponding amplitude α in (6) was set according to the values derived in

Section IX-B, i.e. α = 7.1◦, 13.9◦, and 21◦, respectively, for the complex model and α = 2.3 cm, 4.5

cm, and 6.6 cm, respectively, for the simplified model. All intial state values of the snake robot were
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(a) The CM position from the complex (bottom)

and simplified (top) model.

(b) The normalized CM position from the

complex (bottom) and simplified (top) model.

(c) The CM velocity in the global x

direction, ṗx.

(d) The normalized CM velocity in the

global x direction, ṗx/L.

(e) The CM velocity in the global y

direction, ṗy.

(f) The normalized CM velocity in the

global y direction, ṗy/L.

Fig. 15. Simulation results which compare the complex and the simplified model during lateral undulation along a straight line

at four different link angle amplitudes. The normalized quantities in the plots to the right are calculated by dividing the state

values by the body length of the snake robot at each time step.
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Fig. 16. The body length of the snake robot during lateral undulation along a straight line at four different link angle amplitudes.

zero.

The simulation results from the three trials are shown in Fig. 17, Fig. 18, and Fig. 19, respectively,

where we also present plots which are normalized with respect to body length in order to remove the effect

of the body length extension issue explained in Section V-F2. As explained in the previous subsection,

the normalized plots are produced by dividing the simulated state values by the body length at each time

step, given by (49) and (50) for the complex and the simplified model, respectively.

In all three figures, the motion of the CM of the two robots is plotted in subfigures (a) and (b),

where the snake robot from the complex model is visualized at t = 5 s and the snake robot from the

simplified model is visualized at t = 195 s. Furthermore, subfigures (c)-(f) show the CM velocity of the

snake robots, while subfigure (g) shows the orientation of the snake robots, which was given by θ in the

simplified model, and which was estimated as the average of the link angles in the complex model, i.e.

as θ = 1
N

∑N
i=1 θi. Finally, subfigure (h) shows the body length of the snake robot at each time step,

which is constant for the snake robot in the complex model, but which varies according to (50) for the

simplified model.

In all three simulation trials, the qualitative behaviour of the snake robot from the simplified model

is similar to the behaviour from the complex model. With the chosen numerical values of the rotation

parameters λ1 and λ2 in the simplified model, we also achieved a good quantitative similarity between

the two models. We can see that the quantitative similarity is best in the first trial, where the link angle

amplitude is 10◦, and that there is some deviation between the two models in the second trial, where

the link angle amplitude is 20◦. The deviation is even larger in the third trial, where the link angle
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amplitude is 30◦. Again, these results agree with the predictions that were made in conjunction with

the derivation of the simplified model, namely that the quantitative agreement between the complex and

the simplified model is best for link angles limited by approximately |θi| < 20◦. Note that we also

predicted that the two models will be qualitatively similar also for link angles above this approximate

bound. The simulation result in Fig. 19 supports this conjecture since the qualitative behaviours of the

two snake robots are similar even though there is a quantitative discrepancy between the plots. Note that

the quantitative agreement between the two models is slightly improved in the normalized plots, but not

to a very large extent, which supports our conjecture in Section V-F2 that the effect of the extension

issue of the prismatic snake robot is small as long as the joint coordinates are limited.

X. SIMULATION STUDY: INVESTIGATION OF THE AVERAGED VELOCITY DYNAMICS

This section presents simulation results in order to investigate the validity of Proposition 21, i.e. to

validate the agreement between the original simplified model (47) and the averaged model (73).

A. Simulation parameters

The original model of the snake robot was given by (47) under the assumption that φ was controlled

in exact accordance with (6). The averaged model of the snake robot was given by (73). The ground

friction coefficients were ct = 0.5 and cn = 3, and the rotation parameters were λ1 = 0.5 and λ2 = 20.

The remaining simulation parameters were identical to the parameters presented in Section IX-A except

for the values of the gait parameters α, ω, δ, and φo, which are presented with each simulation result

below.

B. Simulation results

The motion of the snake robot during lateral undulation was first simulated with the controller param-

eters α = 0.05 m, ω = 70◦/s, δ = 40◦, and φo = l/8 m. The joint coordinates were, in other words,

offseted by 1/8 of the link length l. In accordance with Proposition 21, the average velocity of the snake

robot should then converge exponentially fast to the steady state velocity vt = 7.12 cm/s, vn = 0.67

cm/s, and vθ = 2.86◦/s. This prediction agrees very well with the simulation result shown in Fig. 20.

The top left plot shows the global CM position of the snake robot and also the body shape at t = 5 s

and t = 40 s, while the other three plots show the velocities from the original and the averaged model.

The close overlap between the velocity plots from the two models suggests that ω = 70◦/s is well above

the (unknown) value of ω∗ described in Proposition 21.
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(a) The CM position. (b) The normalized CM position.

(c) The CM velocity, ṗx. (d) The normalized CM velocity, ṗx/L.

(e) The CM velocity, ṗy. (f) The normalized CM velocity, ṗy/L.

(g) The orientation of the snake robot. (h) The body length of the snake robot.

Fig. 17. Simulation results which compare the complex and the simplified model during turning motion. The amplitude of the

link angles is θi = 10◦. The normalized quantities in the plots to the right are calculated by dividing the state values by the

body length of the snake robot at each time step.
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(a) The CM position. (b) The normalized CM position.

(c) The CM velocity, ṗx. (d) The normalized CM velocity, ṗx/L.

(e) The CM velocity, ṗy. (f) The normalized CM velocity, ṗy/L.

(g) The orientation of the snake robot. (h) The body length of the snake robot.

Fig. 18. Simulation results which compare the complex and the simplified model during turning motion. The amplitude of the

link angles is θi = 20◦. The normalized quantities in the plots to the right are calculated by dividing the state values by the

body length of the snake robot at each time step.
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(a) The CM position. (b) The normalized CM position.

(c) The CM velocity, ṗx. (d) The normalized CM velocity, ṗx/L.

(e) The CM velocity, ṗy. (f) The normalized CM velocity, ṗy/L.

(g) The orientation of the snake robot. (h) The body length of the snake robot.

Fig. 19. Simulation results which compare the complex and the simplified model during turning motion. The amplitude of the

link angles is θi = 30◦. The normalized quantities in the plots to the right are calculated by dividing the state values by the

body length of the snake robot at each time step.
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In the second simulation, the controller parameters were set to α = 0.05 m, ω = 30◦/s, δ = 40◦,

and φo = −l/4 m. The joint coordinates were, in other words, offseted by 1/4 of the link length l. In

addition, we reduced the frequency of the sinusoidal motion from ω = 70◦/s to ω = 30◦/s to see how this

affected the estimate of the average velocity. From Proposition 21, the average velocity should converge

to vt = 3.66 cm/s, vn = −0.69 cm/s, and vθ = −2.94◦/s. This agrees very well with the simulation

result shown in Fig. 21. The figure shows that there is still a good agreement between the velocities from

the original and the averaged model even though we reduced ω considerably.

XI. SIMULATION STUDY: INVESTIGATION OF THE RELATIONSHIPS BETWEEN GAIT PARAMETERS

AND FORWARD VELOCITY

This section presents simulation results in order to investigate the validity of Proposition 22, i.e. the

validity of the relationships between the gait pattern parameters of lateral undulation and the resulting

forward velocity of the snake robot. In addition to validating the relationships in Proposition 22 with

simulation results from the simplified model (47), this section also shows that the relationships apply to

the velocity from the complex model given by (5).

Remark 24: The joint coordinates of the simplified model (normal direction link distances) are different

from the joint coordinates of the complex model (joint angles). However, it still makes sense to investigate

the validity of Proposition 22 for a snake robot with revolute joints since, as implied by Property 6, the

rotational link motion is what produces the linear displacements captured by the simplified model. Note

also that for limited link angles, there is approximately a linear relationship between the amplitude

of the angular joint motion and the corresponding amplitude of the transversal link displacments. The

relationship stated in Proposition 22 between the forward velocity and the squared amplitude of the

sinusoidal joint motion, α2, can therefore be expected to hold also when α denotes the amplitude of the

angular joint motion of a snake robot with revolute joints.

A. Simulation parameters

The complex model (5) and the simplified model (47) were implemented and simulated in Matlab

R2008b on a laptop running Windows XP. The dynamics was calculated using the ode45 solver in

Matlab with a relative and absolute error tolerance of 10−3 and 10−6 in the complex and the simplified

model, respectively.

We considered snake robots with N = 3, N = 5, N = 10, and N = 20 links of length l = 0.14 m,

mass m = 1 kg, and moment of inertia J = 0.0016 kgm2. The ground friction coefficients were ct = 1
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(a) The CM position of the snake robot. (b) The forward velocity vt.

(c) The sideways velocity vn. (d) The rotation velocity vθ.

Fig. 20. Comparison between the original simplified model and the averaged model for counterclockwise turning motion with

controller parameters α = 0.05 m, ω = 70◦/s, δ = 40◦, and φo = l/8 m.

and cn = 3, and the rotation parameters of the simplified model were λ1 = 0.5 and λ2 = 20. Both

models were simulated with the joint controller given by (9) with controller gains kp = 20 and kd = 5.

The joint reference coordinates were calculated according to the motion pattern lateral undulation defined

in (6) with zero joint angle offset (φo = 0). The values of the gait pattern parameters α, ω, and δ are

presented with each simulation result. All intial state values of both models were zero.

The simulation results below present the forward velocity of the snake robot, denoted by v, for different
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(a) The CM position of the snake robot. (b) The forward velocity vt.

(c) The sideways velocity vn. (d) The rotation velocity vθ.

Fig. 21. Comparison between the original simplified model and the averaged model for clockwise turning motion with controller

parameters α = 0.05 m, ω = 30◦/s, δ = 40◦, and φo = −l/4 m.

sets of gait pattern parameters. The velocity was calculated at the end of each simulation trial as the

linear distance travelled by the CM of the snake robot divided by the simulation time, which was chosen

to be tsim = 10 s. In other words, the velocity was calculated as

v =

√
(px (10)− px (0))2 + (py (10)− py (0))2

10
(81)

Note that the velocity in each plot is presented in terms of body length units in order to generalise the
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results. In particular, we define the body length of the snake robot in both the simplified and the complex

model as

L = Nl (82)

Consequently, the velocity in body length units is given as v/L.

Remark 25: The essence of the simulation results presented in this section is contained in the particular

shape of each graph, which means that a quantitative comparison between the graphs from the complex

and the simplified model is not relevant. The values of the amplitude α of the joint motion in the complex

model were therefore set independently from the values of α in the simplified model.

B. Relationship between the forward velocity and α

Proposition 22 states that the average forward velocity of a planar snake robot is proportional to

the squared amplitude of the sinusoidal joint motion, α2. We investigated the validity of this result

by simulating the snake robot with different values of α and calculating the resulting average forward

velocity. We considered snake robots with N = 3, 5, 10, and 20 links, respectively, with δ = 90◦, 50.4◦,

24.1◦, and 11.5◦, respectively, and with ω = 70◦/s. The simulation results from the simplified model are

shown in Fig. 22(a), while the simulation results from the complex model are shown in Fig. 22(b). In

the plots from the complex model, the range of α values is shorter for large N compared to for small N

since a large angle amplitude would cause a collision between the head and the tail of the snake when

N is large. Note also that the joint amplitudes α in the plots from the simplified model are given in

terms of body length units. The plots show a quadratic increase in the forward speed as the amplitude α

increases. This is in accordance with Proposition 22.

Note that the amplitude of the joint motion cannot be increased indefinitely in the complex model.

For sufficiently large α, the relative link velocity components that are tangential to the forward direction

will no longer be negligible, which is assumed in the simplified model of the snake robot. It is therefore

reasonable to expect that the increase in the forward velocity from the complex model will decay for large

α. This decay is slightly seen in the plots in Fig. 22(b), which shows that the increase of the velocity

has a more linear than quadratic characteristic when α becomes large.

C. Relationship between the forward velocity and ω

Proposition 22 states that the average forward velocity of a planar snake robot is proportional to the

angular frequency, ω, of the joint motion. This result was investigated by simulating the snake robot
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(a) Simulation with the simplified model. (b) Simulation with the complex model.

Fig. 22. The forward velocity of the snake robot for different values of α. The number of links N are shown at the top of

each plot.
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Fig. 23. The forward velocity of the snake robot for different values of ω. The number of links N are shown at the top of

each plot.

with different values of ω and calculating the resulting average forward velocity. We considered snake

robots with N = 3, 5, 10, and 20 links, respectively, where the phase shift was δ = 90◦, 50.4◦, 24.1◦,

and 11.5◦, respectively. Furthermore, the amplitude of the joint motion was α = 40◦, 40◦, 30◦, and 10◦,

respectively, in the complex model and α = 5 cm in the simplified model. The simulation results from

the simplified and the complex model are shown in Fig. 23. The linear increase in the forward speed as

the frequency ω increases is clearly present in the plots from both models, which is in accordance with

Proposition 22.

D. Relationship between the forward velocity and δ

The final result stated in Proposition 22 is that the average forward velocity is maximized by the phase

shift δ that maximizes the function kδ. To investigate the validity of this result, we simulated the snake

robot with different values of δ to identify the phase shift that produced the highest forward velocity.

We considered snake robots with N = 3, 5, 10, and 20 links, respectively, where the amplitude of the

joint motion was α = 40◦, 40◦, 30◦, and 10◦, respectively, in the complex model and α = 5 cm in the
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Fig. 24. The forward velocity of the snake robot for different values of δ. The number of links N are shown at the top of

each plot. The vertical dashed line indicates the estimated δ value that, by Proposition 22, maximizes the forward velocity.

simplified model. Furthermore, the angular frequency of the joint motion was ω = 70◦/s in both models.

The simulation results from the simplified and the complex model are shown in Fig. 24, where the δ

value that maximizes kδ is indicated with a vertical dashed line in each plot. The maximum velocity

of each plot in Fig. 24 seems to agree well with the δ value that maximizes kδ, which supports the

prediction in Proposition 22 concerning the phase shift δ that maximizes the average forward velocity of

a snake robot during lateral undulation.

XII. EXPERIMENTAL STUDY: INVESTIGATION OF THE RELATIONSHIPS BETWEEN GAIT PARAMETERS

AND FORWARD VELOCITY

This section presents the results from an experimental investigation of the validity of Proposition 22.

We first describe the experimental setup and then present the experimental results.

A. The snake robot

The snake robot used in the experiments is shown in Fig. 25(a). A detailed description of the internal

components of the robot has been presented in previous literature38. The snake robot consists of 10
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TABLE III

PARAMETERS OF A JOINT MODULE.

Parameter Value

Total weight of a joint module 960 g

Outer diameter 130 mm

Degrees of freedom 2

Max joint travel ±45◦

Max continuous joint torque 4.5 Nm

Max joint speed (no load) 70◦/sec

identical joint modules characterized by the parameters listed in Table III. The articulation mechanism of

a joint module consists of two links that can move in pitch and yaw, respectively. The links are supported

by bearings in a steel ring and have orthogonal and intersecting axes of rotation. The diameter of the

steel ring is 130 mm. Each link is driven by a Hitec servo motor (HS-5955TG) and the angle of the links

are measured with magnetic rotary encoders (AS5043 from austriamicrosystems).

As shown to the left in Fig. 25(c), each joint module of the robot is enclosed by a plastic ring mounted

with 12 plastic wheels. These wheels ensure that the ground friction forces acting on the snake robot

are anisotropic, i.e. that the friction coefficient characterizing the ground friction forces in the normal

(sideways) direction of each joint is larger than the friction coefficient characterizing the ground friction

forces in the tangential (forward) direction of the joint. This property is essential for efficient snake

locomotion on a planar surface and is also present in the model of the snake robot presented in Section

V. Note that the wheels are able to slip sideways, so they do not introduce nonholonomic constraints in

the system.

Each joint module is battery-powered and contains a custom-designed microcontroller card used to

control the joint angles. A microcontroller card (the brain card) located in the head of the snake robot

transmits joint reference angles to all joint modules over a CAN bus running through the robot. The joint

reference angles are calculated on an external computer in accordance with a defined control strategy

and sent to the brain card via a wireless connection based on Bluetooth. The refresh rate for the two

reference angles of each joint module is about 20 Hz. A proportional controller is implemented in the
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microcontroller of each joint module in order to control the link angles in accordance with the reference

angles.

B. The camera-based position measurement system

During the experiments, the snake robot moved on a white horizontal surface measuring about 240 cm

in width and 600 cm in length. This is shown in Fig. 25(b). In order to measure the 2D position of the

snake robot during the experiments, we employed the open source camera tracking software SwisTrack 39.

Three firewire cameras (Unibrain Fire-i 520c) were mounted in the ceiling above the snake robot as shown

in Fig. 25(b). The use of multiple cameras allowed for position measurements over a greater distance

than the area covered by a single camera. The cameras were mounted facing downwards approximately

218 cm above the floor and 132 cm apart. The distance between the cameras was chosen so that there

was a slight overlap between the images from two neighbouring cameras.

SwisTrack was configured to track black circular markers (40 mm in diameter) mounted on the snake

robot as shown to the right in Fig. 25(c). The conversion from the pixel position of a marker to the

real-world position (in cm) was conducted by SwisTrack based on a specific calibration method available

in this software. SwisTrack estimated the maximum position error to be about 1.9 cm and the average

position error to be about 0.6 cm. Each firewire camera was sampled at 15 frames per second. We ran

three separate instances of SwisTrack in order to process data from all three cameras and developed

our own software in order to merge the output from each SwisTrack instance into the final position

measurement of the snake robot. The position of the single marker mounted on the foremost module of

the robot was used to represent the measured position of the snake.

C. Layout of the experiment

The aim of the experiment was to investigate the validity of Proposition 22, i.e. to investigate the

relationship between the average forward velocity and the controller parameters of the snake robot during

lateral undulation. During the experiment, the joint reference angles were calculated on an external

computer and sent to the snake robot through the wireless Bluetooth connection. The reference angles

corresponding to the horizontal joint motion of the robot were calculated according to (6) with N = 10

links. The reference angles corresponding to the vertical joint motion were set to zero. The resulting

position of the robot was recorded by the camera system and the average forward velocity was calculated

after each run as the travelled distance divided by the travel time.
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(a) The snake robot used in the experiments.

(b) Three cameras mounted in the ceiling measured

the position of the snake robot on the horizontal

surface.

(c) Left: The wheels installed around each joint

module to give the robot anisotropic ground friction

properties. Right: The camera markers mounted to

the robot.

Fig. 25. The experimental setup.
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Fig. 26. A typical plot of the measured position of the snake robot during lateral undulation. The distance between the markers

pstart and pstop represents the distance travelled by the snake robot.

A typical plot of the measured position of the snake robot from a single run is shown in Fig. 26,

which shows that the foremost joint module moves from side to side along the X direction, but has a

steady increase in the position along the Y direction. The markers pstart and pstop in the plot have been

placed near the beginning and near the end of the dataset, respectively, at the approximate center point

of the cyclic sideways motion of the snake. We used the distance between these two markers to represent

the distance travelled by the snake robot and calculated the travel time as the difference in sample time

between the position measurements corresponding to the two markers. The average forward velocity of

the snake robot was then calculated as

v =

√
(pstop,x − pstart,x)

2 + (pstop,y − pstart,y)
2

tstop − tstart
(83)

When the duration, tstop − tstart, of a single run of the robot is long, we conjecture that the accuracy of

this velocity estimate will be sufficient for investigating the validity of Proposition 22. We developed a

special software based on Matlab in order to easily identify the markers pstart and pstop in the position

plot from each run of the robot.

D. Experimental results

The following presents the results from the experimental investigation of the validity of Proposition

22.
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Fig. 27. A plot of the measured (solid) and the corresponding reference angles (dashed) of joint 3 and joint 7 during lateral

undulation.

1) Performance of the joint angle controller: In order to show that the joint modules were able to

track their joint reference angles, we provide in Fig. 27 a plot of the measured and the corresponding

reference angles of two arbitrarily chosen joints (joint 3 and joint 7) during a run of lateral undulation

with the snake robot. The plot indicates that the tracking of the joint reference angles is satisfactory.

2) Relationship between the forward velocity and α: Proposition 22 states that the average forward

velocity of a planar snake robot is proportional to the squared amplitude of the sinusoidal joint motion,

α2. We investigated the validity of this result by running the snake robot with different values of α and

calculating the resulting average forward velocity according to (83). For each value of α, we ran the snake

robot three times in order to get multiple velocity measurements. The remaining controller parameters

were set to ω = 80◦/s, δ = 25◦ and φo = 0◦. Fig. 28 presents the experimental results together with a

dashed line between the average of the three velocities measured for each value of α. The plot shows

a quadratic increase in the forward speed v as the amplitude α increases. This is in accordance with

Proposition 22.

3) Relationship between the forward velocity and ω: Proposition 22 states that the average forward

velocity of a planar snake robot is proportional to the angular frequency, ω, of the joint motion. This

result was investigated by running the snake robot with different values of ω and calculating the resulting

average forward velocity according to (83). For each value of ω, we ran the snake robot three times in

order to get multiple velocity measurements. The remaining controller parameters were set to α = 30◦,

February 26, 2013 DRAFT



62

Fig. 28. Experimental result. The average forward velocity of the snake robot from three trials at different values of α and

with ω = 80◦/s, δ = 25◦, and φo = 0◦.

Fig. 29. Experimental result. The average forward velocity of the snake robot from three trials at different values of ω and

with α = 30◦, δ = 25◦, and φo = 0◦.

δ = 25◦ and φo = 0◦. Fig. 29 presents the experimental results together with a dashed line between the

average of the three velocities measured for each value of ω. The plot clearly shows a linear increase in

the forward speed v as the frequency ω increases. This is in accordance with Proposition 22.
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Fig. 30. Experimental result. The average forward velocity of the snake robot from eight trials at different values of δ and

with α = 30◦, ω = 80◦/s, and φo = 0◦.

4) Relationship between the forward velocity and δ: The final result stated in Proposition 22 is that the

average forward velocity is maximized by the phase shift δ that maximizes the function kδ. To investigate

the validity of this result, we ran the snake robot with different values of δ to identify the phase shift

that produced the highest forward velocity. For each value of δ, we ran the snake robot eight times in

order to get multiple velocity measurements. The remaining controller parameters were set to α = 30◦,

ω = 80◦/s and φo = 0◦. Fig. 30 presents the experimental results together with a dashed line between

the average of the eight velocities measured for each value of δ. The δ value that maximizes kδ for

N = 10 links is δ = 24.1◦, and is indicated with a vertical dashed line in Fig. 30. The plot indicates

that the phase shift δ = 25◦ produced the highest forward velocity. This agrees well with the phase shift

δ = 24.1◦ that maximizes kδ. The average velocity of the eight trials at δ = 25◦ was slightly below 4

cm/s. In summary, the experimental results indicate that Proposition 22 provides a reasonable prediction

of the phase shift, δ, that maximizes the average forward velocity of a planar snake robot during lateral

undulation.

XIII. CONCLUSIONS

This paper has presented several theoretical results aimed at contributing to the understanding of snake

robot locomotion. The first contribution of the paper has been a simplified model of lateral undulation

dynamics developed for control design and stability analysis purposes. The basic idea behind the model is
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to capture only the essential properties of snake robot dynamics, i.e. the features that determine the overall

behaviour of the snake. While previous snake robot models describe the body shape dynamics in terms

of the rotational motion of the links, which generally results in complex equations of motion, the model

proposed in this paper describes the body shape dynamics in terms of the translational motion of the links,

which significantly simplifies the equations of motion. There are several limitations of this modelling

approach, which have been elaborated in the paper. In particular, the model is only quantitatively similar

to conventional snake robot models as long as the link angles are limited. Moreover, the rotation dynamics

of the snake robot is characterized by two general parameters which must be set appropriately in order

for the rotational motion to be quantitatively valid. However, since the model was developed to directly

capture qualitative properties of snake robot dynamics, we conjecture that the model in general will be

qualitatively similar to conventional snake robot models.

The second contribution has been an analysis of the simplified model that showed that any asymp-

totically stabilizing control law for the snake robot to an equilibrium point must be time-varying.

Furthermore, the analysis showed that the snake robot (with four links) is strongly accessible from

almost any equilibrium point, except for certain singular configurations, and that the robot does not

satisfy sufficient conditions for small-time local controllability (STLC). The authors have previously

arrived at similar conclusions by analysing a conventional model of a snake robot, which supports the

conjecture that the simplified model proposed in this paper captures the essential part of the dynamics

of planar snake locomotion.

The third contribution has been an investigation of the velocity dynamics of a snake robot during lateral

undulation based on averaging theory that proved that the average velocity of the robot will converge

exponentially fast to a steady state velocity. Explicit analytical relations between the steady state velocity

and the amplitude, frequency, phase shift and offset of the joint motion during lateral undulation were

given. Furthermore, the averaging analysis revealed a set of fundamental relationships between the gait

parameters of lateral undulation and the resulting forward velocity of the snake robot. In particular,

the derived properties state that the average forward velocity of a snake robot 1) is proportional to the

squared amplitude of the sinusoidal motion of each joint, 2) is proportional to the angular frequency of

the sinusoidal motion of each joint, 3) is proportional to a particular function of the constant phase shift

between the joints, and 4) is maximized by the phase shift between the joints that also maximizes the

particular phase shift function.

The paper has presented simulation results and results from experiments with a physical snake robot

which supported the theoretical findings.
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