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Abstract 

In this study, we follow the work of Tvergaard & Needleman (1995), Tvergaard & 

Needleman (1997) and Needleman & Tvergaard (1998) and present the numerical 

implementation and some initial applications of a non-local Gurson-Tvergaard-

Needleman (GTN) model for explicit finite element (FE) analysis. The delocalization 

relates to the damage mechanism and is incorporated in terms of an integral condition 

on the rate of change of the porosity. In order to demonstrate the mesh independence 

during all stages of ductile damage and fracture, several material test specimens have 

been simulated until full fracture using different mesh sizes. For comparison purposes, 

results are also obtained for the corresponding local GTN model in all cases. The effect of 

the material characteristic length on the ductile damage and fracture behavior and on the 

mesh sensitivity of the results is discussed. It is shown that simulation results obtained 

in all stages of the ductile fracture process, including void growth, fracture initiation by 

coalescence and crack propagation all the way to a fully fractured specimen, are mesh 

independent from a certain ratio of mesh size relative to the material characteristic 
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length, provided the non-local integral is evaluated on the current configuration. This 

ratio is unique for each individual specimen simulated as it depends on the spatial 

gradients of the porosity and the material parameters adopted for the problem at hand. 

It is shown that excessive averaging at large deformations occurs if the non-local integral 

is evaluated on the reference configuration, i.e., without updating the element interaction 

matrix resulting from the discretization of the non-local integral. 
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1 Introduction 

The study of crack initiation and propagation is important for the assessment of the 

integrity of engineering metal structures. Unfortunately, major challenges are faced when 

applying numerical predictive tools for the simulation of the ductile fracture process. In 

ductile fracture, which is the most dominant failure mode in metals and alloys at room 

temperature and above, the main damage mechanism is nucleation, growth and 

coalescence of microscopic voids at inclusions and second-phase particles. A large 

number of predictive computational models have been proposed in the literature to 
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provide a physical description of these mechanisms, see e.g. the reviews by Benzerga & 

Leblond (2010) and Pineau et al. (2016) and references therein for in-depth descriptions 

and discussions of these models. 

The perhaps most popular ductile damage model was proposed by Gurson (1977), where 

the damage mechanism is regarded through a constitutive variable representing the 

porosity (or void volume fraction), denoted 𝑓𝑓. The evolution of the porosity predicted by 

the Gurson model follows as a direct consequence of the requirement of mass 

conservation of a porous rigid plastic material assuming plastic incompressibility. 

Accordingly, material degradation is in a general sense characterized by the presence and 

evolution of microvoids. The fact that the Gurson model predicts material degradation 

implies that it is classified as a “coupled” damage model, i.e., the “damage” parameter (in 

form of the porosity 𝑓𝑓) is involved in the constitutive equations and decreases the stress-

carrying capacity of the material as it evolves, which eventually results in strain softening. 

The original Gurson model was only able to predict the void growth phase. Chu & 

Needleman (1980) proposed void nucleation models controlled by the local stress or 

plastic strain. The original Gurson model was subsequently extended by Tvergaard and 

Needleman, first by the introduction of the 𝑞𝑞𝑖𝑖 parameters (Tvergaard, 1981, 1982) and 

then by modifying the yield condition to incorporate coalescence of microvoids 

(Needleman & Tvergaard, 1984; Tvergaard & Needleman, 1984), in order to be in better 

agreement with unit cell simulations and experimental measurements. The model with 

these modifications included is denoted the Gurson-Tvergaard-Needleman (GTN) model. 

The GTN model has since been the target of several extensions, some more universally 

approved than others. An important contribution is the Lode parameter dependent term 

in the void evolution proposed by Nahshon & Hutchinson (2008), to resolve the limitation 
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of the GTN model to correctly predict failure under low stress triaxiality. A similar 

extension to the GTN model that incorporates Lode parameter dependency motivated by 

unit cell analyses was proposed by Dæhli et al. (2017). Other notable extensions 

incorporate different characteristics of the voids, like void shape, orientation and 

rotation, see e.g. the works of Gologanu et al. (1993), Pardoen & Hutchinson (2000), 

Benzerga et al. (2004) and Keralavarma & Benzerga (2010).  

Coupled ductile damage models such as the GTN model have been, and are still, widely 

used for predicting the load-deformation behavior and the fracture resistance of 

structural components. The GTN model is perhaps the most popular model describing 

ductile damage by microvoid evolution and has been applied to most scenarios involving 

ductile failure. A few selected recent applications of the GTN model found in the literature 

involve ductile fracture predictions (see e.g. Teng et al. (2017), Gholipour et al. (2019), 

Bahrami Ghalehjoogh & Hoseini (2018), and Jiang et al. (2016)), damage evaluation for 

hot forming processes (Imran & Bambach, 2018), and simulation of ductile crack growth 

(e.g. Oh et al. (2017) and Qiang & Wang (2019)). 

Constitutive models in which the evolution of material damage at a point is a function of 

the stress and strain fields at the same point, i.e., the material law is independent of the 

surrounding material points, are called local models. Most numerical studies of failure in 

ductile materials have been based on such local constitutive models, which do not 

incorporate a material length scale. The GTN model and its extensions mentioned above 

are examples of local constitutive models. 

The predicted initiation and propagation of a crack by a coupled model always takes place 

in regions where the damage localize. Local constitutive models with coupled damage are 

well known to exhibit an inherent mesh sensitivity, since the softening material behavior 
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will give localized damage in regions as narrow as possible within the mesh resolution. 

This is a result of spurious mesh dependence of the FE solution due to the loss of ellipticity 

of the equilibrium equations in the softening regime. The dissipated energy converges to 

zero for infinitesimal element size, which contradicts the physical observation that both 

the localization width and the energy dissipated by fracture are material properties (see 

e.g. Needleman (1988)). As a result, the finite element mesh size becomes an additional 

model parameter, which influences all other model parameters. Thus, it is generally not 

possible to use the same damage parameters in FE simulations of the same problem with 

different element sizes. 

Despite the significant advances in the development of coupled ductile damage models, 

such as the GTN model, most of the proposed extensions have been conceived under the 

hypothesis of a local continuum, i.e., that the material behavior is independent of the 

surrounding material points. Some contributions in the literature have tried to tackle the 

issue of localization and the resulting mesh sensitivity of local strain-softening damage 

models, by aiming to provide mesh-insensitive constitutive models. In 1988, the first non-

local plasticity model intended to serve as a localization limiter was proposed by Bazant 

& Lin (1988). In non-local material models, the softening state of a material point does 

not depend on the deformation history of this point only. Rather, a non-local state 

variable is introduced as a weighted average of the local states of the surrounding points.  

Non-local modifications that can be applied for strain-softening damage models may be 

divided into two main categories, namely integral and gradient types. Considering 

specifically non-local extensions of the GTN model, examples of integral-type numerical 

implementations can be found in e.g. Leblond et al. (1994), Tvergaard & Needleman 

(1995), Enakoutsa et al. (2007), and Andrade et al. (2014). Examples of gradient-type 
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numerical implementations of the non-local GTN model can be found in e.g. Ramaswamy 

& Aravas (1998), Reusch et al. (2003), Hakansson et al. (2006), Linse et al. (2012), Hütter 

et al. (2013), and Zybell et al. (2014). What is common between the different types of 

numerical implementation of the GTN model, is that all non-local modifications aim for a 

minimization of mesh dependence through direct or indirect regularization of the 

damage variable, namely the porosity 𝑓𝑓. 

As mentioned by Nguyen et al. (2014), the interest generated by the non-local description 

of ductile crack propagation is only relatively recent (see e.g. the work by Engelen et al. 

(2003)) and the attention is mainly devoted to provide physically valid (e.g. Andrade et 

al. (2011) and Peerlings et al. (2012)) and numerically efficient models (e.g. Belnoue et 

al. (2010) and Seabra et al. (2013)). Although the interest is rather recent, some 

successful applications of the non-local description of ductile crack initiation and 

propagation have been reported in the literature. As an example, Linse et al. (2012) 

extended the GTN model using an implicit gradient formulation and were able to model 

mesh-independent crack initiation. They chose to modify the GTN model by replacing the 

dilatational plastic strain rate by its non-local spatial average in the evolution equation of 

the existing voids, all other equations were left unaltered.  

Hütter et al. (2013) used a slightly modified version of the non-local GTN model proposed 

by Linse et al. (2012), and pointed out problems in handling full material failure. 

Problems arise if the evolution of the localization zone is to be simulated up to the 

complete loss of stress-carrying capacity. Fully failed Gauss points in the finite element 

formulation still contribute in an implicit framework, as pointed out by Geers et al. 

(1998), Simone et al. (2003) and Peerlings et al. (2002). In many studies (e.g. Samal et al. 

(2008), Seidenfuss et al. (2011), and Reusch et al. (2008)), the local values are fixed at the 
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moment of failure, although the fully failed zone still has to be solved for equilibrium. 

Linse et al. (2012) tried to introduce a new surface with trivial Neumann boundary 

conditions where failure occurred, but faced severe numerical problems. Hütter et al. 

(2013) expanded on the work by Linse et al. (2012) by introducing a Dirichlet boundary 

condition for the fully failed material, and were as a result able to model larger amounts 

of crack propagation than in comparable preceding studies.  

The objective of the work herein is to follow up on the assessment of delocalization 

methods for coupled damage models, focusing on crack initiation, propagation and full 

fracture. Even though the idea of introducing a material length scale into the constitutive 

equations was first mentioned more than 30 years ago, the development, application and 

assessment of non-local GTN models is still an active field of research. We build further 

upon the non-local model proposed by Tvergaard & Needleman (1995) which is of the 

integral type, regularizing the rate of change of the porosity. The explicit FE method is 

chosen in order to avoid the convergence problems at complete loss of stress-carrying 

capacity discussed by Hütter et al. (2013) amongst others. The integral type non-local 

formulation further has the advantage of being completely defined on the material level, 

which makes this approach particularly suitable for explicit FE methods. Many of the 

advantages of the constitutive modelling at finite strains within the local framework can 

be extended in a straight-forward manner to the non-local case, retaining the 

applicability of the GTN model. 

Our implementation of the non-local GTN model differs from previous work in the 

literature in the following: 

1. A new form of a staggered update of the non-local porosity relevant for explicit FE 

analyses is proposed and validated. 
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2. The non-local porosity is updated also for elements in the elastic domain, in order 

to avoid a decreasing size of the plastic zone as the mesh is refined. The elastic 

elements are checked for yielding in the subsequent time step, and if plasticity 

occurs, consistency is enforced through the return mapping algorithm. 

3. The element interaction matrix is also updated in each time step based on the 

current configuration, in contrast to a fixed interaction matrix throughout the 

simulation most commonly applied in the literature (see e.g. Leblond et al. (1994), 

Tvergaard & Needleman (1995), Tvergaard & Needleman (1997), Needleman & 

Tvergaard (1998), Enakoutsa (2014) and Enakoutsa et al. (2007)). 

In the present study, our proposed non-local GTN model is applied to ductile fracture of 

typical material test specimens, and emphasis is put on the predicted global response and 

the evolution of the porosity and equivalent plastic strain fields in the vicinity of the 

propagating crack. 

2 Constitutive modeling 

2.1 Local GTN model 

The non-local extension applied here consists of minor, but important, changes to the 

local GTN damage model, and for completeness, the main equations of the local GTN 

model are summarized in the following.  

The GTN model is formulated here using a corotational stress formulation with the 

assumption of small elastic strains. Linear hypoelasticity is adopted to describe the elastic 

behavior of the isotropic material, which is defined by Young’s modulus 𝐸𝐸 and Poisson’s 

ratio 𝜈𝜈.  The yield condition of the GTN model is defined as: 
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where 𝜎𝜎eq = �3𝛔𝛔′:𝛔𝛔′/2 is the von Mises equivalent stress, 𝛔𝛔′ being the deviatoric part of 

the Cauchy stress tensor 𝛔𝛔, 𝑓𝑓∗ is the effective porosity, and 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 are the Tvergaard 

parameters (Tvergaard, 1981, 1982). Furthermore, 𝜎𝜎M is the flow stress of the matrix 

material, defined by the extended Voce rule 𝜎𝜎M = 𝜎𝜎0 + ∑ 𝑄𝑄𝑖𝑖(1 − exp(−𝐶𝐶𝑖𝑖𝑝𝑝))3
𝑖𝑖=1 , where 𝜎𝜎0 

is the initial yield stress, 𝑄𝑄𝑖𝑖 and 𝐶𝐶𝑖𝑖 are hardening parameters, and 𝑝𝑝 is the equivalent 

plastic strain. We use, here, the typical convention that 𝑞𝑞3 ≡ 𝑞𝑞12. 

The modified porosity 𝑓𝑓∗(𝑓𝑓) accounts for the effects of rapid void coalescence at failure 

and is taken to have the form proposed by Tvergaard & Needleman (1984): 

 𝑓𝑓∗(𝑓𝑓) = �
𝑓𝑓, 𝑓𝑓 < 𝑓𝑓C

𝑓𝑓C +
𝑓𝑓U∗ − 𝑓𝑓C
𝑓𝑓F − 𝑓𝑓C

(𝑓𝑓 − 𝑓𝑓C), 𝑓𝑓 ≥ 𝑓𝑓C
  (2) 

where 𝑓𝑓C is the critical porosity. When the porosity reaches this critical value, void 

coalescence occurs and the void growth accelerates until 𝑓𝑓F is reached, which is the total 

porosity at macroscopic failure. Finally, 𝑓𝑓U∗ = 𝑓𝑓∗(𝑓𝑓F) is the effective void volume at 

macroscopic failure, which equals 𝑓𝑓U∗ = 1/𝑞𝑞1 for 𝑞𝑞3 ≡ 𝑞𝑞12. 

As for metal plasticity, the associated flow rule is adopted to define the plastic rate-of-

deformation tensor 𝐃𝐃p, which can be written as 

 𝐃𝐃p =  𝜆̇𝜆  
𝜕𝜕Φ
𝜕𝜕𝝈𝝈

 (3) 

where 𝜆̇𝜆 is the plastic multiplier. The flow stress of the matrix material 𝜎𝜎M in the yield 

condition is a function of the equivalent plastic strain 𝑝𝑝 (through the extended Voce rule), 

whose evolution equation reads 
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 𝑝̇𝑝 =
𝛔𝛔:𝐃𝐃p

(1 − 𝑓𝑓)𝜎𝜎M
 (4) 

The porosity 𝑓𝑓 evolves due to growth of existing voids, 𝑓𝑓Ġ, nucleation of additional voids, 

𝑓𝑓Ṅ, and void softening in shear, 𝑓𝑓Ṡ (introduced by Nahshon & Hutchinson (2008)): 

 𝑓𝑓̇ = 𝑓𝑓Ġ + 𝑓𝑓Ṅ + 𝑓𝑓Ṡ (5) 

where 

 𝑓𝑓Ġ = (1 − 𝑓𝑓)tr𝐃𝐃p (6) 

 𝑓𝑓Ṅ = 𝐴𝐴𝑁𝑁 𝑝̇𝑝 
(7) 

 𝑓𝑓Ṡ = 𝑘𝑘S𝑓𝑓 �1 − �
27𝐽𝐽3
2𝜎𝜎eq3

�
2

�
𝛔𝛔′:𝐃𝐃p

𝜎𝜎eq
 (8) 

In these equations, 𝐴𝐴𝑁𝑁 is the constant nucleation rate, 𝐽𝐽3 = det(𝛔𝛔′) is the third deviatoric 

stress invariant, and 𝑘𝑘S is a parameter governing the void softening in shear. When void 

softening in shear is introduced, 𝑓𝑓 should be considered as an effective porosity or rather 

as a damage variable (Nahshon & Hutchinson, 2008), but, for simplicity, it will still be 

denoted porosity in this study.  

2.2 Non-local GTN model 

The establishment of a non-local constitutive model starts with the definition of the non-

local quantity. Several variables may be formulated in a non-local way in order to 

regularize the strain-softening behavior present in coupled damage models. For the GTN 

model, the softening mechanism is introduced through the local porosity 𝑓𝑓, and it is 

reasonable to regularize this variable in order to avoid excessive and unlimited 

localization.  
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The non-local GTN model is obtained by substituting 𝑓𝑓 by the non-local porosity 𝑓𝑓 ̅in all 

equations where it appears in Section 2.1. Adopting the non-local formulation of integral 

type, we define the non-local porosity 𝑓𝑓 ̅in a material point currently at 𝒙𝒙 by the non-local 

evolution equation: 

 𝑓𝑓̅̇(𝒙𝒙) =  
1

𝑊𝑊(𝒙𝒙)
�𝑤𝑤(𝒙𝒙 −  𝒚𝒚) 𝑓̇𝑓(𝒚𝒚)𝑑𝑑𝑑𝑑
𝑉𝑉

 (9) 

where 𝑉𝑉 is the current volume, while 𝒙𝒙 and 𝒚𝒚 are position vectors. The local rate of change 

of the porosity 𝑓𝑓̇ is still calculated by means of Equations (5)-(8), but with 𝑓𝑓 replaced by 

𝑓𝑓.̅ The weight function 𝑤𝑤 is defined as proposed by Tvergaard & Needleman (1995): 

 𝑤𝑤(𝑧𝑧) =  �
1

1 + �𝑧𝑧𝐿𝐿�
𝑝𝑝w�

𝑞𝑞w

 (10) 

where 𝑧𝑧 = √𝒛𝒛 ⋅ 𝒛𝒛 with 𝒛𝒛 = 𝒙𝒙 − 𝒚𝒚 is the distance between the neighboring material points 

in the current configuration, 𝐿𝐿 > 0 is the material characteristic length, 𝑝𝑝w = 8 and 𝑞𝑞w =

2 are constants defining the shape of the weight function. This results in a weight close to 

unity if 𝑧𝑧 < 𝐿𝐿, and a weight close to zero if 𝑧𝑧 > 𝐿𝐿, with a narrow transition region. The 

function 𝑊𝑊(𝒙𝒙) is defined as:  

 𝑊𝑊(𝒙𝒙) = �𝑤𝑤(𝒙𝒙 − 𝒚𝒚)𝑑𝑑𝑑𝑑
𝑉𝑉

 (11) 

The local formulation corresponds to the limit 𝐿𝐿 → 0. With 𝐿𝐿 > 0, 𝑓𝑓̅̇ ≡ 𝑓𝑓̇ if and only if 𝑓𝑓̇ is 

spatially uniform. Hence, non-locality is associated with spatial gradients in 𝑓𝑓̅̇.  
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2.3 Numerical Considerations 

We have implemented the non-local GTN model as a user-material subroutine for the 

explicit solver of the commercial FE code Abaqus adapting the return mapping algorithm 

proposed by Aravas (1987). In a local explicit FE analysis, the stress state is computed at 

each Gauss point separately, and only the strain increment and the values of the internal 

variables at the previous time step are needed in the stress update (assuming proper 

rotation of the stress tensor due to spin). However, when using a non-local constitutive 

model, the spatial location of the material point plays a major role in the stress update. In 

practice, this means that the non-local averaging integral needs to be spatially discretized, 

which leads to an element interaction matrix giving the contribution from neighboring 

elements when updating the non-local variable. In the present implementation of the 

non-local GTN model, the element interaction matrix is updated in each time step based 

on the current geometry. 

In explicit FE analyses in which the strain increments are assumed to be very small, 

simplifications are justifiable in the incremental update of the non-local variable. 

Tvergaard & Needleman (1995) introduced a scaling parameter 𝜅𝜅𝑛𝑛 = Δ𝑓𝑓𝑛̅𝑛/Δ𝑓𝑓𝑛𝑛, and 

defined the incremental update of the non-local porosity as 

 Δ𝑓𝑓𝑛̅𝑛+1  ≈
Δ𝑓𝑓𝑛̅𝑛
Δ𝑓𝑓𝑛𝑛

Δ𝑓𝑓𝑛𝑛+1 = 𝜅𝜅𝑛𝑛Δ𝑓𝑓𝑛𝑛+1 (12) 

where the index indicates the time step, and Δ(∎) is the increment in the quantity (∎) 

during the actual time step. The problem with this update is that even though 𝜅𝜅𝑛𝑛 is fixed 

from the previous time increment, the increment of the local porosity Δ𝑓𝑓𝑛𝑛+1 is 

unconstrained and calculated to obtain local consistency in the return mapping 

algorithm, which necessarily results in slightly different non-local porosity fields with 
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mesh refinement. The result is that although the obtained global response certainly is 

regularized, it is not necessarily mesh independent. Tvergaard & Needleman (1995) 

applied the non-local GTN model in simulations of a compact tension specimen in their 

following work (Needleman & Tvergaard, 1998), and reported problems in getting mesh-

independent predictions of the crack initiation and subsequent crack propagation. 

As an alternative, we thus propose a staggered update of the non-local porosity relevant 

for explicit FE analyses, namely: 

 𝑓𝑓𝑛̅𝑛+1 = 𝑓𝑓𝑛̅𝑛 + Δ𝑓𝑓𝑛̅𝑛, (13) 

where Δ𝑓𝑓𝑛̅𝑛 is calculated according to Equations (9)–(11) using the local increments Δ𝑓𝑓𝑛𝑛 

and the geometry of the previous timestep. It follows that 𝑓𝑓𝑛̅𝑛+1 is treated like a constant 

in the stress-update algorithm. It will be shown in the subsequent examples that this 

update scheme provides mesh-independent solutions for crack initiation and 

propagation. To obtain mesh independence, the non-local porosity has to be updated also 

for elements in the elastic domain. The elastic elements are checked for yielding in the 

subsequent time step, and if plasticity occurs, consistency is enforced through the return 

mapping algorithm. Crack propagation is described by element erosion, and deleted 

elements do not contribute to the non-local integral.   

Whereas the element interaction matrix is here updated in each time step based on the 

current configuration, several studies have applied a fixed element interaction matrix 

calculated once over the initial configuration. Henceforth, we will denote the latter for a 

fixed nonlocal method and the former for an updated nonlocal method. As we will discuss 

in the last numerical example, the use of a fixed element interaction matrix is a probable 

reason for problems with excessive regularization reported in the literature, see e.g. 
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Leblond et al. (1994), Tvergaard & Needleman (1995), Tvergaard & Needleman (1997), 

Needleman & Tvergaard (1998), Enakoutsa (2014) and Enakoutsa et al. (2007). To 

reduce the storage need and computation time, only neighboring elements within a cut-

off radius of 1.3𝐿𝐿 from an element are included in the element interaction matrix, as the 

contributions from elements outside this radius are deemed negligible. While the 

contributions from each of the neighboring elements are updated at each time step, the 

list of neighboring elements is updated approximately 50 times throughout a simulation. 

It was found that increasing the cut-off radius further had basically no effect (differences 

of 1e-3 to 1e-4 in 𝑓𝑓) on the obtained results and the same holds for decreasing the interval 

between the updates of the neighbor list. We note that these numerical artefacts to reduce 

the storage need and computation time can be rather problem dependent.   

 

 

3 Numerical Results  

The explicit solver of the commercial FE code Abaqus is applied in the numerical 

simulations in order to describe the damage evolution and crack propagation all the way 

to a fully fractured specimen. When running quasi-static simulations using an explicit FE 

code, it is very important to keep the kinetic energy sufficiently low. In our simulations, 

all specimens were assigned a scaled density resulting in the same amount of (negligible) 

kinetic energy across different mesh resolutions. In the following examples, results from 

simulations of several material tests obtained with the local and non-local GTN models 

described above are compared. In the last example (i.e., the 3D simulation of a tensile test 

on a cylindrical specimen), we also demonstrate the differences that occur by evaluating 
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the non-local integral on the reference configuration, using a constant element 

interaction matrix calculated once at the beginning of the simulation, or on the current 

configuration. All data presented are extracted from a fully fractured specimen, and in all 

but the last example shown on the initial configuration for simplicity. Except in the first 

numerical examples, the hardening parameters are representative for an X65 steel alloy, 

while the fracture parameters are selected for illustrative purposes.  

3.1 Shear banding in a perfectly plastic material 

In the first example, the formation of a shear band in a plane-strain tension specimen with 

a geometrical imperfection is considered. The specimen geometry, taken from Seupel et 

al. (2018), is given in Figure 1, and the material parameters are compiled in Table 1. The 

material parameters were chosen in order to trigger an inclined shear band. Perfect 

plasticity (i.e., a non-hardening material) is assumed to more readily develop the shear 

band, and it will be illustrated that perfect plasticity results in slower convergence when 

the porosity 𝑓𝑓 is the only variable that is regularized. In all the other examples, strain 

hardening is incorporated into the material behavior, and convergence of the global 

response is significantly faster.  
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Figure 1. Plane-strain tension specimen with geometrical imperfection to trigger an inclined 
shear band for a non-hardening matrix material. 

 

 

Table 1. Material parameters used in the simulation of shear banding under plane-strain tension. 

Elasticity and yielding 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 

210 0.3 400 
Porous plasticity 

𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑓𝑓0 𝑓𝑓C 𝑓𝑓F 𝑘𝑘𝑆𝑆 
1.5 1.0 2.25 0.025 0.04 0.12 1.4 
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Figure 2. Global response of the plane-strain tension specimen obtained in simulations using 
the local and non-local GTN model for a non-hardening matrix material, where 𝑏𝑏𝐸𝐸  is the 

element width and 𝐿𝐿 is the material characteristic length. 
 

Figure 2 shows the global response of the plane-strain tension specimen in simulations 

with the local and non-local Gurson model upon mesh refinement, 𝑏𝑏E being the mesh size 

and 𝐿𝐿 the material characteristic length. The normalized force is calculated as 𝐹𝐹/(𝜎𝜎0𝐴𝐴0), 

where 𝐹𝐹 is the resultant force and 𝐴𝐴0 is the initial minimum area of the specimen, i.e., 

measured at the height of the center of the geometrical imperfection. The normalized 

displacement is defined as 𝑢𝑢/𝐻𝐻0, where 𝑢𝑢 is the prescribed displacement and 𝐻𝐻0 is the 

initial height of the specimen. Local and non-local global responses for four uniform 

meshes are simulated, ranging from 14 elements to 112 elements across the width of the 

specimen. In Figure 2, the red curves labeled ‘local’ indicate that the local GTN model (i.e., 

the material characteristic length 𝐿𝐿 is equal to zero) is used, whereas the blue curves 

labeled ‘non-local’ designate that the non-local GTN model is used. The material 

characteristic length 𝐿𝐿 is then kept constant with successive mesh refinements. The 

material is modelled with void coalescence at 𝑓𝑓C and ultimately element erosion when the 

porosity has reached 0.98𝑓𝑓F. The decrease in load-carrying capacity all the way down to  
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𝐹𝐹 ≈ 0.2𝜎𝜎0𝐴𝐴0 in Figure 2 is due to void coalescence, while the final drop down to zero is 

caused by element erosion and crack propagation. The local simulations are clearly very 

mesh sensitive, while the non-local simulations evidently converge towards a mesh-

insensitive response. It is up for discussion whether the finest mesh has fully converged 

or not, but it is apparent from the trend shown in Figure 2 that the next mesh refinement 

would have been practically identical to the response predicted for 𝑏𝑏E/𝐿𝐿 = 1/16. The 

𝑏𝑏E/𝐿𝐿-ratio needed to obtain a converged non-local (i.e., fully mesh-independent) 

response, will depend on the gradients of the porosity in the problem at hand, and as will 

be shown in the next example, strain hardening will result in significantly faster 

convergence. 
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Figure 3. Local (upper row) and non-local (lower row) porosity fields for successive mesh 

refinements from the simulations of shear banding in the plane-strain tension specimen for a 
non-hardening matrix material. 

 

Figure 3 shows plots of the porosity, namely 𝑓𝑓 in local simulations and 𝑓𝑓 ̅in non-local 

simulations, for a fully fractured specimen on the undeformed quadrilateral mesh. In 

each simulation, the porosity is plotted at the termination point of the computed global 

force vs displacement curves shown in Figure 2. In the local simulations, the shear band 

width is clearly determined by the mesh size. In the non-local simulations on the other 

hand, the shear band width is mesh insensitive, and rather determined by the 

incorporated material characteristic length. There are significant gradients in the strain 

and porosity across the specimen, and the resolution of these gradients improves with 

increasing mesh refinement. The good agreement between the predicted distributions 

of the non-local porosity in the three finest meshes when using the non-local GTN model 

is evident. This finding implies that a converged distribution of the non-local porosity is 

obtained already at 𝑏𝑏E/𝐿𝐿 = 1/4.  
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Figure 4. Local (upper row) and non-local (lower row) equivalent plastic strain fields for 
successive mesh refinements from the simulations of shear banding in the plane-strain 

tension specimen for a non-hardening matrix material. 
 

Figure 4 shows plots of the equivalent plastic strain 𝑝𝑝 for a fully fractured specimen on 

the undeformed quadrilateral mesh. In the local simulations, the equivalent plastic strain 

localizes as the mesh is refined in a similar way as the porosity. In the non-local 

simulations, the equivalent plastic strain increases markedly in the center of the shear 

band as the mesh is refined, whereas the width of the plastic zone decreases more slowly. 

The reason for this lack of convergence is the combination of a non-hardening matrix 

material with regularization only of the rate of change of the porosity.  This results in 

significantly slower convergence of the global response compared to simulations with 

strain hardening, as will be demonstrated in all succeeding examples.  
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Figure 5. Distributions of the porosity across the shear band in the plane-strain tension 
specimen from local (left) and non-local (right) simulations for a non-hardening matrix 

material. 
 

Figure 5 presents the distribution of the porosity across the shear band with mesh 

refinement as predicted by the local and non-local GTN model. The values are shown 

along a vertical section through the middle of the specimen. The peak values are equal to 

0.98𝑓𝑓F, at which element erosion occurs. The shear band in the simulations with the local 

GTN model lies along a 45 degree line, which is the reason for the band width of two 

elements at failure: any vertical section through a rectangular quadrilateral mesh 

contains two failed elements if the shear band is to follow a 45 degree angle, as the crack 

must propagate through a horizontal and then a vertical neighbor element successively. 

The strong sensitivity of the band width on the mesh resolution in the simulations with 

the local GTN model is evident. As already shown in Figure 3, the width of the band is 

determined by the element size in the local simulations, and for the most refined mesh, 

almost the entire specimen undergoes purely elastic deformation.  

As the mesh is refined in the non-local simulations, it is interesting to note not only the 

convergence of the spatial distribution of the porosity, but also that the width of the crack 

propagation converges as well, as illustrated by the number of elements that reach 𝑓𝑓 =

0.98𝑓𝑓𝐹𝐹 and are thus eroded.  As can be seen from Figure 5, the crack is two elements wide 
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for the coarsest mesh (𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/2), and then as the mesh is refined the crack has a width 

of three elements for 𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/4, four elements for 𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/8 and seven elements for 

𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/16. As the mesh is refined, it is apparent that the crack width converges 

towards a width determined by the material characteristic length 𝐿𝐿.  

This spurious element erosion in the wake of the crack tip should be addressed. It is due 

to the non-local averaging of the porosity increment in all elements, not only those 

undergoing plastic deformations. Upon mesh refinement the width of the plastic zone 

decreases, thus the non-local averaging of the porosity increment in elastic elements as 

well is necessary in order to obtain convergence of the global response as the mesh is 

refined. The implication is that elements in the wake of the crack will experience a 

positive increment in porosity as long as they are sufficiently close to the crack tip, where 

this distance is controlled by the 𝑏𝑏𝐸𝐸/𝐿𝐿-ratio and the coefficients 𝑝𝑝𝑤𝑤 and 𝑞𝑞𝑤𝑤 in the weight 

function. The fact that the crack has a finite width defined by 𝐿𝐿 has no consequences for 

the global response, as the crack has already passed before this phenomenon occurs.  

 

   
Figure 6. Distributions of the equivalent plastic strain across the shear band in the plane-

strain tension specimen from local (left) and non-local (right) simulations for a non-
hardening matrix material. 
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Figure 6 shows the distribution of the equivalent plastic strain across the shear band of a 

fully fractured specimen for the simulations with the local and non-local GTN models. In 

the local simulations, the maximum value of the equivalent plastic strain decreases 

slightly upon mesh refinement, which is most likely due to a slight increase in the stress 

triaxiality in the critical element in the center of the shear band with mesh refinement, 

resulting in slightly faster void growth. Figure 6 illustrates how the distribution of the 

equivalent plastic strains across the band predicted by the local GTN model gets narrower 

as the mesh is refined, resulting in less global deformation before element erosion, 

indicating that immediate failure would occur when reaching plasticity with an infinitely 

refined mesh. 

In the non-local simulations, it is evident that the maximum value attained for the 

equivalent plastic strain differs significantly between the meshes, and that much larger 

peak values are reached than in the simulations with the local GTN model. As mentioned 

previously, this is caused by the lack of strain hardening and the fact that only the porosity 

is regularized in the non-local GTN model. With increasing maximum value, the 

distribution of the equivalent plastic strain becomes steadily narrower. As already 

mentioned, the result of this lack of convergence of the plastic deformation is a markedly 

slower convergence of the global response. To avoid this problem, also the equivalent 

plastic strain would have to be regularized in a similar manner as the porosity. 

 

3.2 Shear banding in strain hardening material 

We will now investigate the importance of including strain hardening when regularizing 

the damage parameter (in contrast to the plastic strain) in a non-local constitutive model. 

The simulations of the shear band specimen demonstrated rather slow convergence in 
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the global response. Across the shear band, the peak value and the distribution of the 

equivalent plastic strain did not converge with mesh refinement even for the non-local 

GTN model. We will now demonstrate that by introducing strain hardening this issue is 

resolved. 

The plane-strain tension specimen with geometric imperfection and the displacement-

controlled loading used in the simulations of shear banding with a strain hardening 

material are shown in Figure 7. The material parameters of the GTN model adopted in 

this example are summarized in Table 2. Note that the value of 𝑘𝑘𝑆𝑆 used in this example is 

outside the range suggested by Nahshon & Hutchinson (2008), and was given this high 

value to limit the element distortion that occurred towards fracture for the coarsest 

mesh. The specimen geometry is changed compared to the previous example to ensure 

an inclined shear band with the given material parameters. In addition, a mixed-mode 

loading giving combined tension and shear is applied to the specimen. 
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Figure 7. Plane-strain tension specimen with geometrical imperfection to trigger an 
inclined shear band for a strain-hardening matrix material. 

 
 
Table 2. Material parameters used in the simulation of the plane-strain tension specimen with 

a strain-hardening matrix material. 
 

Elasticity and initial yielding 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 

210 0.3 400 
 Strain hardening  

𝑄𝑄1 (MPa) 𝐶𝐶1 𝑄𝑄2 (MPa) 𝐶𝐶2  𝑄𝑄3 (MPa) 𝐶𝐶3 
28.6 11.3 101.8 1.4 2823.5 0.07 

Porous plasticity 
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑓𝑓0 𝑓𝑓C 𝑓𝑓F 𝑘𝑘S 𝐴𝐴N 
1.5 1.0 2.25 0.01 0.025 0.12 5.0 0.040 

 

 

 
Figure 8. Global response of the plane-strain tension specimen from simulations with the 

local and non-local GTN model and various mesh sizes for a strain-hardening matrix material. 

 

The normalized force-displacement curves from simulations with the local (red curves) 

and non-local (blue curves) GTN models are shown in Figure 8 for five different mesh 

sizes. The normalized force is calculated as 𝐹𝐹/(𝜎𝜎0𝐴𝐴0), where 𝐹𝐹 is the resultant force and 
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𝐴𝐴0 is the initial minimum area of the specimen. The normalized displacement is defined 

as 𝑢𝑢/𝐻𝐻0, where 𝑢𝑢 is the prescribed displacement (as indicated in Figure 7) and 𝐻𝐻0 is the 

initial height of the specimen. As is evident, the local simulations exhibit severe mesh 

dependency, while the global response obtained in the non-local simulations converges 

rapidly upon mesh refinement. The non-local solutions for mesh size 𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/8 and 

𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/16 are both shown, but the global response curves are simply on top of each 

other, and also the solution for mesh size 𝑏𝑏𝐸𝐸/𝐿𝐿 = 1/4 has practically converged. Note 

here that the local and non-local solutions are not identical for 𝑏𝑏𝐸𝐸/𝐿𝐿 = 1. For this to 

happen, 𝑏𝑏𝐸𝐸/𝐿𝐿 has to be slightly larger than unity with the given parameters 𝑝𝑝𝑤𝑤 and 𝑞𝑞𝑤𝑤 of 

the weight function used in the non-local integral.   
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Figure 9. Local (upper row) vs non-local (lower row) porosity fields for successive mesh refinements 
from the simulations of the plane-strain tension specimen for a strain-hardening matrix material. 

 

Figure 9 compares the porosity fields predicted by the local and non-local GTN models. 

In both cases, an inclined band of high porosity is predicted. As expected, for the local 

GTN model, the band width is determined by the mesh size, while for the non-local GTN 

model, the band width converges to a value determined by the material characteristic 

length. Comparisons of the predicted equivalent plastic strain fields by the local and non-

local GTN models are given in Figure 10. It is evident that by including strain hardening, 

the maximum values of the equivalent plastic strain converge with mesh refinement and 

this is the reason for the much faster convergence of the global response. 
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𝑝𝑝 

 
Figure 10. Local (upper row) vs non-local (lower row) equivalent plastic strain fields for successive mesh 

refinements from the simulations of the plane-strain tension specimen for a strain-hardening matrix 
material. 

 

Figure 11 and Figure 12 present in turn the distributions of the porosity and the 

equivalent plastic strain along a vertical section slightly to the right of the middle of the 

specimen across the localization band. The left and right sides of the figures correspond 

to elements below and above the band, respectively. It is seen from these figures that the 

band width continuously decreases in the local simulations, while it quickly converges in 

the non-local simulations. This conclusion holds both for the porosity and the equivalent 

plastic strain, even if the former seems to converge more rapidly. Recall that the peak 

value and the width of the equivalent plastic strain distribution did not converge with 

mesh refinement in the case of a non-hardening matrix material. We can also note the 

asymmetric response of the specimen in  Figure 12 , i.e., how the distribution of the 

equivalent plastic strain on either side of the crack differs. 

 

  
Figure 11. Distributions of the porosity along a vertical section across the plane-strain tension 

specimen from local (left) and non-local (right) simulations for a strain-hardening matrix 
material. 
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Figure 12. Distributions of the equivalent plastic strain along a vertical section across the 

plane-strain tension specimen from local (left) and non-local (right) simulations for a strain-
hardening matrix material. 

 

 

3.3 Crack propagation in strain hardening material 

We will now focus on crack initiation and propagation, by simulating a typical compact 

tension (CT) specimen under plane-strain conditions. The specimen geometry and the 

displacement-controlled loading are presented in Figure 13 and material parameters are 

given in Table 3. The material has the same strain-hardening parameters as in the 

previous example, while the parameters controlling the damage evolution have been 

changed.  
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Figure 13. Geometry of the compact-tension (CT) specimen. 

 

Table 3. Material parameters used in the simulation of the compact-tension (CT) specimen. 

Elasticity and initial yielding 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 

210 0.3 400 
 Strain hardening  

𝑄𝑄1 (MPa) 𝐶𝐶1 𝑄𝑄2 (MPa) 𝐶𝐶2  𝑄𝑄3 (MPa) 𝐶𝐶3 
28.6 11.3 101.8 1.4 2823.5 0.07 

Porous plasticity 
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑓𝑓0 𝑓𝑓C 𝑓𝑓F 𝑘𝑘S 
1.5 1.0 2.25 0.02 0.04 0.10 0 

  



31 
 

Figure 14. Global response of the CT specimen from simulations with the local and non-local 
GTN models and various mesh sizes. 

 

Figure 14 shows the normalized force-displacement curves obtained for the CT specimen 

in simulations with the local (red curves) and non-local (blue curves) GTN models and 

various mesh sizes. The normalized force is calculated as 𝐹𝐹/(𝜎𝜎0𝐴𝐴0), where 𝐹𝐹 is the 

resultant force and 𝐴𝐴0 is the initial minimum area of the specimen. The normalized 

displacement is defined as 𝑢𝑢/𝐻𝐻0, where 𝑢𝑢 is the prescribed displacement and 𝐻𝐻0 is the 

initial height of the specimen. The curve labeled 𝑏𝑏𝐸𝐸/𝐿𝐿 = 5/3 corresponds to the coarsest 

mesh and is almost identical for both the local and non-local simulations. As the element 

size 𝑏𝑏𝐸𝐸  is larger than the material characteristic length 𝐿𝐿 , there is practically no 

interaction between elements. This way we can study how the global response converges, 

starting from a completely local response. The numerous sudden drops in the force for 

the coarser mesh are due to element erosion. Because of the large element size, the 

erosion of an element leads to a visible drop in the force. As the element size is reduced 

and becomes small compared to the total width of the specimen, the force drop caused 

by the erosion of an element becomes negligible and the response curves appear smooth. 

As the mesh is refined, we can see how the global response obtained by the non-local GTN 

model quickly converges, while the simulations with the local GTN model once again 

exhibit significant mesh dependency both with respect to crack initiation and crack 

propagation speed (given by the slope of the curves in the post-peak regime). In the non-

local simulations, the global response has basically converged for 𝑏𝑏𝐸𝐸/𝐿𝐿 = 5/12. The 

rapid convergence of the global response is most likely due to a combination of the 

incorporation of strain hardening, less pronounce strain gradients and a better alignment 

of the fracture path with the quadrilateral mesh. 
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Figure 15. Local (upper row) and non-local (lower row) porosity fields around the crack tip 
for successive mesh refinements from the simulations of the CT specimen. 

 
Figure 15 shows the local and non-local porosity fields for the fully fractured specimen 

plotted on the initial configuration. With the local GTN model, the crack propagates 

through a single row of elements, resulting in severe mesh dependency. In contrast, when 

using the non-local GTN model, it is evident that the porosity field, like the global 

response, has basically converged for 𝑏𝑏𝐸𝐸/𝐿𝐿 = 5/12. From Figure 14, it is apparent that 

for the first mesh refinement, 𝑏𝑏𝐸𝐸/𝐿𝐿 = 5/6, the local and non-local simulations give 

similar results, but the predicted force level in the non-local simulation is in fact below 

the force level at convergence. By considering the porosity field in the non-local 

simulation in Figure 15, we find that although the porosity is more spatially distributed 

than in the local simulation, the crack still propagates through a single element. The 𝑏𝑏𝐸𝐸/𝐿𝐿-

ratio is not yet sufficiently small to result in crack propagation across several elements, 

which results in the local and non-local predictions being very similar. This illustrates a 



33 
 

rather interesting phenomenon, namely that the non-local solution not always exhibits 

monotonic convergence in the global response. The obtained non-local solutions will 

converge towards a mesh-independent solution with mesh refinement, but how the 

solution converges depends on the problem at hand. In the non-local model, the width of 

the crack is, as expected, determined by the material characteristic length and not the 

mesh, and both the spatial distribution of the porosity and the width of the propagating 

crack (measured in terms of the number of deleted elements) converge towards a mesh-

independent solution.  
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Figure 16. Local (upper row) and non-local (lower row) equivalent plastic strain fields around 
the crack tip for successive mesh refinements from the simulations of the CT specimen. 

 

Figure 16 shows the equivalent plastic strain fields obtained in the local and non-local 

simulations for the fully fractured specimen plotted on the initial configuration. With the 

local GTN model, the plastic zone decreases rapidly in size with mesh refinement and 

except for a limited spatial distribution before crack initiation occurs, the crack 

propagates for very small plastic strains. There is almost no plastic strain outside the 

critical elements that fail during the crack propagation. The equivalent plastic strain 

fields obtained with the non-local GTN model are practically identical for 𝑏𝑏𝐸𝐸/𝐿𝐿 ≤ 5/12, 

which is consistent with the observed convergence of the global response. 

 

   
 

Figure 17. Distributions of the porosity across the deformation band in the CT specimen from 
local (left) and non-local (right) simulations. 
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Figure 18. Distributions of the equivalent plastic strain across the deformation band in the CT 

specimen from local (left) and non-local (right) simulations. 

 

Figure 17 illustrates the distribution of the porosity across the deformation band in the 

CT specimen. In the local simulations, the width of the band is defined by the mesh size, 

as in the previous examples, whereas in the non-local simulations, the spatial distribution 

of the porosity and the crack width converge rapidly.  The distribution of the equivalent 

plastic strain across the deformation band obtained in the local and non-local simulations 

is displayed Figure 18. As for the porosity, the band width predicted by the local GTN 

model decreases with mesh refinement, localizing into the smallest possible width 

determined by the mesh. Owing to the strain hardening of the matrix material, the peak 

value of the equivalent plastic strain and the width of the localization band predicted by 

the non-local model converge rapidly with mesh refinement. 

This example is inspired by Needleman & Tvergaard (1998), who reported on lack of 

convergence in the predictions of crack initiation and propagation in a similar specimen 

by use of a non-local GTN model. In fact, they found that the non-local simulations were 

only slightly less mesh-sensitive than the corresponding local simulations and argued 

that a finer mesh relative to the material characteristic length might be needed to resolve 

the localization of deformation in the near crack-tip region. As mentioned in Section 2.3, 

another possible explanation for the lack of convergence might be the use of the 
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incremental update of the non-local porosity defined by Equation (12). By adopting 

instead the incremental update given by Equation (13), we were able to get results that 

converged both with respect to the global response of the CT specimen and the local 

response of the critical element that fails first. The fast global convergence with mesh 

refinement for the CT specimen suggests that the exact 𝑏𝑏E/𝐿𝐿-ratio at which mesh-

insensitive results are obtained depends not only on the material parameters, but also 

the strain gradients in the FE model. The strain gradients occurring in the CT specimen 

seem to be easier to resolve, perhaps because the crack propagation path perfectly lines 

up with the rectangular quadrilateral mesh. 

 

3.4 Tensile ductility and the problem of excessive regularization 

We will now address the problem of excessive regularization reported in the literature 

and show that it is caused by using a fixed instead of an updated element interaction 

matrix in the evaluation of the non-local integral. A cylindrical specimen in uniaxial 

tension is considered for this purpose. The specimen geometry is shown in Figure 19 and 

material parameters used are given in Table 4. In the following, we compare results by 

the local and non-local GTN models by evaluating the non-local integral either on the 

reference configuration, using a fixed element interaction matrix, or on the current 

configuration, using an updated element interaction matrix. In the former case, the 

element interaction matrix is calculated once at the start of the simulation, while in the 

latter case, it is updated at every time step to account for changes in geometry. In contrast 

to the previous examples, the material parameters were chosen to give a significantly 

ductile response, since the differences between the fixed and updated non-local GTN 

models only become important at large deformations. The cylindrical specimen is 
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modelled as a three-dimensional (3D) part, with three symmetry planes, and thus only 

1/8 of the specimen is modelled. Five mesh resolutions will be used, ranging from 9 to 45 

elements across the radius.  

 
 

Figure 19. Geometry of the cylindrical tensile specimen. 

 
 

Table 4. Material parameters applied in simulations of tensile ductility. 
 

Elasticity and initial yielding 
𝐸𝐸 (GPa) 𝜈𝜈 𝜎𝜎0 (MPa) 

210 0.3 400 
 Strain hardening  

𝑄𝑄1 (MPa) 𝐶𝐶1 𝑄𝑄2 (MPa) 𝐶𝐶2  𝑄𝑄3 (MPa) 𝐶𝐶3 
28.6 11.3 101.8 1.4 2823.5 0.07 

Porous plasticity 
𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑓𝑓0 𝑓𝑓C 𝑓𝑓F 𝑘𝑘S 𝐴𝐴N 
1.5 1.0 2.25 0.002 0.10 0.20 0.0 0.0 
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Figure 20. Global response of the cylindrical tensile specimen  

 

The global response of the cylindrical tensile specimen is shown in Figure 20. The 

normalized force is calculated as 𝐹𝐹/(𝜎𝜎0𝐴𝐴0), where 𝐹𝐹 is the resultant force and 𝐴𝐴0 is the 

initial area of the specimen’s gauge section. The normalized displacement is defined as 

𝑢𝑢/𝐻𝐻0, where 𝑢𝑢 is the prescribed displacement and 2𝐻𝐻0 is the initial height of the 

specimen.  The response of the local GTN model is shown by red curves, whereas the 

responses of the fixed and updated non-local GTN models are shown by green and blue 

curves, respectively. The point marked by a diamond in each curve corresponds to first 

element failure in the center of the specimen. From the figure, it is seen that it is only the 

updated non-local GTN model that is able to describe both crack initiation and 

propagation in a realistic way, i.e., that the response curve drops steeply after first 

fracture and until the specimen is fully fractured, which is the typical response seen in 

tensile tests. Thus, this model will be used as a baseline in the discussion of the two other 

models. The fixed non-local GTN model gives very poor results both with respect to crack 

initiation and propagation. Fracture initiates rather late in the simulations and there is 

hardly any change in the response after the first element fails. The reason for this is that 
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there is hardly any crack propagation predicted with this model. The local GTN model 

predicts initiation somewhat early because of the lack of regularization. What is more 

interesting is that the local GTN model is not able to predict the expected steep decent of 

the response curve after first fracture and until the specimen is fully fractured, i.e., the 

crack speed slows down towards full fracture. The reason for this response is that during 

the crack propagation, the critical element (i.e., the next element to fail) has significantly 

larger porosity than its neighbors. As the crack initiates in the center and propagates 

outwards, each element that is eroded starts from a low porosity that increases towards 

the critical value. The damage is not spread outwards in front of the crack, and this lack 

of a “process zone” in front of the crack reduces the crack propagation speed in an 

unphysical manner. The updated non-local GTN model, on the other hand, captures the 

process zone ahead of the crack, and a practically constant crack speed (i.e., the tangent 

to the response curve) is obtained.  
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  𝑓𝑓, 𝑓𝑓 ̅   

 
Figure 21. Porosity fields at the time of the first element deletion obtained with the local GTN 
model (upper row), the updated non-local GTN model (middle row) and the fixed non-local 

GTN model (lower row) for successive mesh refinements. 

Figure 21 shows the porosity fields at first element deletion for the three models with 

successive mesh refinements. Note that for the coarsest model with  𝑏𝑏𝐸𝐸/𝐿𝐿 = 1  there is 

hardly any effects of the non-local regularization and thus the local and non-local GTN 

models give results that are only slightly different. By comparing the results from the 

local GTN model (upper row) with those obtained with the updated non-local GTN model 

(middle row), we find that the porosity is more spatially distributed in the latter model 

due to the averaging, and this is the reason for the different displacement and force levels 

at crack initiation predicted with these two models. In the simulations with the fixed non-

local GTN model, the specimen has practically no cross-sectional area left at crack 

initiation due to the large degree of necking that has occurred prior to this event. The 

large differences in the results obtained with the two version of the non-local GTN model 

are mostly due to the predicted distribution of porosity in the longitudinal direction of 

the tensile specimen. As the elements deforms, the updated non-local GTN model only 

includes elements in the radial direction in the averaging, since the distances between 

elements in the longitudinal direction become so large that they move outside the 

averaging domain. In contrast, when using the fixed non-local GTN model no elements 

move outside the averaging domain as the initial distances are kept throughout the 

simulation, which results in an excessively regularized solution. These results illustrate 

that the use of a fixed element interaction matrix in the non-local averaging is only strictly 
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valid for infinitesimal deformations, and if applied nonetheless for finite deformations 

excessive regularization could be a severe problem.  

 

  
𝑓𝑓, 𝑓𝑓 ̅

 
Figure 22. Plots of porosity towards the end of the crack propagation from simulations with 

the local (left) and updated non-local (right) GTN models (𝑏𝑏E/𝐿𝐿 = 1/3).  

 

Plots of the porosity towards the end of the crack propagation as predicted in local and 

non-local simulations with mesh size 𝑏𝑏E/𝐿𝐿 = 1/3 are compared in Figure 22. Similar 

results are also obtained for the other mesh sizes. The updated non-local GTN model 

predicts a higher porosity in front of the propagating crack than the local GTN model. As 

already mentioned, the more distributed porosity or process zone ahead of the crack is 

the reason for the more realistic prediction of crack propagation. The unphysically large 

deformations that induce severe element distortions at the end of the crack propagation 

in the local simulation are avoided. Figure 22 illustrates an interesting, but perhaps un-

intuitive point, namely that the local GTN model gives an overly “regularized” response 

towards the end of the crack propagation due to element distortion.  
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Figure 23. Stress triaxiality vs equivalent plastic strain in the critical element of the uniaxial 

tensile specimen upon mesh refinements. 

 

Figure 23 shows the stress triaxiality as a function of the equivalent plastic strain in the 

center element of the cylindrical tensile specimen for all three versions of the GTN model 

for the different meshes. It transpires that the coarsest mesh is unable to capture the 

correct response of the specimen and as a result, the stress triaxiality is underestimated 

at large strains. In the simulations with the fixed non-local GTN model, an erratic 

evolution of the stress triaxiality is seen with increasing equivalent plastic strain and 

convergence is not reached in the critical element with the applied mesh refinement. In 

the simulations with the local GTN model and the updated non-local GTN model, 

convergence is reached in the equivalent plastic strain at failure of the critical element, 

which, as discussed for previous examples, is a sign of how fast the global response 

converges as well. For the latter model, the stress triaxiality at failure of the critical 

element also converges, while this is not entirely the case in the former.  
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Figure 24. Porosity vs equivalent plastic strain in the critical element of the uniaxial tensile 

specimen upon mesh refinements. 

 

Figure 24 presents the porosity versus the equivalent plastic strain in the center element 

of the uniaxial tensile specimen with mesh refinement for the three versions of the GTN 

model. The fixed non-local GTN model predicts element erosion at significantly higher 

levels of equivalent plastic strain than the other two GTN models, and there are no 

apparent signs of convergence locally. Remember that the global response did not 

converge in simulations with this model either. The small discrepancies for the two other 

versions of the GTN model are most likely due to the fact that with mesh refinement the 

centermost element is moved closer to the centerline of the specimen, or that the coarser 

mesh resolutions are not able to describe the deformation history correctly. No matter 

which reason holds, the result is that the local evolution of the porosity in the critical 

element is not subjected to exactly the same deformation history as the mesh is refined. 

Of primarily interest is still how the fixed non-local GTN model is far from convergence 

in terms of the response of the critical element. 
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This example intended to show the necessity of computing the non-local integral on the 

current configuration using an updated element interaction matrix instead of a fixed one 

for all but infinitesimal deformations. The updated non-local GTN model is capable of 

capturing a more realistic crack propagation which converges with mesh refinement, 

whereas the local GTN model only gives reliable results of the crack initiation. Several 

authors report problems with overly aggressive delocalization of the damage parameter, 

and proposals have been made to regularize the damage parameter indirectly, e.g., 

Enakoutsa (2014) proposed to average the logarithm of the damage parameter instead. 

As an alternative, the problem of excessive smoothing could be resolved by evaluating 

the non-local integral over the current configuration, i.e., by constantly updating the 

element interaction matrix resulting from the discretization of the integral. With finite 

strains, the distances between elements change notably, and at fracture often 

significantly. By neglecting this change in interelement distance and still using the initial 

interaction values between elements, the smoothing will necessarily be overly aggressive 

as demonstrated herein. 

4 Conclusions 

A non-local GTN model on integral form has been implemented as a user-material model 

for the explicit solver of the FE software Abaqus and applied to model damage evolution 

and crack propagation in material test specimens until complete fracture. We adopted a 

modified version of a damage delocalization model proposed by Leblond et al. (1994) and 

applied by Tvergaard & Needleman (1995). By changing the incremental update of the 

non-local damage variable, in this case the porosity, adopting essentially a staggered 

approach, the non-local GTN model gave mesh-independent results for the global 

response, width of the localization band, and crack initiation and propagation, provided 
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the non-local integral was evaluated on the current configuration so that the element 

interaction matrix was continuously updated. Problems discussed in the literature with 

over-aggressive regularization are seemingly solved by evaluating the non-local integral 

on the current configuration. A non-local simulation storing the element interaction 

matrix from the initial configuration is only valid for infinitesimal strains, and continuing 

use of initial distances between integration points will result in varying degrees of over-

aggressive regularization for finite-strain problems. The only difference between the 

local and non-local GTN models is the introduction of a material characteristic length 

through a non-local integral which removes the mesh dependency. As demonstrated 

herein, this retains the applicability of the GTN model while solving a major problem in 

the modelling of crack initiation and propagation.  
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