
OnUniformSemiglobalExponential Stability (USGES) of

Proportional Line-of-SightGuidanceLaws

Thor I. Fossen a and Kristin Y. Pettersen a

aCentre for Autonomous Marine Operations and Systems (AMOS), Department of Engineering Cybernetics, Norwegian
University of Science and Technology, 7491 Trondheim, Norway

Abstract

This paper presents a uniform semiglobal exponential stability (USGES) proof for a class of proportional line-of-sight (LOS)
guidance laws used for vehicle path-following control. The LOS guidance law under consideration is a lookahead-based guidance
law for marine craft. The USGES proof extends previous results that only guarantee global κ-exponential stability. Typical
applications are marine craft and aircraft motion control systems for path following where the total system is a cascade of the
motion controller and guidance law error dynamics.
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1 Introduction

Surface vehicles, aircraft and marine craft use propor-
tional guidance laws to accomplish desired motion con-
trol scenario such as object tracking, path following,
path tracking and path maneuvering; see Breivik and
Fossen (2009), Fossen (2011), Lekkas and Fossen (2013),
and Yanushevsky (2011) for instance. For three degrees-
of-freedom (DOF) path-following applications, the con-
trol objective is to follow a predefined planar path with-
out needing to set time constraints. A popular and effec-
tive way to achieve convergence to the desired path is to
implement a lookahead-based LOS guidance law mim-
icking an experienced sailor. This method exploits the
geometry of the problem and generates a reference tra-
jectory for the desired course or heading angle, which is
used by the autopilot.

Guided LOS motion control of AUVs using sliding mode
control for stabilizing the combined speed, steering and
diving responses was addressed by Healey and Lienard
(1993). In this work, the stability properties of the pro-
portional LOS guidance law were not analyzed. Uniform
global asymptotic stability (UGAS) and uniform local
exponential stability (ULES) of the proportional LOS
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guidance law was first proven by Pettersen and Lefeber
(2001) in connection with a simplified vehicle model.
UGAS/ULES is also referred to as global κ-exponential
stability as defined by Sørdalen and Egeland (1995). The
result of Pettersen and Lefeber (2001) was further ex-
tended to include a more complete vehicle model by
Børhaug and Pettersen (2005), and Fredriksen and Pet-
tersen (2006).

The main contribution of the paper is prove that the
equilibrium point of the Healey and Lienard (1993) pro-
portional LOS guidance law is USGES as opposed to
previous results that only prove global κ-exponential
stability. USGES is slightly weaker than global expo-
nential stability (GES) but GES cannot be achieved for
this type of system due to the kinematic representation,
which introduces saturation through the trigonometric
functions. The LOS guidance law is very popular since
it mimics an experienced sailor and it is important to
establish proper stability properties for state-of-the-art
guidance laws. Furthermore, the USGES stability prop-
erty is important for systems that are exposed to en-
vironmental disturbances, in particular to quantify ro-
bustness. Finally, we show that the USGES property
also can be proven for a ship model in cascade with the
LOS guidance law.

1.1 Cross-track error

Let θ ≥ 0 denote the path variable. A formula for the
cross-track error can be derived by considering a two-
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Fig. 1. LOS guidance geometry. The desired course angle χ
given by (16) is determined such that the vehicle velocity
is directed towards a point that is located a user specified
distance ∆ (lookahead distance) on the path tangent. γp is
the path-tangential angle and ye is the cross-track error.

dimensional (2-D) C1 parametrized path (xp(θ), yp(θ))
which is assumed to go through a set of successive way-
points (xj , yj) for j = 1, 2, ..., N as illustrated in Fig-
ure 1. For any point (xp(θ), yp(θ)) along the path, the
path-tangential reference frame is rotated an angle:

γp(θ) = atan2
(
y′p(θ), x

′
p(θ)

)
(1)

with respect to the North-East reference frame. Note
that for a straight line γp = atan2(yj+1 − yj , xj+1 − xj)
is constant between the waypoints. For a vehicle located
at the position (x, y) the cross-track error is computed as
the orthogonal distance to the path-tangential reference
frame defined by the point (xp(θ), yp(θ)). Hence,

[
0

ye

]
=

[
cos(γp(θ)) sin(γp(θ))

− sin(γp(θ)) cos(γp(θ))

]>
︸ ︷︷ ︸

R>(γp(θ))

[
x− xp(θ)
y − yp(θ)

]

(2)
where R(γp(θ)) ∈ SO(2). Expanding (2) gives the nor-
mal line:

y − yp(θ) = − 1

tan(γp(θ))
(x− xp(θ)) (3)

through (xp(θ), yp(θ)) and the cross-track error:

ye = −(x−xp(θ)) sin(γp(θ))+(y−yp(θ)) cos(γp(θ)) (4)

where θ propagates according to (Fossen, 2011):

θ̇ =
U√

x′p(θ)
2 + y′p(θ)

2
> 0 (5)

As pointed out by Samson (1992) there may be infinite
solutions of (3) if the path is a closed curve. In the fol-
lowing we will assume that the path is an open curve,

i.e. the end point is different from the start point. Def-
inition 1 guarantees that there is a unique solution for
the cross-track error ye obtained by minimizing θ̇.

Definition 1 (Uniqueness of solutions) The unique
solution of (4) is denoted ye(θ

∗) and is defined by:

θ∗ := arg min
θ≥0

{
U2

x′p(θ)
2 + y′p(θ)

2

}
(6)

subject to

y − yp(θ) = − 1

tan(γp(θ))
(x− xp(θ)) (7)

This is a nonlinear optimization problem, which can be
solved numerically. However, for many paths θ∗ can be
found by computing all possible projection candidates
θi (i = 1, . . . ,M) given by (3) and choose the one closest
to the previous θ∗-value.

1.2 Kinematic equations

The kinematic equations can be expressed in terms of the
surge, sway and yaw velocities u, v and r, respectively.
In Fossen (2011, Chapter 2) it was shown that:

ẋ = u cos(ψ)− v sin(ψ) (8)

ẏ = u sin(ψ) + v cos(ψ) (9)

ψ̇ = r (10)

where ψ is the yaw angle. Differentiation of (4) gives:

ẏe = −(ẋ− ẋp(θ)) sin (γp) + (ẏ − ẏp(θ)) cos (γp)

− [(x− xp(θ)) cos(γp) + (y − yp(θ)) sin(γp)] γ̇p (11)

The last line in (11) is zero because of (3). From (1)
it follows that ẋp(θ) sin (γp(θ)) − ẏp(θ) cos (γp(θ)) = 0.
Consequently, (8), (9) and (11) give:

ẏe = −ẋ sin(γp(θ)) + ẏ cos(γp(θ))

= − (u cos(ψ)− v sin(ψ)) sin(γp(θ))

+ (u sin(ψ) + v cos(ψ)) cos(γp(θ)) (12)

This can be written in amplitude-phase form:

ẏe = U sin(ψ − γp(θ) + β) (13)

where the amplitude U =
√
u2 + v2 and phase

β = atan2(v, u) are recognized as the speed and sideslip
angle, respectively. A vehicle exposed to drift forces
(wind, waves and ocean currents) exhibits variations in
the velocities u, v and r according to Newton’s second
law, which defines the kinetic equations of motion. The
response can be observed as a non-zero sideslip angle β
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during path following. This is also observed as a differ-
ence in heading angle ψ and course angle χ according to:

χ = ψ + β (14)

This implies that (13) can be written:

ẏe = U sin(χ− γp(θ)) (15)

2 LOS proportional guidance law

Equation (13) is similar to the formulae used by Healey
and Lienard (1993), Pettersen and Lefeber (2001),
Børhaug and Pettersen (2005), Breivik and Fossen
(2005), Fredriksen and Pettersen (2006), and Breivik
and Fossen (2009). The proportional LOS guidance law
for (15) is chosen as:

χ = γp(θ) + tan−1
(
−ye

∆

)
(16)

where 0 < ∆min ≤ ∆ ≤ ∆max. Hence, by inserting (16)

into (15) and using, sin(tan−1(x)) = x/
√

1 + x2, gives:

ẏe = − U√
∆2 + y2

e

ye (17)

Notice that cross-track error dynamics (17) is nonau-
tonomous since both U and ∆ can be time-varying. The
look-ahead distance can be made time-dependent using
optimization techniques (Pavlov et al., 2009) or explicit
formulae (Lekkas and Fossen, 2012).

Theorem 1 (Proportional LOS guidance law)
The LOS guidance law (16) applied to the cross-track
error dynamics (15) renders the equilibrium point ẏe = 0
USGES if the look-ahead distance and speed satisfy
0 < ∆min ≤ ∆ ≤ ∆max and 0 < Umin ≤ U ≤ Umax,
respectively.

PROOF. See Appendix A.

Remark 1 In addition to the convergence properties
proven here being slightly stronger than the global κ-
exponential stability proven in Fredriksen and Pettersen
(2006), USGES is important from a robustness perspec-
tive. In particular, it is seen from Lemmas 9.2-3 in Khalil
(2002) that ULAS and ULES both provide robustness to
small uniformly bounded (UB) disturbances. It is, how-
ever, only the case of exponential stability that allows us
to conclude anything about the robustness to larger uni-
formly bounded disturbances. It follows from Lemma 9.2
in Khalil (2002) that the USGES property implies that
we always can choose a region of attraction in which we
have exponential convergence sufficiently large. Hence,

we can always satisfy the condition for which the solu-
tion of the perturbed system will be UB irrespective of the
size of the perturbation. USGES thus provides stronger
robustness properties than global κ-exponential stability.

Remark 2 Notice that GES cannot be achieved due to
the structural properties of the cross-track error dynamics
(15), which contains a sinusoidal function introducing
saturation. As a consequence, the system gain in (17)
decreases with the magnitude of the cross-track error and
thus global exponential convergence cannot be achieved.

3 Application to ships: cascaded analysis

In this section we extend the results of Theorem 1 to
include the ship dynamics. A similar approach can be
taken for UAV and AUV guidance systems.

3.1 Ship dynamics

Consider the ship maneuvering model (Fossen, 2011):

Mν̇ + C(ν)ν + Dν = τ (18)

where ν = [u, v, r]> denotes the surge, sway and yaw
velocities. The control inputs are:

τ = [τu, Yδδ,Nδδ]
> (19)

where τu is the control force in surge and δ is the rudder
angle. The rudder force Yδδ and moment Nδδ affect the
sway and yaw modes, respectively through the hydro-
dynamic derivatives Yδ and Nδ. The system matrices in
(18) can be expressed as:

M =


m11 0 0

0 m22 m23

0 m23 m33

 D =


d11 0 0

0 d22 d23

0 d32 d33

 (20)

C(ν) =


0 0 −m22v −m23r

0 0 m11u

m22v +m23r −m11u 0

 (21)

where M, C(ν) and D are the inertia, Coriolis/centripetal
and damping matrices, respectively.

The rudder angle δ is used to control the yaw dynam-
ics similar to a heading autopilot while τu is used for
speed control. In order to deal with underactuation, it is
convenient to express the equations of motion such that
sway is not influenced by the rudder angle δ. This can
be achieved by moving the position measurement of the
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ship to the pivot point (x̄, ȳ), which is defined according
to Tzeng (1998). Moreover,

x̄ := x+ ε cos(ψ) (22)

ȳ := y + ε sin(ψ) (23)

v̄ := v + εr (24)

where ε = −(m33Yδ −m23Nδ)/(m22Nδ −m23Yδ). This
corresponds to moving the position along the body-fixed
x-axis (the centerline) of the ship to the point where
the rudder gives only a yaw moment and no sway force.
Hence, the input δ in the v̄-dynamics is removed and

˙̄y = sin(ψ) (ū+ ud) + cos(ψ)v̄ (25)

ψ̇ = r (26)

˙̄v = v̇ + εṙ

= (Υū+ Υud +M) r + (Λū+ Λud +N) v̄ (27)

ṙ =
δ

Γ
(m22Nδ −m23Yδ) + Ωr + zv̄ (28)

˙̄u =
1

m11
(τu + (m22v +m23r) r − d11u) (29)

where ū = u − ud, ud = constant is the desired surge
velocity and

Υ =
1

Γ
(−2m23m22ε+m2

22ε
2 +m2

23

−m22m11ε
2 −m33m11 + 2m23m11ε)

M =
1

Γ
(m23d33 − εm22d33 −m33d23 −m23d32ε

+ εm23d23 +m22d32ε
2 +m33d22ε−m23d22ε

2)

Λ =
1

Γ

(
m22m11ε−m2

22ε−m23m11 +m22m23

)
N =

1

Γ
(m23d22ε−m22d32ε−m33d22 +m23d32)

Ω =
1

Γ
(m23m11 (ū+ ud) +m2

22 (ū+ ud) ε

−m23d22ε+m23d23 −m22m11 (ū+ ud) ε

−m22 (ū+ ud)m23 −m22d33 +m22d32ε)

z =
1

Γ
(m23d22 −m2

22 (ū+ ud)

−m22d32 +m22m11 (ū+ ud))

The cross-track error ȳe is defined as:

ȳe := −(x̄− xp(θ)) sin(γp(θ)) + (ȳ − yp(θ)) cos(γp(θ))
(30)

Remark 3 The cross-track error definition (30) means
that the ship pivot point follows the path. This is indeed
a very natural way of steering a ship, and it is what a
practiced helmsman typically will do.

Hence, (27) and (30) define the sway dynamics in the

pivot point:

˙̄ye = Ū sin(ψ − γp(θ) + β̄) = Ū sin(χ− γp(θ)) (31)

˙̄v = (Υū+ Υud +M) r + (Λū+ Λud +N) v̄ (32)

where χ = ψ + β̄, Ū =
√

(ū+ ud)2 + v̄2 and
β̄ = atan2(v̄, ū + ud). The proportional LOS guidance
law takes the form:

χd = γp(θ) + tan−1
(
− ȳe

∆

)
(33)

3.2 Straight-line paths

We consider the special case where γp(θ) = γp is constant
and β̄ = 0, that is straight-line paths such that:

˙̄ye = (ū+ud) sin(ψ−γp)+ v̄ cos(ψ−γp) = Ū sin(ψ−γp)
(34)

Due to the underactuation we have a dynamic system
with both external and internal dynamics. The exter-
nal dynamics consists of the surge and yaw equations
(26), (28) and (29), which we can control directly using
the control inputs τu (surge force) and δ (rudder angle).
Furthermore, we have the underactuated dynamics, i.e.
the sway dynamics (27) and (34), with states being the
cross track error ȳe and the sway velocity v̄ for which we
have no independent control inputs. This is the internal
dynamics, and the stability of this dynamics needs to be
analyzed carefully. It is well-known that the stability of
the internal dynamics depends on the reference trajec-
tories of the external dynamics (Isidori, 1989). We will
in this section show that when the reference trajectory
of the external state ψ is chosen to depend on the inter-
nal state ȳe in a way that is motivated by the experience
of practiced helmsmen, i.e. using the proportional LOS
guidance law (33), then the internal dynamics is USGES
under certain conditions on the look-ahead-distance ∆.

The course angle error dynamics is defined as z1 :=
χ− χd = ψ − γp − tan−1(−ȳe/∆) and z2 := ż1 and this
together with the surge velocity (29) represent the ex-
ternal dynamics of the system. Using (26) and (28) the
time derivatives of z1 and z2 become:

ż1 = r +
˙̄ye∆

∆2 + ȳ2
e

(35)

ż2 =
δ

Γ
(m22Nδ −m23Yδ) + Ωr + zv̄

+

(
∆¨̄ye

∆2 + ȳ2
e

− 2∆ȳe( ˙̄ye)
2

(∆2 + ȳ2
e)2

)
(36)

The control inputs τu in surge and δ in yaw are used to
control the external system (29) and (35)–(36). Choos-
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ing:

τu = − (m22v +m23r) r + d11u+m11(u̇d − kuū) (37)

δ =
Γ

m22Nδ −m23Yδ
(−Ωr −zv̄ +

2∆ȳe( ˙̄ye)
2

(∆2 + ȳ2
e)2

− ∆¨̄y

∆2 + ȳ2
e

− k1z2 − k0z1) (38)

where k1 > 0, k2 > 0 and ku > 0 gives the closed-loop
system:

˙̄ye =
sin(z1)(∆ (ū+ ud) + ȳev̄)√

∆2 + ȳ2
e

+
cos(z1)(∆v̄ − (ū+ ud) ȳe)√

∆2 + ȳ2
e

(39)

˙̄v = (Λū+ Λud +N) v̄+

(Υū+ Υud +M)

(
z2 −

˙̄ye∆

∆2 + ȳ2
e

)
(40)

ż1 = z2 (41)

ż2 = −k1z2 − k0z1 (42)

˙̄u = −kuū (43)

The error dynamics is a cascaded system:

[
˙̄ye

˙̄v

]
=

 − ud√
∆2+ȳ2e

∆√
∆2+ȳ2e

X ∆ud(√
∆2+ȳ2e

)3 Y −X ∆2(√
∆2+ȳ2e

)3
[ ȳe

v̄

]

+

[
h11 0 h13

h21 h22 h23

]
z1

z2

ū

 (44)


ż1

ż2

˙̄u

 =


0 1 0

−k0 −k1 0

0 0 −ku



z1

z2

ū

 (45)

where X = Υud +M , Y = Λud +N and

h11 =
sin(z1)

z1

∆ (ū+ ud) + ȳev̄√
∆2 + ȳ2

e

+
1− cos(z1)

z1

udȳe −∆v̄√
∆2 + ȳ2

e

(46)

h13 = − cos(z1)
ȳe√

∆2 + ȳ2
e

(47)

h21 = −
(

∆

∆2 + ȳ2
e

(Υud +M)h11 + Υ
∆

∆2 + ȳ2
e

ūh11

)
=

−∆

∆2 + ȳ2
e

((Υud +M)h11 + Υūh11) (48)

h22 = (Υū+ Υud +M) (49)

h23 = −(
∆

∆2 + ȳ2
e

(Υud +M)h13 − Λv̄

−Υ
∆(√

(∆2 + ȳ2
e)
)3udȳe + Υ

∆2(√
(∆2 + ȳ2

e)
)3 v̄)

−Υ
∆

∆2 + ȳ2
e

h13ū

= − ∆

∆2 + ȳ2
e

((Υud +M)h13 −Υ
udȳ√

(∆2 + ȳ2
e)

+ Υ
∆v̄√

(∆2 + ȳ2
e)

+ Υh13ū) + Λv̄ (50)

Equation (44) represents the internal dynamics of the
system and (45) is the controlled external error dynam-
ics. The system (44)–(45) can be written as:

ẋ = f1(t,x) + g (t ,x, ξ) ξ (51)

ξ̇ = f2(t, ξ) (52)

where x = [ȳe, v̄]> and ξ = [z1, z2, ū]>.

Assumption 1 Assume that ud > 0 is constant and
that the look-ahead distance:

0 <
1

2
√

2− 2

X

Y
< ∆ (53)

for X = Υud +M and Y = Λud +N .

Proposition 1 The origin (ȳe, v̄) = (0, 0) of the nomi-
nal system ẋ = f1(t,x) is USGES under Assumption 1.

PROOF. See Appendix B.

Theorem 2 (USGES/UGAS cascaded system)
Under Assumption 1 the ship dynamics (25)–(29) with
control laws (37)–(38) renders the origin of the cascade
(51)–(52) USGES and UGAS.

PROOF. It is shown by Fredriksen and Pettersen
(2006) that the interconnection term g (t ,x, ξ) in (51)
has linear growth in x. Furthermore, the perturbing
system (52) is time-invariant, linear and GES. The
closed-loop system (51)–(52) thus satisfies the condi-
tions of Loria and Panteley (2004, Proposition 2.3),
which guarantees that the origin is USGES and UGAS.

Remark 4 Note that Loria and Panteley (2004, Propo-
sition 2.3) only requires the perturbing system to be US-
GES. We used a feedback linearizing control law (37)–
(38) that gave GES external error dynamics, but from
the proof of Theorem 2 we see that any control law for τu
and δ which gives USGES of the external error dynamics
provides the same stability result.
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Remark 5 Note that due to the sinusoidal function that
saturates the right-hand side of (34), the gain of the
cross-track error dynamics (44) is decreasing with in-
creasing ȳe. Therefore, global exponential convergence
with uniform convergence rate is not possible to achieve.

4 Conclusions

In this paper we have presented a uniform semiglobal ex-
ponential stability proof for a class of proportional line-
of-sight guidance laws used by ancient navigators for ve-
hicle path-following control. This extends previous re-
sults that only guarantee global κ-exponential stability.
The stability proof can also be used in cascaded stability
analysis to ensure uniform semiglobal exponential sta-
bility of the total system. Typical applications are ma-
rine craft, AUV and UAV motion control systems for
path following.
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A Proof of Theorem 1

The system (17) is nonautonomous since U and ∆ are
time varying. Consider the Lyapunov function candi-
date: V (t, ye) = (1/2)y2

e > 0 when ye 6= 0. Hence,

V̇ (t, ye) = − U√
∆2 + y2

e

y2
e ≤ 0 (A.1)

Since V (t, ye) > 0 and V̇ (t, ye) ≤ 0 it follows that:

|ye(t)| ≤ |ye(t0)|, ∀t ≥ t0 (A.2)

and by Khalil (2002, Theorem 4.8) the origin ye = 0 is
uniformly stable. Next, we define:

φ(t, ye) :=
U√

∆2 + y2
e

(A.3)

For each r > 0 and all |ye(t)| ≤ r, we have

φ(t, ye) ≥
Umin√

∆2
max + r2

:= c(r) (A.4)

Consequently,

V̇ (t, ye) = −2φ(t, ye)V (t, ye)

≤ −2c(r)V (t, ye), ∀|ye(t)| ≤ r (A.5)

In view of (A.2), the above holds for all trajectories gen-
erated by the initial conditions ye(t0). Consequently, we
can invoke the comparison lemma (Khalil, 2002, Lemma
3.4) by noticing that the linear system ż = −2c(r)z has
the solution z(t) = e−2c(r)(t−t0)z(t0), which implies that
v̇(t) ≤ e−2c(r)(t−t0)v(t0) for v(t) = V (t, ye(t)). There-
fore,

ye(t) ≤ e−c(r)(t−t0)ye(t0) (A.6)

for all t ≥ t0, |ye(t0)| ≤ r and any r > 0. Hence, we can
conclude that the equilibrium point ye = 0 is USGES
(Loria and Panteley, 2004, Definition 2.7).

B Proof of Proposition 1

Let γ = −2X(1− α)/(α3Y 2ud) > 0, 0 < α < 1 and

W (t, ȳe, v̄) = (1/2)ȳ2
e + (γ/2)v̄2

:=
1

2
x>Px (B.1)

where x = [ȳe, v̄]> and P = diag{1, γ} > 0. Time differ-
entiation of W (t, ȳe, v̄) gives:

Ẇ = ȳe ˙̄ye + γv̄ ˙̄v

= ȳe

(
−ud√

∆2 + ȳ2
e

ȳe +
∆√

∆2 + ȳ2
e

v̄

)

+ γv̄

X ∆ud(√
(∆2 + ȳ2

e)
)3 ȳe

+

Y −X ∆2(√
(∆2 + ȳ2

e)
)3

 v̄


=

−αY∆ud

X
√

(ȳ2
e + ∆2)

(
ȳe −

1

2

(
X

αY ud
+

γαY∆2

(ȳ2
e + ∆2)

)
v̄

)2

−

(
−γY +

1

2

γαY∆3

(ȳ2
e + ∆2)

3
2

− 1

4αY

∆

ud

X√
(ȳ2
e + ∆2)

−1

4
α3Y 3∆5 ud

X
(√

(ȳ2
e + ∆2)

)5 γ
2

 v̄2 (B.2)

where α = X/∆Y. Since X < 0, Y < 0 and

0 ≤ ∆/
√
ȳ2
e + ∆2 ≤ 1 for all ȳe, Ẇ satisfies:

Ẇ ≤ −αY∆ud

X
√

(ȳ2
e + ∆2)

(
ȳe −

1

2

(
X

αY ud
+

γαY∆2

(ȳ2
e + ∆2)

)
v̄

)2

−
(
−γY +

1

2
γαY − 1

4αY

X

ud
− 1

4
α3Y 3ud

X
γ2

)
v̄2

:= −φ̄ x>Qx (B.3)
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where

φ̄(t,x) :=
ud√

ȳ2
e + ∆2

(B.4)

Q :=

[
1 − 1

2σ

− 1
2σ Π + 1

4σ
2

]
(B.5)

and

Π :=

√
ȳ2
e + ∆2

ud(
−γY +

1

2
γαY − 1

4αY

X

ud
− 1

4
α3Y 3ud

X
γ2

)
(B.6)

σ :=
X

αY ud
+
γαY∆2

ȳ2
e + ∆2

(B.7)

By Sylvester’s theorem, we see that the matrix Q is
positive definite if and only if Π > 0. The sign of the
bracket term in (B.6) can be determined by substitut-
ing γ = −2X(1 − α)/(α3Y 2ud) > 0 into the formula
for Π. Then it is easy to verify that Π > 0 if and only
if 1 − α − (1/4)α2 > 0. Since α is required to be pos-

itive, this is equivalent to 0 < α < 2
√

2 − 2. Finally,
α = X/∆Y verifies that this is satisfied if and only if ∆
satisfies the upper bound given by Assumption 1.

Recall from (B.3) that Ẇ ≤ −φ̄ x>Qx. Assumption 1

guarantees that Q > 0. Since W > 0 and Ẇ ≤ 0 it
follows that:

‖x(t)‖ ≤ ‖x(t0)‖ , ∀t ≥ t0 (B.8)

and by Khalil (2002, Theorem 4.8) the origin x = 0 is
uniformly stable. Furthermore, for each r̄ > 0 and all
‖x(t)‖ ≤ r̄, we have

φ̄(t,x) ≥ ud√
∆2

max + r̄2
:= c(r̄) (B.9)

for any constant surge velocity ud > 0. Consequently,

Ẇ ≤ −2φ̄
qmin

pmax
W ≤ −2

qmin

pmax
c(r̄)W, ∀ ‖x(t)‖ ≤ r̄

(B.10)
where pmax = max{1, γ} and qmin = λmin(Q). In view of
(B.8), the above holds for all trajectories generated by
the initial conditions x(t0). Consequently, we can invoke
the comparison lemma (Khalil, 2002, Lemma 3.4) by
noticing that the linear system ˙̄z = −2(qmin/pmax)c(r̄)z̄
has the solution z̄(t) = e−2(qmin/pmax)c(r̄)(t−t0)z̄(t0),
which implies that ẇ(t) ≤ e−2(qmin/pmax)c(r̄)(t−t0)w(t0)
for w(t) = W (t,x(t)). Hence, defining pmin = min{1, γ}:

‖x(t)‖ ≤
√
pmax

pmin
e−

qmin
pmax

c(r̄)(t−t0) ‖x(t0)‖ (B.11)

for all t ≥ t0, ‖x(t)‖ ≤ r̄ and any r̄ > 0. Hence, we can
conclude that the equilibrium point x = 0 is USGES
(Loria and Panteley, 2004, Definition 2.7).
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