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Abstract 

The tensioning forces applied to the contact wire in a railway catenary system influence the 

performance of the line. In this paper, a method to monitor the status of such tensioning forces is 

proposed based on the dependency that the waves that propagate through a tensioned wire have on 

the forces that pull the wire itself. A novel analytical formulation for the propagation of waves in a 

tensioned wire was proposed, and it was used to obtain the vertical acceleration of the wire when an 

external force acts as a concentrated input. The analysis of the acceleration with a moving standard 

deviation allowed a method to be defined for the generation of an index that describes the trend of 

the tensioning forces. The method was then tested on the wire accelerations obtained with laboratory 

tests and, afterwards, on the accelerations recorded on a contact wire of an electric railway regularly 

in operation and excited with the same kind of input. 

Keywords: railway catenary systems, structural health monitoring, wave propagation, cable systems 

dynamics, structural dynamics 

1. Introduction 

For electric railways, a fundamental part of the infrastructure are the catenaries. These systems are 

essentially a flexible structure built with cables tensioned at both ends with concrete weights. A 

peculiar characteristic of catenary systems is that they have a variable stiffness along the structure 

and very low damping. Trains collect the electricity from catenaries thanks to a roof mounted 

mechanism called pantograph. 

The importance of understanding the dynamic behaviour of the coupled pantograph-catenary system 

has been well known since the first studies conducted by Gostling et al.1, both for new and existing 

infrastructures. Since then, many aspects of the system dynamics have been studied, as can been seen 

in the review on the topic by Bruni et al.2. 



One of the main branches of the research focuses on the development of numerical models for the 

representation of the pantograph-catenary interaction dynamics3. These models are used to perform 

dynamic assessments of the existing infrastructure (with finite elements4 or analytically5), optimize 

existing6 and new7 infrastructure designs, evaluate system damping either from accelerations8 or from 

displacements9, and test for higher speed both purely numerically10 or with hybrid models11, avoiding 

the need to physically reproduce the entire system12. 

An aspect related to catenary dynamics that recently started to be taken into consideration within the 

system modelling is the phenomenon of wave propagation along the catenary cables. The constant 

contact between the pantograph and contact wire creates waves in the tensioned wire system that 

travel ahead of the pantograph, posing a physical limit to the maximum train speed under that specific 

catenary configuration13. 

Due to the importance within the catenary dynamics studies, the wave propagation phenomenon has 

recently attracted much interest. In the literature, examples can be found on the link between wave 

motion and contact force14, on applications for the wave-induced motion reduction15 and on wave 

speed evaluation, either with time/frequency analysis of numerical models16 or from the wire 

displacement obtained with non-contact measurements on a full-scale laboratory setup17. A more 

recent study18 evaluated the effects of wave propagation on the vertical velocity of the wire, and a 

new distributed parameter model19 and FEM model20 able to correctly represent the wave propagation 

has been introduced. Wave propagation has also been employed as a monitoring tool in railways, 

even though not explicitly on railway catenaries. Examples can be found for the long-term evaluation 

of rail modes of vibrations21 or for the detection of defects on the rail surface22. 

The objective of this paper is to use the wave propagation for the structural health monitoring of the 

railway catenaries. In particular, the investigation is focused on the behaviour of the tensioning forces 

applied to the contact wire, which are an important parameter for defining the performance of the 

system. The analysis is based on the evaluation of the moving standard deviation of the contact wire 



vertical accelerations. The influence that the wire tensioning forces have on the wave propagation 

was first investigated on the wire vertical accelerations obtained with a novel analytical formulation 

for the propagation of waves in a tensioned wire. Afterwards, the same process was applied to the 

vertical accelerations measured during laboratory tests and field measurements. Given the importance 

of the contact wire acceleration for the whole process, section 2 explains the characteristics of 

accelerations of the railway catenaries in more detail. Section 3 is dedicated to the novel analytical 

formulation for the wave propagation in a tensioned wire and explains how the accelerations used to 

build the method were evaluated. Due to the need to validate the method on real data, laboratory tests 

were performed in a controlled environment and explained in section 4. The last step was to retrieve 

acceleration data from the field, as shown in section 5, to also apply the method on data coming from 

a contact wire in regular service. For both laboratory tests and field measurements, a wireless 

measurement system23 was used. This allowed data to be obtained that were easy to collect, making 

the method feasible for large infrastructure monitoring applications. With a such wireless system, in 

fact, the need for supplementary structures (as in Diana et al.24 and Drugge et al.25) or for service 

interruption26 is minimized. 

The method used to process the data is explained step by step in section 6, and the results from the 

analysis performed on the analytical formulation, laboratory tests and field measurements are all 

gathered and discussed in section 7. Finally, conclusions are drawn in section 8. 

  



2. System Acceleration 

When excited by an external input, typically a passing train or even the wind, the catenary system 

features motions in both vertical and lateral directions due to its flexible nature and low damping. For 

the dynamic assessment, both the vertical and lateral directions are used. However, in this study only 

the vertical accelerations are taken into account because of the nature of the considered phenomenon. 

The waves generated by the pantograph passage travel along the longitudinal direction and generate 

displacement and acceleration only in the vertical plane13. This chapter then focuses on how a 

catenary system works in the vertical direction when specifically excited by the passage of a train. 

Several measurement campaigns have been conducted on the Norwegian Railway Network in the 

past year with the aforementioned wireless systems, which can record accelerations in three directions 

on both the contact and messenger wires23. Figure 1 shows a vertical acceleration signal recorded on 

a Norwegian Railway contact wire during a train passage. Such a signal can be divided into four main 

parts, each representing a different contribution of the train to the catenary system dynamics8: 

1. Environmental 

excitation, where the 

recorded accelerations 

are mainly associated 

with effects not linked to 

the approaching train 

(mostly wind, but 

potentially ground 

vibrations from the train 

or other sources around 

the sensor location); 

Figure 1: Contact wire vertical acceleration during train passage. 



2. Pre-passage, when the level of the signal starts to increase due to the arrival of waves that 

propagate from the contact point between the pantograph and catenary wires up to the sensor 

position; 

3. Train passage, where the acceleration has a peak associated with the passage of the 

pantograph at sensor locations; and 

4. Post-passage, where the system dynamics is generally dominated by free decay behaviour. 

The fourth part is well suited for dynamic assessments of the catenary system and damping 

identification. The second part, on the other hand, provides insights regarding the phenomenon of 

wave propagation in a dispersive mean. The origin of these waves can be traced back to the catenary 

design. Although the goal is to achieve a constant stiffness along the entire contact wire, the presence 

of concentrated masses such as droppers and steady arm clamps introduces points of high stiffness. 

When the pantograph collector encounters one of these points, the effect on the contact wire is the 

same as an impulse load at the clamp position. As a result, each time the train passes a dropper or a 

steady arm a wave is generated and propagates along the contact wire, droppers and messenger wire. 

Furthermore, every time a wave encounters a clamp or arrives at the section end, a reflected wave is 

generated that travels backward in the opposite direction. Propagation between neighbouring sections 

is not possible due to the mechanical separation between wires. The signal portion included in section 

2 of Figure 1 is the sum of all the waves generated within the instrumented catenary section. The 

amount of waves recorded by the accelerometer makes it difficult to extract the shape of a single 

wave from field measurements. Consequently, analysis on a simpler setup was preferred. For the 

laboratory tests, the setup consisted of a single tensioned contact wire excited with a single hit by a 

modal hammer. For the field measurement the same setup was reproduced on a contact wire mounted 

on a side track section, and the excitation was of the same type as per laboratory tests. The separation 

from the operating line ensured the absence of influence from trains regularly running on the line. 

  



3. Analytical Formulation of Wave Propagation 

The analytical formulation that represents the dynamics of the system is presented together with the 

assumptions considered for this case. In the literature, analytical formulations have been proposed for 

similar types of problems based on both string models (Metrikine et al.27) and beam models 

(Dahlberg28). What they all have in common is excitation by a moving force, which does not represent 

the same case study as in this work. A later work by Cho29 proposed the use of the same formulation 

as given by Dahlberg but with the speed of the moving force equal to zero. In the present paper, a 

different approach is selected by using modal analysis to obtain a complete solution for the wave 

propagation caused by an impulse. The main advantage of this procedure, which already found 

application in pantograph-catenary interaction dynamics studies as Facchinetti et al.30 and Gregori et 

al.31, is that it can be applied to model a load concentrated in both time and space in a relatively simple 

way, as done by Rønnquist32. Furthermore, it is possible to include a specific number of modes, 

allowing, among other things, the matching of the frequencies of given terms for comparison. 

Specifically, in this work, the comparison was needed with the signals recorded in the laboratory test 

and in the field measurements, which are naturally limited by the sampling frequency. 

3.1. Modal parameters 

Assuming that the 𝑛𝑡ℎ mode shape 𝜙𝑛(𝑥) of the system is sinusoidal with the following equation: 

𝜙𝑛(𝑥) = sin
𝑛𝜋𝑥

𝐿
(1) 

and that the corresponding time-dependent function is 𝜂𝑛(𝑡), the displacement response can be 

written as follows: 

𝑟(𝑥, 𝑡) = ∑ 𝜙𝑛(𝑥)𝜂𝑛(𝑡)

𝑁

𝑛=1

(2) 



Concerning the acceleration response, the equation is the same, except for the time-dependent 

function, which is differentiated twice with respect to time. 

𝑟̈(𝑥, 𝑡) = ∑ 𝜙𝑛(𝑥)𝜂̈𝑛(𝑡)

𝑁

𝑛=1

(3) 

To solve the equation of motion with the mode superposition method and obtain the values of 𝜂𝑛 and 

𝜂̈𝑛, the modal structural properties, such as the mass and load, must be evaluated as follows: 

𝑀̃𝑛 = ∫ 𝑚(𝑥)𝜙𝑛
2(𝑥)𝑑𝑥

𝐿

(4) 

𝑝̃𝑛(𝑡) = ∑ 𝑃(𝑥𝑖, 𝑡)𝜙𝑛(𝑥𝑖)

𝑖

(5) 

where 𝑚(𝑥) is the linear mass of the wire and 𝑃(𝑥𝑖, 𝑡) represents the concentrated loads at time 𝑡 and 

location 𝑥𝑖 on the wire. In this case, the force is only one, and the position on the wire is 𝑥𝐹. 

The values for the natural frequencies for a beam of length 𝐿, linear mass 𝑚𝑙, bending stiffness 

𝐸𝐼, axially loaded with a tension 𝑇 and pinned at both ends are equal to the following: 

𝜔𝑛 =
𝑛𝜋

𝐿
√

𝑇

𝑚𝑙
+ (

𝑛𝜋

𝐿
)

2 𝐸𝐼

𝑚𝑙
. (6) 

Additionally, the stiffness and damping can be expressed as follows: 

𝐾̃𝑛 = 𝜔𝑛
2𝑀̃𝑛 (7) 

𝐶̃𝑛 = 𝜁𝑛2𝜔𝑛𝑀̃𝑛 (8) 



The values of 𝜁𝑛 are evaluated using the Rayleigh formulation, choosing the parameters 𝛼 = 0.062 

and 𝛽 = 6.13 ∙ 10−6 as in Nåvik et al. 8. 

Once all modal parameters are defined, the equation of motion of an arbitrary mode 𝑛 can be 

expressed as follows: 

𝜂̈𝑛(𝑡) + 2𝜁𝑛𝜔𝑛𝜂̇𝑛(𝑡) + 𝜔𝑛
2𝜂𝑛(𝑡) =

𝑝̃𝑛(𝑡)

𝑀̃𝑛

(9) 

In addition, a solution for short impulse loads with duration Δ𝜏 can be found. For such a case, the 

displacements at Δ𝜏 are equal to zero, and the speed is the ratio between the impulse and the modal 

mass (𝜂̇𝑛(Δ𝜏) = 𝐼𝑛/𝑀̃𝑛). The impulse value is readily obtainable from the following equation: 

𝐼𝑛 = ∫ 𝑝̃𝑛(𝑡)𝑑𝑡
Δ𝜏

0

(10) 

The latter consideration is important in the definition of the initial conditions for displacement and 

speed to determine the impulse response function of the system, namely, the solution needed for this 

problem: 

𝜂𝑛(𝑡) = ℎ(𝑡) =
𝐼𝑛

𝑀̃𝑛𝜔𝑑

sin(𝜔𝑑𝑡) 𝑒−𝜁𝑛𝜔𝑛𝑡 (11) 

where 𝜔𝑑 = 𝜔𝑛√1 − 𝜁𝑛
2 is the damped natural frequency. 

3.2. Modal load 

According to Eq. (10), the impulse is evaluated as the time integral of the modal force function, which 

is the product of the actual force and the mode shapes, as shown in Eq. (5). In this case, the force 

function 𝑃(𝑥𝐹 , 𝑡) used is that obtained via the impulse tests performed in the laboratory on the wire 

itself. An average among all the force signals recorded during the tests with the 100 𝑚𝑚2 wire 



provided the needed function. Furthermore, a sensitivity analysis on the time integral over said 

function allowed the time window for the impulse value computation to be chosen. 

3.3. Solution 

By using the Duhamel integral for the solution evaluation, the input force can be divided into short 

impulses (in this case, the duration is equal to 5 ∙ 10−4 𝑠) and each of them can be integrated over the 

time interval analysed, including both the transient and steady state parts of the response. In this way, 

the system response can be formulated as follows: 

𝜂𝑛(𝑡) = (𝜂𝑡0
cos 𝜔𝑑(𝑡 − 𝑡0) +

𝜂̇𝑡0
+ 𝜂𝑡0

𝜁𝑛𝜔𝑛

𝜔𝑑
sin 𝜔𝑑(𝑡 − 𝑡0)) 𝑒−𝜁𝑛𝜔𝑛(𝑡−𝑡0) +

+
1

𝑀̃𝑛𝜔𝑑

∫ 𝑝̃𝑛 sin(𝜔𝑑(𝑡 − 𝜏)) 𝑒−𝜁𝑛𝜔𝑛(𝑡−𝜏)
𝑡

𝑡0

(12)

 

where the first term takes into account the vibrations already present in the system and the second 

term accounts for the new contribution from the subsequent short impulse. The input force curve is 

divided into short impulses because the duration was not infinitesimal, and if the entire energy signal 

was concentrated in a single impulse, the result would be wrong, both in terms of the shape and 

magnitude of the response time history. With the equation obtained, the acceleration response was 

evaluated with the same parameters as used both in the laboratory tests and on field measurements. 

The response was then extracted at the corresponding sensor positions. 

  



4. Tensioned Wire Laboratory Test 

A simplified setup for a laboratory test was selected to test the behaviour of the propagating waves in 

a controlled environment before 

field measurements. A 

copper/silver contact wire with a 

100 𝑚𝑚2 section (type AC-100 

according to 33) was fastened with 

pin joints at both ends to a long-

stroke pulling machine. The 

assigned displacement ensured 

the desired mechanical tension 

throughout the tests. Figure 2 

shows the key components of the 

test setup, namely, the wireless 

accelerometers (Figure 2a); the 

joints employed to secure the wire at both ends, which were also used when the wire was mounted 

on the catenary system (Figure 2b); and the entire wire mounted on the pulling machine (Figure 2c), 

with safety measures taken in case of wire failure.  

Figure 3 provides details of the test configuration. For the 100 𝑚𝑚2 wire (named CW100), the 

measured length was 10.095 𝑚, and the sensors were placed at distances of 𝑑𝑆1/𝐴 = 4.591 𝑚 for 

Figure 2: Laboratory set-up: a) accelerometer, b) pin joint, and c) 

wire. 

Figure 3: Laboratory set-up. Distances are from reference end A at the left side of the figure. 



sensor S1 and 𝑑𝑆2/𝐴 = 7.085 𝑚 for sensor S2. All the distances were evaluated with a laser from 

reference end A. Tension values of 10 𝑘𝑁 and 7.06 𝑘𝑁 were applied to the wire during the test 

sessions. These values are typical tensions for this type of wire in operation. Several vertical 

accelerations were recorded with a sampling frequency 𝑓𝑠 = 200 𝐻𝑧, each one as a result of a single 

hit with a modal hammer at a distance of 𝑥𝐹 = 2.5 𝑚 from reference end A. To capture the entire 

acceleration signal, a pre-trigger time of 10 seconds was set for the sensors.  

The intention behind the test was to see how a wave propagated along the contact wire and determine 

if it was possible to detect differences in behaviour when parameters such as the tension were 

changed. 

Figure 4 shows an example of a 

measured signal interpolated with 

a cubic spline for clarity. The 

dispersive nature of the 

propagating wave can be 

observed. Within this signal, 

contributions from both the first 

forward wave and from the 

reflected ones are visible. The 

presence of the reflected waves is 

associated with the length of the 

wire used, which was limited by 

the available space between the 

two ends of the pulling machine. 

However, the wire length corresponds to the distance between two adjacent dropper clamps.  

  

Figure 4: Vertical acceleration response of the CW100 wire 

with tension 𝑇 = 7.06 𝑘𝑁 at the sensor S1 location. Hit 

position 𝑥𝐹 = 2.5 𝑚 from reference end A. 



5. Field measurements 

Field measurements were performed on one of the side tracks in place at Oppdal station along the 

Dovre railway line that connects Oslo and 

Trondheim on the Norwegian railway network. The 

catenary system mounted on the track is of type 

“Tabell 54”, with a pure copper 80 𝑚𝑚2 section 

contact wire. The wire length is 588 𝑚 and nominal 

tension force is 6.93 𝑘𝑁 (Figure 5). 

A complete set of ten sensors was installed on a 

single span, as per the scheme presented in Figure 

6a, placing one sensor within each inter-dropper 

span both on the contact and messenger wires. For 

the scope of this work, only data from sensor 

number 6 were used due to its position chosen to be 

as close as possible to the one assigned as sensor 

number 1 in the laboratory tests. The comparison is then made between the full length of the cable 

used in the laboratory tests and the segment included between the two droppers surrounding sensor 

number 6 in the field measurements (Figure 6b). Distances from reference point A were 𝑑𝑆6/𝐴 =

4.650 𝑚 for sensor S6 and 𝑥𝐹 = 2.650 𝑚 for the hitting point on the contact wire. The sensors 

Figure 6: Field measurements set-up. Distances are from reference end A at the left side of the figure. 

Complete set up (a) and detail at the first sensor near the hitting point (b). 

Figure 5: Field measurement set-up: sensors are 

mounted on contact (CW) and messenger wires 

(MW). 



mounted during these 

measurements are the same as in 

the laboratory tests, and the type 

of input is again an impulse hit at 

a fixed distance from the sensor, 

with no obstacles in between 

them. The sampling frequency is 

𝑓𝑠 = 200 𝐻𝑧, and the trigger is set 

manually before each 

measurement. 

Figure 7 shows an example of the 

measured signal from sensor 

number 6. Also in this case, as 

happened with the laboratory tests, wave reflection affects the shape of the signal. In this case, 

however, the reflection is caused by the dropper clamps, and the coefficient is frequency-dependent. 

This aspect will be taken into account when simulating the signal with the analytical solution. 

  

Figure 7: Vertical acceleration response of the CW080 wire 

with tension 𝑇 = 6.98 𝑘𝑁 at the sensor S6 location. Hit 

position 𝑥𝐹 = 2.65 𝑚 from reference end A. 



6. Data Processing 

The method for the data processing was built on the accelerations obtained with the analytical 

formulation. The flexibility given by this formulation allowed the wire acceleration response to the 

first forwarding wave without any other disturbance to be reproduced. In addition to the 

characteristics of this wave, the other parameters needed for the method, such as the location of the 

sensor with respect to the excitation point and the analysis time window duration, were determined. 

Figure 8a shows the simulated vertical acceleration of the wire when the same distance between the 

input force and observation point is set, but the boundaries are at an “infinite” distance. In this way, 

only the first wave that travels forward from the impact point to the observation point is represented. 

The same simulation has been repeated multiple times with different values of tensioning forces 

applied to the cable. It is then possible to observe how the shape of the vertical acceleration changes 

accordingly. Figure 8b shows, on the other hand, the dependency of the same waves on the frequency, 

which originates the dispersion in time. The analysis aims at taking advantage of the trend due to the 

tensioning forces changing in order to detect when the tension in a wire is dropping or increasing. To 

achieve this result, the evaluation of the signal’s standard deviation is taken into account, and the 

Figure 8: Simulated vertical acceleration signals (a) and respective wave propagation speed (b). The 

simulations have been performed with multiple tensioning force values. 



comparison of its value across different wire tension settings is used as an index to spot failure in the 

functioning of the tensioning devices. 

6.1. Sensor placement 

The first step for an effective analysis is to be aware of the distance between the hitting point and the 

observation point. Different observation points will give different wave shapes, even when all the 

other parameters are kept constant. From Hayasaka15 we can establish that a section overlap is one of 

the points where the pantograph gives the hardest hit to the contact wire. Since this point is known, it 

is possible then to choose an observation point at a set distance from it in order to define how the 

wave should be when the tension is the nominal value. Taking into consideration Figure 8a, it is 

possible to know, for example, what the wave shape would be at an observation point placed two 

metres from the hit (same distance as in laboratory tests and field measurements) and what would 

happen in the case of a shift of tension from the nominal value of 10 𝑘𝑁 to a lower or a greater one. 

6.2. Analysis time window 

establishment 

Once the observation position is 

settled, the duration of the first 

wave that travels forward from 

the hitting point and reaches the 

sensor is fixed. The index of 

choice for this analysis, namely, 

the cumulative standard deviation 

value, then needs to be evaluated 

at a determined point in order to 

be able to have a comparison 

between different catenary 

statuses. According to the 

Figure 9: First forwarding wave at the observation point and 

relative wavelet transform. The blue line indicates the theoretical 

time of arrival of each frequency at the observation point. The 

green lines are the boundaries of the time duration of each 

frequency. 



authors’ choice, this point has been set at the end of the first wave before any reflection phenomena 

appear in order for the analysis to not be influenced by other components on the catenary system. 

The time window duration for the evaluation of the cumulative standard deviation is set according to 

this choice. For this purpose, a time/frequency analysis was used, as shown in Figure 9. In the lower 

plot, it is easy to detect the moment in which the contribution to the wavelet transform related to the 

first wave drops to zero; this time instant was chosen as the end of the analysis window for the 

cumulative value of the moving standard deviation. 

6.3. Cumulative moving standard deviation evaluation 

The last step consists of the evaluation of the cumulative moving standard deviation on the recorded 

signal. The evaluation was performed using this parameter because of the influence that a change in 

tension has on it. When the wave is stretched or compressed due to a loss or increase in tension, the 

shape will remain the same, but every feature (positive and negative peaks) will be delayed or 

anticipated, bringing a change in the cumulative value of the instantaneous standard deviation 

accordingly. Tests on the analytical formulation showed how the difference between cases with 

various values of tension is detectable at the end of the first forward wave that arrives at the 

observation point, and the same behaviour has been reported on the measured data, both from 

laboratory testing and from field measurements. 

  



7. Results 

The results from the method presented in section 6 are analysed here, showing the positive outcomes 

in line with the idea presented at the beginning of the paper. 

Figure 10a shows the results for the application of the method to the analytical formulation of the 

accelerations developed in section 3. The analytical formulation was evaluated with the same set-ups 

used in the laboratory tests (CW100 wire with 10 𝑘𝑁 and 7.06 𝑘𝑁 of tensioning force) and field 

measurements (CW80 with 6.98 𝑘𝑁 of tension force). Additionally, a value of 13 𝑘𝑁 of tensioning 

force was added for the CW100 wire. Figure 10b shows the same analysis performed on the measured 

data coming from laboratory tests (the two CW100 cases) and the field measurements at Oppdal 

station (CW080). 

The definition of the time window in section 6.2 is used here to know at which time instant the 

comparison between different tensioning forces must be performed. The vertical dashed line in both 

Figure 10: Cumulative moving standard deviation evaluated based on the analytical formulation (a) 

and on the measured signals (b) of the acceleration for different values of applied tension and contact 

wire cross-section. For the measured signals (b), the average values for each set-up with the 

corresponding characteristics are shown. 



plots corresponds to the time window defined for the current study, where the same distance between 

the input and sensor has been used for all the tests. 

The results show how by applying the method described in section 6 it is possible to obtain an index 

associated with the cumulative value of the standard deviation that defines the status of the tensioning 

forces. The index value can be observed to be increasing when the tensioning forces in the contact 

wire drop, allowing the detection of changes from the nominal force conditions. The trend appears to 

be the same in the results from the analytical formulation, where the method was built, as well as in 

the results from the measured accelerations, where the method was tested and showed consistency. 

From Figure 10a, an observation can be made regarding the effects on the index due to the variation 

in the wire cross-section. It can be noted how both the CW100-7.06 𝑘𝑁 and CW080-6.98 𝑘𝑁 have 

the same value of cumulative standard deviation, as if the tension, more than the cross-section, is 

what influences the index value to a greater extent. However, looking at the results from the measured 

data, it also looks like the reduction in cross-section influences the index. A possible explanation for 

this small discrepancy can be found in the difference between the laboratory test setup, the field 

measurements, and their equivalent analytical models. The analytical models represent, in both cases, 

a perfect system, with total reflection at the ends and partial reflection at the dropper clamps. On the 

other hand, the behaviour of the wires from laboratory tests and field measurements is influenced by 

the presence of uncertainties that cannot be taken into consideration by the analytical model, such as 

friction in the end clamps in the pulling machine used in the laboratory or a tensioning force not in 

accordance with the nominal value for the field measurements. 

Nevertheless, the behaviour of the index trend associated with the change in tension does not show 

inconsistency despite the uncertainties. This aspect is of high relevance when it comes to applying 

the method, as it has proven to be robust enough to overcome the differences in configuration and 

environmental background, returning reliable information on the change in the wire tension value. 



8. Conclusions 

The work presented in this paper shows a successful method developed for monitoring the behaviour 

of the tensioning forces applied to contact wires in railway catenary systems. Infrastructure 

monitoring has gained considerable attention in recent years, requiring easy and fast techniques for 

the detection of system degradation. Following this scope, the evaluation of the cumulative standard 

deviation on the contact wire vertical accelerations was used as an index of tensioning force variation 

over time. The accelerations needed for this method were identified in the vertical accelerations 

caused by the waves propagating along the contact wire when a train is running under the 

corresponding catenary section. The procedure includes the sensor positioning, the time window 

choice for the analysis, and the evaluation of the cumulative standard deviation of the acceleration 

signal. The method was built and refined by analysing the vertical acceleration values obtained from 

a novel analytical formulation of the propagation of waves in a tensioned wire. Afterwards, the 

method was tested on acceleration values coming from laboratory tests and field measurements, and 

the results were compared. 

A consistent trend was found where the index value, namely, the cumulative value for the moving 

standard deviation, increases with the decrease of the tensioning forces. In this way, an evaluation of 

this index at each train passage would be able to detect an eventual drift from the nominal value of 

the contact wire tensioning forces and trigger a maintenance intervention when needed. 
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