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Abstract—We consider a setup where a distributed set of
sensors working cooperatively can estimate an unknown signal
of interest, whereas any individual sensor cannot fulfil the task
due to lack of necessary information diversity. This paper deals
with these kinds of estimation and tracking problems and focuses
on a class of simultaneous perturbation stochastic approximation
(SPSA)-based consensus algorithms for the cases when the cor-
rupted observations of sensors are transmitted between sensors
with communication noise and the communication protocol has
to satisfy a prespecified cost constraints on the network topology.
Sufficient conditions are introduced to guarantee the stability of
estimates obtained in this way, without resorting to commonly
used but stringent conventional statistical assumptions about the
observation noise such as randomness, independence, and zero
mean. We derive an upper bound of the mean-square error of the
estimates in the problem of unknown time-varying parameters
tracking under unknown-but-bounded observation errors and
noisy communication channels. The result is illustrated by a
practical application to the multi-sensor multi-target tracking
problem.

Index Terms—Distributed tracking, multi-agent networks, con-
sensus algorithm, simultaneous perturbation stochastic approxi-
mation, SPSA, randomized algorithm, arbitrary noise, unknown—
but-bounded disturbances, stochastic stability, tracking perfor-
mance.

I. INTRODUCTION

Distributed cooperative control of networked systems has
been investigated and numerous potential applications to com-
plex manufacturing, energy and social systems have been
developed [1]-[3] over the past few decades. One of the
fundamental concepts in multi-agent cooperative control is
consensus. This approach aims to find an agreement between
all agents in a network regarding a common value using
only local information and communicating among neighboring
agents.

The goal of distributed optimization is usually to find the
minimum of some loss function F(x) = Y1 | Fi(x) via
interaction between agents. Here, x € R? and F'(x)
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R? — R is the loss function of agent 4, which is typically
known only to the agent itself. Studies of consensus and
distributed optimization algorithms began from the 1970-80s
[4], [5]. Distributed asynchronous stochastic approximation
algorithms were studied in [6]. To date, there exist a number of
approaches for the case when functions F*(x) are convex. In
particular, the Alternating Direction Method of Multipliers [7],
[8], as well as the subgradient method [9], [10] were proposed.
For non-convex tasks, the works [11], [12] develop a large
class of distributed algorithms based on various “functional-
surrogate units”. The distributed tracking problem is consid-
ered when the estimated parameters vary over time.

Recently, for large-scale systems consisting of many in-
dividuals (components, targets), a distributed optimization is
often used to estimate the unknown parameters which mini-
mize a loss function, based on the information obtained by
distributed sensors. So-called multitarget-multisensor tracking
problems have been widely studied in many practical ap-
plications such as adaptive mobile networks, cognitive ra-
dio systems, target localization in biological networks, fish
schooling, bee swarming, and bird flight (see, e.g., [13],
[14]). It is well known that distributed tracking algorithms
have some significant advantages over the centralized ones
or the fusion methods. Centralized algorithms usually require
the distributed sensor network to transmit the whole system
information into a fusion center to estimate the unknown
signals. This leads to the necessity of strong communication
capabilities over sensor networks which is hard to provide
in many practical situations when sensors may only have
the capability to exchange information locally between their
neighbors. An alternative approach for multitarget-multisensor
tracking problems assumes only local interaction between
sensors without the governing data fusion center. A detailed lit-
erature overview of the recent advances in the stability analysis
of a consensus-based least squares algorithms is performed in
[15] for distributed estimation and tracking problems.

The maximum likelihood estimator and stochastic approxi-
mation (SA) algorithms with decreasing to zero step-size are
actively used to optimize mean-risk functionals. In gradient-
free conventional stochastic approximation algorithms, two
measurements are used to approximate each component of
the vector-gradient of the cost function (implying 2d mea-
surements for the d-dimension state space). Simultaneous
perturbation stochastic approximation (SPSA) was proposed
by Spall [16]. It can be used to solve optimization problems



in the case when it is difficult or impossible to obtain a
gradient of the loss function with respect to the parameters
being optimized. In any multidimensional case (d > 1), SPSA
requires only two measurements of a loss function at each
iteration. The current estimate is updated along a randomly
chosen direction A with +1 Bernoulli distributed components.

Traditionally, a stochastic optimization problem under un-
certainties focused on finding a set of system parameters that
deliver a minimum (or maximum) value to a certain mean-risk
functional. In practical applications, these parameters may also
vary over time. The problem of tracking changes in system
parameters is considered in [17]-[19]. In this paper, such a
problem is called the minimum-point tracking of a nonsta-
tionary mean-risk functional. In centralized (non-distributed)
cases, SPSA-like algorithms for parameter tracking problems
were considered in [20]-[22]. The stochastic approximation
method with a constant step-size has also been used in [23]
to achieve the approximate mean-squared consensus in multi-
agent systems operating under noisy measurement conditions.

Contributions. In the case of differentiable time-varying
loss functions and almost arbitrary external bounded noise,
an upper bound of the mean square estimation error was
derived in [20] for estimates of the SPSA type algorithms
with constant step-size. This upper bound may be sufficiently
small compared to the significant level of noise when the rate
of change of parameters is low enough. One of the main
conditions is a strong convexity property of the minimized
mean-risk functional. In this paper we weaken this assumption
by combining SPSA with the consensus algorithm from [23].
We propose a new SPSA-based consensus algorithm for dis-
tributed tracking under unknown—but—bounded disturbances.
The preliminary concept of this paper is presented in [24].
In many practical applications, the network processes the
data under certain constraints, and the data transmission is
accompanied by noise. In this paper, compared with [24], we
consider such noisy data transmission and a communication
protocol with prespecified cost constraints on the network
topology. Also, we study a more general type of simultaneous
perturbation and we choose the current points of observations
in a more general manner. We obtain an upper bound of the
mean square error of estimates of unknown time-varing param-
eters tracking. Communication cost constraints are satisfied by
exploiting a specific intentionally randomized topology of the
network communication graph.

The paper is organized as follows. The preliminary infor-
mation regarding concepts of the graph theory and network
topology is given in Section II. A formal problem setting of a
distributed non-constrained time-varying mean-risk optimiza-
tion with noisy local communications is given in Section III.
The main result including assumptions and the SPSA-based
consensus algorithm for tracking is presented in Section IV.
In Section V, the efficiency of the proposed algorithm is
illustrated through the numerical simulation.

II. PRELIMINARIES

Let (2, F,P) be the underlying probability space cor-
responding to sample space (2, set of all events JF, and
probability measure P. E denotes mathematical expectation.

A. Concepts of Graph Theory

Given a network consisting of n sensors. Let the inter-
action between sensors be described by the directed graph
G = (N,E), where N = {1,...,n} is a set of vertices and
E C N x N is a set of edges. A subgraph of G is a graph
G = (Ng,&g), where Ng C N and &5 C &. Denote by i € N/
an identifier of i-th sensor and (j, i) € £ if there is a directed
edge from sensor j to sensor ¢. The latter means that sensor j
is able to transmit data to sensor i. For a sensor ¢ € A, the
set of neighbors is defined as N* = {j € N : (j,i) € £}.
The in-degree of i € N equals |[N?|. Here and after, || is the
cardinality of a set, and the identifier of ¢-th sensor is used as
a superscript and not as an exponent.

Let ¢/ > 0 be the weight associated with the edge
(4,7) € &, and ¢ = 0 whenever (j,i) ¢ €. Let C = [c¢"7],
be the weighted adjacency matrix, or simply connectivity
matrix. Denote by Go = (N¢,Ec) the weighted directed
graph, where No¢ = N and £ = £. We assume that
weight ¢/ is the cost of data transmission through the edge
(j,i) € Ec. The weighted in-degree of i € N¢ is defined
as deg; (C) = Y7 ¢/, the maximum in-degree among all
nodes contained in the graph Gc as degy. (C), and the diag-
onal matrix as D(C) = diag,, (col(deg; (C),...,deg} (C))).
Then, L(C) = D(C) — C is the Laplacian of graph G¢.

Definition 1. A directed graph G is said to be strongly
connected if for every pair of nodes j,i € N, there exists
a path of directed edges that goes from j to <.

Denote the eigenvalues of Laplacian £(C) by Aq,..., A\,
and arrange them in ascending order of real parts: 0 <
Re(M\1) < Re(A2) < ... < Re(\,). It is known, that if
the graph is strongly connected then A\; = 0 and all other
eigenvalues of £ are in the open right half of the complex plane
(see, e.g., [3]). The eigenvalue of matrix C' with maximum
absolute magnitude is defined as Apax(C).

B. Network Topology Constraints

In practice, we have constraints on the bandwidth of com-
munication channels, network response time, hardware and
financial requirements, efc. In this paper, we associate these
constraints with matrix C, which characterizes the cost of data
transmission in the network. In many practical applications,
we may represent cost constraints of sensor i € A as a
predefined upper bound Q: deg; (C') < Q. This bound may be
thought of as the total cost of communication with neighbors
of sensor 7. To satisfy this constraint, we may generate at
each time instant ¢ subgraph Gp, C G¢ associated with the
weighted connectivity matrix B; such that deg; (B;) < Q.
Obviously, the cost constraint deg; (B;) < @ may not be
satisfied for given B, = C and @, e.g. when n = 6, G¢ is
the complete graph with ¢/ =1, i # j, ¢ =0, and Q < 5.
One possible solution is to use a randomized topology, when
we drop 5 — () edges randomly. Such randomized strategy for
@ = 1 is similar to the scheme used in gossip algorithms [25].
Moreover, random subgraphs naturally arise in many practical
applications.

Next, we consider a communication protocol needed to
satisfy a predefined averaged cost constraint.



Definition 2. Random subgraph Gp, satisfies the averaged
cost constraints with level @ if

E degf..(B:) < Q. (1)

In the example considered above we are able to satisfy
averaged cost constraints if each sensor ¢ randomly selects its
neighbors out of all j € N* with probability s + A =0.2Q

at each time instant ¢.

III. DISTRIBUTED TRACKING
A. Non-stationary Mean-risk Functional

Let = be a set, {f{(f)}ce= be a family of differentiable
functions: Vi € N f(6) R? — R. We assume that
parameter 6 cannot be directly measured. Hence, we introduce
a sequence of measurement points x4, x5, ...,i € N chosen
according to an observation plan. The values y%,vs,... of
the functions fgt(~) are observable at every time instant { =
1,2,... with additive external unknown-but-bounded noise v;

yr = f¢,(x1) + v}, )

where {&:}, & € E, is a non-controllable deterministic (e.g.,
Z =N and & = t) or random sequence. In the latter case we
assume that a probability distribution of &; exists and may be
known or unknown.

Let F;_1 be the o-algebra of all probabilistic events which
happened up to time instant ¢, Ex, , denotes the conditional
mathematical expectation with respect to the o-algebra F;_1.
We consider an optimization problem in which the cost
function F}(0) is expressed as the sum of local contributions
Fi(0) = Ex,_ 1f5 (0) and all of them depend on a common
optimization variable . Moreover, minimizer 6 of F;(6)
may vary over time. Formally, the non-stationary mean-risk
optimization problem is as follows: estimate the time-varying
minimum point 6, of the distributed function
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More precisely, the problem is to obtain an estimate @\t of
an unknown vector 6, based on the observations v}, v5, . ..,y
and measurement points x%,x%,...,x¢, i € N, through the
minimization of time-varying mean-risk functional (3).

Remark. There exist two special cases of measurement
model (2) related to the different types of noise v} and distur-
bance &;: (i) If drift 6, is deterministic then F}(6) = fgt(ﬁ),
& = t, and the measurement model may be defined in more
conventional way as yi = Fy(x}) + vf; (ii) If noise v} has
a probability distribution then we may consider it as a part
of disturbance &;. The measurement model for this case is

= fe,(x0).

B. Communication Network

In centralized networks, it is required to transmit all needed
information such as y%,vs, ..., 9!, xi,x4,...,xi, i € NV, to
a fusion center in order to estimate the unknown vector 6;. In
such networks, robustness of the fusion center and quality of
the communication channels become a critical factor. In many

situations, sensors may only have the capability to exchange
information with their neighbors. The communication with
neighbors may be much cheaper or much faster then trans-
mission to fusion center as well. Moreover, the information
may be transmitted over the noisy communication channels
and with delays, and the network topology may vary over
time. Also, in practice, the network cost constraints naturally
arise. For example, we don’t have communication channels
with infinite bandwidth and the response time of the network
should be practically reasonable. All these factors motivate the
development of distributed decentralized algorithms.

To formalize the distributed setting, we assume that at time
instant ¢ sensors are able to communicate with their neighbors
through the network defined by graph Gp, = (N,,Ep,). The
corresponding connectivity matrix B, satisfies some averaged
cost constraints (1) with level Q. R

We also assume that sensor i obtains its current estimate 6
based on its noisy observation (2) and, if the set N = {j €
NB, : (j, i) € Ep, } is not empty, also on the current estimates
transmitted by its neighbors through the noisy channels

017 = 0] +wi?, je N, @)

where w;” is communication noise. If j & N} we set 6,7 = 0.

C. Example

In this subsection, we present an example illustrating the
considered problem statement. Given a distributed network
consisting of n = 6 planar sensors identified by i € N =
{1,2,...,6}. The state of sensor i is s° € R%. We assume
that the states are known and doesn’t depend on time, i.e.
the sensors are stationary. In the sensing range of the sen-
sors, there are m = 10 moving planar targets identified by
l € M= {1,2,...,10}. The goal of each sensor i is to
estimate the states of all targets r! € R? at time instant .

Let ; = col(r},...,r}%) € R?° be the common state vector
of all targets, 6! = col(¢:, ..., #7'%) be a common vector of
i-th sensor current estimates. Each target [ € M changes the
position according to the following dynamics:

ri :ré71+C£71,l €M7 (5)

where ¢!, are random vectors uniformly distributed in a ball.
We assume that at time instant ¢ sensor ¢ is able to measure
the squared distance pi' = p(si,rl) = ||rl — si||2 to some
moving target r.

The network is modelled by complete graph G, for which
we have the following topology constraints: each sensor i € N/
at each time instant ¢ is able to measure the noisy squared
distance to only one target [ € M and to receive estimates
19] and measurements pt’l only from one randomly chosen
neighbor j € N{. This leads to the communication protocol
satisfying averaged cost constraints with level () = 1 consid-
ered as example at the end of Section II.

Let sensor ¢ receive the current estimate and measurement
from some neighbor with identifier j € N. Denote by
u = col(4,j,1) the vector, where the first element is the
identifier of a sensor, the intermediate element is the identifier
of a neighbor, which shares its information with sensor ¢,



and the last element is the identifier of a target, which
this sensor observe at time instant {. Note that in general
there may be several intermediate elements. Also, denote
by pr(u) = p(st,r'™) — p(s?, r™) the residual between
measurements of sensor ¢ and its neighbor j. Here and after,
I(u) : Rl*l — R gives the last element of u. In this case,
using the square difference formula we derive

cvrl = DY = cvTovrl = cvTDR = 1Yl = HE, (6)
where " = [C“TC“}’C“TC“,H;‘ = [cuTouycnT Dy,
CY = 2(s’ —s")T, D} = pe(u) + ||s7)> — [Is"]|% and [
denotes a vector or matrix Moore—Penrose inverse.

Denote by U? the set of all vectors u with the first element 4.
Let u! € U’ be a random variable and input x = §/ be fixed.
We consider observation model (2) as follows

= fL () = [Tt —

where &, consists of all u} generated at time instant ¢, i.e.

H'?, (7)

& = col(O,up,u?,...,ud).

This leads us to following individual mean-risk sub-
functionals F}(x') = Ez,_,f{ (x'), which are equal to
IUili\ S wicp: T #91) — H2'||2 when positions of all targets

do not evolve over time.

IV. MAIN RESULT

In this section, we present the main result of this paper. All
proofs are relegated to Appendix.

A. SPSA-based Consensus Algorithm

Let A}'w k=1,2,..., i €N, be an observed sequence of
independent random vectors in R?, called the simultaneous test
perturbation, with symmetrical distribution functions P}c(-),
and let Ki(-) : R4 — R4 k =1,2,..., be a set of vector
functions (kernels). R

Let us take fixed nonrandom initial vectors 6 € R<, positive
step-size «, gain coefficient 7, and choose sequences of such
nonnegative numbers {ﬂ;’} and {f3, } that 3, = 6,‘:+Bk_ > 0.
We consider the algorithm with two observations of distributed
sub-functions ff (0) for each agent i € N for constructing

sequences of measurement points {x:} and estimates {01}

sz = 92k o+ BEAL Xy = ‘92k 2 — B AL
9% 1= 9% 2 o ®
Oy = 03—y — @ (7y2kj3i2k_leg(A§c)+

V2N, b1 (057, _%k—l))-

Algorithm (8) consists of two parts: (i) The first one is
similar to SPSA-like algorithm from [20]. This part represents
a pseudo-gradient of sub-functions fgt (6); (ii) The second
one coincides with Local Voting Protocol (LVP) from [23],
where it is used to solve load balancing problem in stochastic
networks. This part is determined for each sensor ¢ by the
weighted sum of differences between the information about
the current estimate 93 1 of sensor 7 and noisy information
about the estimates of its neighbors.

Further, we denote by 6, = col(A!,...,8") the com-
mon vector of estimates of all sensors at time instant ¢
and by 0, = col(9;", 62", ..., 00" 6,2, ...,0"") the cor-
responding vector of data transmitted over the noisy chan-
nels. Also we introduce the following notations: y, =
diag, (col(yl, ..., yP). A = col(KL(AL),..., KJ(AD)).
Using the notations introduced above, the algorithm (8) can
be rewritten in the following form

B — Byt — @ [(m—yw % 1d> At
Br
ol <ﬁ2k_1 ® Id) 5%-1] &)

where (n x n?) matrix Lo;_1 is defined in such a way that
its ¢-th row consists of zeros except the elements from the
position (5 — 1)n + 1 to jn which coincide with i-th row of
L(Bak-1)-

B. Main Assumptions

For any 7 € A let us formulate assumptions about functions
Fi(x), fE( x), disturbances, network topology, randomized
perturbatlons Afﬂ, and noises.
1: The functions F}(-) are convex, they have a common
minimum point ¢, and

vx €R? (x — 0y, Ex, Vi (x)) >0

2: V€ € B, Vi € N the gradient V fﬁ( x) satisfies the Lipschitz
condition: Vx;,xs € R?

IV fe(x1) —

with the same constant M > 0.

3: The gradient V fﬁit is uniformly bounded in the mean-
square sense at the minimum point 6;: Vt E[|V f{ (6:)[1> < g3,
E(V e, (00),V f¢,_, (01-1)) < g3 (g2 = 0if & is not a random
parameter, i.e. f¢,(x) = F{(x)).

4: The drift is bounded: a) ||6; — 6;—1|| < &9 < oo, or
E[l6, — 01| < 67 and E|l6, — 01|11 — 6s-a]l < 53
if a sequence {&:} is random;
b) By, lf2, (%) — £, ()]
for ¢ = 1,2 and for any i € V.
5: a) Graphs Gp,, t =0,... are i.i.d., i.e. the random events
of appearance of “time-varying” edge (j,%) in graph Gp, are
independent and identically distributed for the fixed pair (3, 7),
ieNhje'/\[max Ut'/\[ti' .

b) For all i € N, j € N} weights b;”’ are independent ran-
dom variables with mean values (mathematical expectatlons)
Eb’ = bd, and bounded variances: E||B; — Ba,|? < 0%

av?

where By, = [by7]. .
) EY en: (07)” < 755
d) Graph g B,, 18 strongly connected.
6: For k = 1 2,..., the successive differences 0}, = vl —
vy of observatlon noise are bounded: |0}| < ¢, < oo, or
E(9%)? < ¢ if a sequence {0} } is random.
7:Fort=1,2,...,VYi € N,Vj € N the communication noise

wy LI is random ii. d (independent identically distributed) with
zero-mean Ew}” = 0 and bounded disturbances: E||w}”||? <

Vfi(x2)| < Mjx1 — xa

< 0596 + 91llx — O2x—2|)



012”. All random vectors and values wi’j s bi’j , &, and &1 are
mutually independent (if they are random).

8 Foranyi,jeN, k=1,2,...,

a) Vectors A’ are mutually independent.

b) A}; and &o,—1, &2 (if they are random) do not depend on
the o-algebra For_2. .

o) If o1, &p, 05, Wyl _|,byy | are random, then random
vectors AL and elements Eop, 1, Ear, UL, Whi_,,bb]_ | are
independent.

d) For k = 1,2,..., vectors A% and vector functions K¢ (-)
along with simultaneous perturbation symmetrical distribution
functions Py (-) satisfy the conditions

/ka(dx) = /x||KZ(x)||2Pk(dx) = /K?C(X)Pk(dx) =0,
/(e,x}K};(X)Pk(dx) = (e,14)14, / ||X||2Pk(dx) < 02A7 (10)

/ 1K () [P (dx) < A, / 1K (30) |2 [P () < A

Note that all Assumptions 1-8 are standard for the consid-
ered problem.

Remark. Usually, it is practically reasonable to define {A}
as a sequence of independent Bernoulli random vectors from
R? with each component independently taking values i%
with probabilities % and K (x) = x as kernel functions. For
this case, we have ca 1. The case, when ,6’,': = [, and
decreasing to zero sequence « is used instead of constant
step-size «, corresponds to the SPSA algorithm in [16].
The similar algorithm with randomly varying truncations and
randomized difference was studied in [26] where the case
B, = 0 was additionally considered.

Example. Return back to the example from Section III-C
and check Assumptions 1-5.

1. Using (6) and (7), we obtain for gradient

(X = 0. E, ,VfL (x)) = B, (x40 — pl o) T[T

i

T (M) — )y >

2. Using (7), we obtain [Vfi(x1) — Vfi(xa)|
20 )71 (™) — %) < Mjxa — xu|, where M =
max; [|2[7%]T 1.

3. Vfét (6;) = 0. Hence, go = 0.

4. Assumption about the drift holds for Jp = nd; and by
virtue of drift model (5) when (} are random i.i.d. vectors
with B¢/ = 0, and E[|G[|* < 62, g0 = 4v25%, g1 = 8v/257,
where 5 = max; ; [|s" — 7.

5. a), ¢), d) hold by the construction; in b) b%J = 0.2, i # j,
bii =0, 0% =438,

av

C. Analysis of the Estimation Accuracy

To analyze the quality of estimates we apply the following
definition for the problem of minimum tracking for mean-risk
functional (3):

Definition 2. A sequence of estimates {6, } has an asymp-
totically efficient upper bound L > 0 of residuals of estimation
if Ve > 0 3k such that Vk > k

VEIs, — 10 ® a2 < L+c.

Denote Ao = Re(A2(L(Bav)))s  Am =
1 + ~

M (L(Baw)"L(Bay)). ¢4 = maxy, 2, f = maxy, £,

5N L (8\ & B | (B

e = max (%) + (%) 8 = maxe G5 4 G

Cm A2, + 0B o cAAmM (89918 + ca),
c2 = 2070039187 + AM?), ¢, (A2 — ac1)/em,
Cq = \/1 —a2cacm /(Mo — acy)?.
The following theorem shows the asymptotically efficient
upper bound of estimation residuals provided by algorithm (8).
Theorem 1: If Assumptions /-8 hold, f = ming3; > 0,
positive constant « is sufficiently small:

A2

o< — 11
1+ 4/Ca2Cm, (n

and
cu(l—cq) < ay < cu(l+cq) (12)

then the averaged cost constraint (1) holds and the sequence
of estimates provided by algorithm (8) has an asymptotically
efficient upper bound which equals to

z:l(mm),
o

where 1 = 2y — a(cpmy? + a(2ye1 + ¢2)), h = yes + ca,
= Q2 +cs, ]

c3 = 2/MAmbp + almea M (89903 + BA), )

cs =M (cq + cAgic+2cA (1 + cp)) g + AM?B,

47;69 + 20 <ﬁ~2n(cg +6292) + cAenM (¢, + 89go)+
C:SAHMB(M59+§QC++92))+ ~
2Mn(62cs + cAB) + An (03(1 + ci)? + g3 + M?3%c4) .

See the proof of Theorem 1 in Appendix.

Remarks. 1. The bound L in the Theorem 1 is tight, so there
exists no I’ < L such that the statement of the Theorem 1
still holds if all inequalities from the Assumptions 1-8 are
replaced by equation.

2. The observation noise v} in Theorem 1 can be said to be
almost arbitrary since it may either be nonrandom but bounded
or it may also be a realization of some stochastic process
with arbitrary internal dependencies. In particular, to prove
the results of Theorem 1, there is no need to assume that vfﬁ
and F;_; are not dependent.

3. The proof of Theorem 1 allows for consideration of
random sequences {3, } and {3, } whose values at iteration &
are measurable under the corresponding o-algebra Foi_o. This
fact is sometimes useful from a practical point of view.

4. The result of the Theorem 1 shows that for the case
without drift (69 = 0) and go = 0 under any noise level ¢,
the asymptotic upper bound can be made infinitely small by
choosing sufficiently small o and ﬁ,:f. At the same time, in the
case of drift, the bigger drift norm Jg can be compensated by
choosing a bigger step-size a and 3;=. This leads to a tradeoff
between making o smaller because of noisy observations and
making « bigger due to the drift of optimal points.

13)

Cy =



V. SIMULATION

In this section, we present the numerical experiments, which
illustrate the performance of the suggested algorithm. We
apply the algorithm to the problem described in Section III-C.

The starting positions of the targets are chosen randomly
from the interval [0; 100]. The states of the targets evolve over
time as follows: v} = rl_; + x!_;. Let x}_; be a random
vector uniformly distributed on the ball of radius equal to
0.2. The sensors don’t move and their coordinates are random
values uniformly distributed in interval [100; 120]. We consider
observation model (2) defined as i = |79 #1(%) — F |2 4
v}, where v} is modelled as unknown-but-bounded disturbance
falling withing interval [0.6; -0.6].

Algorithm (8) working on each node has the following
parameters: o = 0.03, 8 = 1.5, v = 1.5. The initial estimate
on each sensor for each target coordinate was chosen randomly
from the interval [50;100]. Fig. 1 shows how the residuals
evolve over time. Figures show that there exists time instant ¢
starting with which the estimations converge to the actual value
and move next to it.
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Fig. 1. Residuals \\I“if“i*l(“b — H;'*||? obtained by nodes.

VI. CONCLUSION

In this paper, we proposed a new SPSA-based consen-
sus algorithm for distributed tracking under unknown-but—
bounded disturbances. Compared to the SPSA algorithm, this
algorithm is suitable for distributed problems due to the
relaxed assumption regarding the strong convexity of the min-
imized mean-risk functional. In many practical applications,
the network processes the data under certain constraints, and
the data transmission is accompanied by noise. In this paper,
we consider such noisy data transmission and the case where
a communication protocol has to satisfy prespecified cost
constraints. Communication cost constrains are satisfied by
exploiting a specific intentionally randomized topology of the
network communication graph. We obtain an upper bound on
the mean square error of estimates of tracking unknown time-
varing parameters under unknown-but-bounded observation
errors and noisy communication channels.
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Fig. 2. The estimates f'i’l obtained by nodes and actual targets positions
r, . (Empty circles denote sensor positions, targets movement is depicted as
a series of shaded circles and plus signs show the estimated target positions.)
The figure shows sparse data for clarity: each 50th position of targets and the
estimates.
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APPENDIX

Proof of Theorem 1. At first, we prove that the averaged
graph Gp,  corresponds the average cost constraint (1).
By virtue of Assumption 5¢ and Cauchy-Bunyakovsky-

Schwarz inequality, we get
2
2 < \/nQ— =Q.
n

=E) b’ <
iEN
Hence, the average cost constraint (1) holds.
At second, we study the asymptotic mean square properties
of residuals 7y = [|far, — 1,, @ Oax|].

ECost(By)

Denote 8, = 4-((¥2r —¥2r—1) ®1a) Ay, d 9Zrt 1 =0
d; = col{d},.. d”} where [-] is a celling functlon,
o il 1,2 oy oo
we = col{w;t,wit o wih o wit o witY, v =
col{of, ..., o0},

Let Fr—1 = o{Fk—1,Var—1, Vor, E2k—1, ok Ay Bop—1}
be the o-algebra of probabilistic events generated
by Fr—1, Vo1, Var, §2k—1, Sk, Ag, Bag—1, “and
Fr—1 = o{Fr—1,Var—1, Var, §2k—1, §2k, Ak}
Fr—1 = 0{Fk—1,Vak—1, Vak, §2k—1, 2k}

Fr_1 C ]:—k—l C fk71 C -%k—l C Fp.

By yirtue of communication model (4), we obtain 92 =
1, ® 0; + w; and, according to the algorithm (9), we have

Nk =
[02k—2 — 1, ® Oop — S — ayLok—1(1n ® Oo_2 + Wy)|| =

= |lgk — Sk + ayLok—1Wap—_1||

where g = (Ina — @yL(Bak—1) ®1g)dog—2 4+ 1n ® (op—2 —
fs1) since it is not so hard to prove that (L(Bar—1) ®
I4)1,, ®05;,_o = 0 based on the properties of Laplasian matrix
L(Bak—1). Taking the conditional expectation over c-algebra
Fr_1, by virtue of Assumption 6, we derive

Ez  ni = |8k — 8ell” + a®y*|| Bar—1 |07,
since E]:__kil‘XIQkfl = 0.

Assumption Sc¢ gives the bound: Ez, || Bax—1]* < Q>
Taking the conditional expectation over c-algebra Fi_1, by
virtue of Assumption 5b, we get

Ez, i = |l&r —skl® + a®7*(Q%07, + ofmi_y)
since E]:-kil(ﬁ(BQkfl) — E(Bav))agk,Q =0.

So, we obtain Ez,_ 77 =

18k [1* + lI8k 1% — 2(8x. 8k) + ®7*(Q%0%, + oBmi_y)- (14)
By virtue of Assumption 8c,d we have Ez 0, K} (A}) =
Ez 0Ez Ki(AL) =Ez -0 :~0. Hence, taking the
conditional expectation over o-algebra Fj_; of both sides of

the (14) and using observation model (2), we can assert the
bound for Ez 73 as follows:

5 - i Fiei (A
Ez 1} SEﬁk,lnng?dE > (di. Bz, | FiKL(AD)+
ieN
+2/7 > (ay(L(Bay)dby, . Ez | FiKi(AL)+
k e/\/
. ~\ 2 . .
7 oS B (o + ) IKLADI
Bi iEN
a? Q%% + obmi_y)

where fi = fi (xor) — fi,  (Xon—1). .
Under fulfilment of Assumption 5d, we have Ay > 0 (see
[1]). Hence, for the first term in (14) we derive

Ngxll? < a5 (Tna — av(£(Baw) @ 1a))" x
(Ind — ay(L(Baw) ® Ia))dak—2 + Ez
dQTk 2(Ind - V(E(Btw) @ Id))Tln ® (92k—2 - ‘92k)+
110 ® (O21—2 — boi)[I* < mi_y — d_payx
(L(Bav) ® Ig)"dag—2 — d3;,_50y(L(Bav) ® Ig)dog—_o+
04272dgk—2(1nd - L(Bav) ® Id)T(E(Bav) ® Id)ko—2+
Ez  207m—1v/nl(Ta — @y (L£(Ba) 102k -2 — x| + 4nd}

< (1= 2a9Ag + a2 N2 )ni_y + dayv/n\deng_1 + 4ndy.
(16)

For any x,z € RY, by virtue of Taylor representation of
fé (%) for t+ =2k — § + §, we have

foo(x) = fe, (@) +(VfE (247, (x

5)

207X

—2z)),Xx — z),
17

where pzti € (0,1).

For difference f}, adding and subtracting (V f _ (z),x}s —
z), we derive: '

fi = Z +fls(z

(V[ (2),xix —2) £ Mix(z) (18)



where Mi(z) = (Vfi.(z + g, (ke = 2)) -
Vfg i( z),X Xie — z). Hence, for z = 9%,9,2, by virtue of

Assumption 8c, we have Eﬁk_lfch;c(AZ) =
DAV, Ohyo)BE By M (0, _)KL(A)),

since Bz, f/. (2)K}(A}) =0
According to the Assumption 2, we have
| M (92k )l < MHPg i(xti 92k Q)Hﬁk ||A | <
M (B | AR (19)

We can evaluate the second term in (15), using formula (19)
and applying Assumptions 2,

Q*ZZ Oop,—o — Os+, Vfgi(GQk 2)BF) — 2 x

zEN t+ Br

Z(Q% — 021, V[, (05, 2)B7) + 2%]\/—[0?2. Z(ﬂfct)z
iEN k t+

Here the conditional expectation over o-algebra F,_; for first
terms with minus is not above zero by Assumption /. By virtue
of definition we have IEf,ﬁlVfg%il (fo,_1) = 0. Hence,
applying the first part of Assumption 4, we get

< QFME]:k 1 Z 596k ||d 2k— 1H +CA (<5lj)2
ieN

+(8:)%)

< 2aM (Sgcy (mr—1 + ndg) + ncx B) -

To evaluate the conditional expectation over o-algebra Fr1
of the third term in (15) we use the following representation
for the difference f}

f]z = ffl2k (sz) - f§i21«—1 (x2k) + ngk—l (XQk) - fé2k—1 (x2k*1)

= S fE (o) + (VL B3 £ pE, BEAL), BEAL)
+*

which is based on Taylor formula (17). By adding and sub-

traction ) . (Vfg% (O2r—1), BEAL), using the first part of
Assumption 9, we derive Efkilf,zK?(Afg) =

Bz, , > (EFi, (xa) (VL On_otol By AL), By AL))

+*
<K} (AL) + (VL (Bar—1), 1a)14.

Taking the conditional expectation over o-algebra Fj_1, by
virtue of properties Ex, ,Vf{ ~ (#2x—1) = 0 and the As-
sumptions 2,4,9, we get

Er i (AR < (B6(g0 + g1l dbe o)+

ZM E}_k 1Hd 2k — 1|| +Bk CA)Bk CA) CA

T

(20)

2
<280 %

Br
AmMeani—1 (60(go + g1me—1) + Brca(mr—1 + Bea)) <

Hence, for the third therm in (15) we have ...

2
(0% - _
257:>\mMCA ((6091 + Brea)ni—1 + (dago + BrBcA)mi—1) -

Summing up the conditional expectations over o-algebra
Fi_1 of the second and third terms in (15) we derive

< )
< 20% YA Men <Zgl + cA> ni_, + 2aM (Sgcy+
k

) _ _
Y Am (;‘ZOCA + ﬁci)) Ne—1 + 2aMn(53cy + A B). (21)

Consider the squared difference (o} 4 f})2. Using for-
mula (18) with z = 0s;_o, the sum (0, + fi) can be
represented as a sum of five terms 0y + f; = a1 + a2 +
as + a4, where a; = Uk, ay = Zti ifti(egk 2) as =
S (VI (Ook—2), ALBE), and ag = 3 s =M. (Gar—2).

The first two terms do not depend on Aj and
Ez  agALIKL(AL)? =0, ¢ = 1,2, by virtue of Assump-
tion 8. Hence, we derive Ez (0}, + FD2 KL (AL <

CZEﬁk,l(al +az)* +2(a1 + ag + az)ay +aj + a3 <

ARz, 2(af + a5 + (la1| + |az| + |as])|as]) + af + af.
We need to estimate E;kflaﬁ, q = 1,...,4 and we can
Er,_,a2, ¢ = 1,...,4 for the
rest terms. Taking the conditional expectation over o-algebra
Fi—1, by virtue of Assumptions 2—4 and (19), we evaluate
Er,,ai < ¢, Ex,laz|? < 6(g5+9flldde—oll?), ¢ = 1,2,

Er, ,af < qBr,_, (D (VF, (Oon—2)-VFi, (0:2), ALB))"

+*

use formula Ex, ,|aq| <

+q (wag‘ti (6,), 2/3;5) < 264, ((MBy(||dyy_sll + J0)

t*
+50B:)) Bkgz) q=12,
Er,_ a5 < M*((B)" + (B,)*)ca
Taking the conditional expectation over o-algebra Fj,_; for

the fourth term in (15) we get using Assumptions 2—5
o2

2
—Er_, Z(Uk + D2 IKL(AD)? < A =5 (2 (nc?+
ﬂk ieEN ﬂk
nozge + 62g3n7_1 + (ncy 4+ ndago + degrm—1+

caM Brnk—1 + nea (MéoBe + 868, + Brgz)) ¥

M(BE)? + (By)P)ca + ci (MPn_ 1 BE + 206(Br + B
M Bynk—1 +n(55(Br + B> + Brg3))) +
nM?((8;5)° + (85 )?)?cA) - (22)

Summing up the findings bounds (16), (21), (22) and taking
the conditional expectation over o-algebra Fj_1, we derive the
following from (15)

EF, 1k < (23)

Consider the condition 0 < pa < 1 of Lemma 2 from [20].
The right part holds since Ay < ¢,,. The left part is satisfied by
virtue of condition (11)—(12). Hence, taking the unconditional
expectation of both sides of (23), we see that all conditions of
Lemma 2 from [20] hold for e;, = \/En3.

This completes the proof of Theorem 1.

(1 — pe)ii_y + 2ahi—1 + al.

O



