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ABSTRACT

Objective: To validate automatic sleep stage classification using deep neural networks on sleep assessed
by radar technology in the commercially available sleep assistant Somnofy® against polysomnography
(PSG).
Methods: Seventy-one nights of overnight sleep in healthy individuals were assessed by both PSG and
Somnofy at two different institutions. The Somnofy unit was placed in two different locations per room
(nightstand and wall). The sleep algorithm was validated against PSG using a 25-fold cross validation
technique, and performance was compared to the inter-rater reliability between the PSG sleep scored by
two independent sleep specialists.
Results: Epoch-by-epoch analyses showed a sensitivity (accuracy to detect sleep) and specificity (accu-
racy to detect wake) for Somnofy of 0.97 and 0.72 respectively, compared to 0.99 and 0.85 for the PSG
scorers. The sleep stage differentiation for Somnofy was 0.75 for N1/N2, 0.74 for N3 and 0.78 for R, whilst
PSG scorers ranged between 0.83 and 0.96. The intraclass correlation coefficient revealed excellent and
good reliability for total sleep time and sleep efficiency, while sleep onset and R latency had poor
agreement. Somnofy underestimated total wake time by 5 min and N1/N2 by 3 min. N3 was over-
estimated by 4 min and R by 3 min. Results were independent of institution and sensor location.
Conclusion: Somnofy showed a high accuracy staging sleep in healthy individuals and has potential to
assess sleep quality and quantity in a sample of healthy, mostly young adults. More research is needed to
examine performance in children, older individuals and those with sleep disorders.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Radar technology has a great potential for home sleep assess-
ment as it is completely non-intrusive. Technology based on im-

The gold standard for objective sleep assessment, poly-
somnography (PSG), is typically performed in a sleep laboratory
and data needs to be manually scored by a sleep technician, making
it obtrusive, costly and less suitable for longitudinal studies. Hence,
there is a need for validated low-cost equipment for the assessment
of sleep, which is user-friendly, accurate and non-intrusive. From a
clinical and research perspective, the capacity to obtain longitudi-
nal sleep—wake data may individualize treatment decision and
health optimization and improve disease phenotyping.
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pulse radio ultra-wideband (IR-UWB) radar sensor technique has
been shown to reliably monitor vital signs in real-time as respira-
tory and cardiac events, as well as limb movements [1—4]. Respi-
ration and movement have been shown to correlate with REM and
non-REM sleep [5,6]. Recently, an IR-UWB radar was developed for
the purposes of sleep assessment [7]. In the pilot validation study
against PSG, the IR-UWB radar quantified sleep and wakefulness by
an algorithm integrating movements from all body parts. Results of
the study revealed a small overall discrepancy between PSG esti-
mates for total sleep time, and the mean sensitivity (radar = sleep
when PSG = sleep) and specificity (radar = wake when
PSG = wake) were higher or comparable to that reported for acti-
graphic studies [8]. Despite the promising results of the IR-UWB
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radar technique, the algorithm tended to overestimate wake after
sleep onset and underestimate sleep onset latency [7].

The radar technology and algorithms for tracking sleep have
since been under continuous improvement. These efforts have
resulted in the commercially available sleep assistant Somnofy.
Somnofy utilizes respiration and movement data derived from ra-
dar technology to classify sleep stages using machine learning. In
addition to sleep stage classification, Somnofy has built-in sensors
for collecting data from the sleeping environment (light intensity
and colour composition, audible noise level, room temperature, air
quality, air pressure, air humidity). It is also possible to track other
relevant data through the Somnofy app (exercise, diet, medication,
etc), which can be coupled with other Bluetooth devices to collect
relevant data such as heart rate and oxygen saturation.

The aim of the present study was to investigate if Somnofy can
provide accurate and reliable classification of sleep stages when
compared to PSG. The present study was limited to healthy in-
dividuals and mostly involved young subjects. Specifically, the
study aimed to validate both overall sleep parameters as well as
epoch-by-epoch sleep staging of wakefulness (W), non-REM sleep
(N1/N2, N3) and REM sleep (R).

2. Materials and methods
2.1. Participants and data sample

One hundred and two volunteers were recruited through in-
formation at lectures among students at the University of Bergen
or social media. The inclusion criteria were healthy adults 18 years
or above. Twenty-three participants were later excluded from the
final analyses as PSG indicated presence of sleep disorders, such as
sleep apnoea (AHI > 5, n = 16), periodic limb movement disorder
(PLMI > 15, n = 10) and narcolepsy (n = 1). These participants
were used for training the algorithm and included in a separate
analysis for preliminary results on sleep assessment in partici-
pants with sleep disorders. Further, eight recordings were
excluded due to missing more than 2 h of Somnofy data. Five
nights lacked approximately half an hour of Somnofy data, but
these nights were kept and compared to the corresponding PSG
recordings. Thus, 71 nights of recordings from 71 different persons
(43 females) with a mean age of 28.9 years (SD = 9.7, range 19—61
years) constituted the final data set. The sex and age distribution
are shown in Fig. 1.

2.2. Procedure

Assessments took place at two different institutions: at the
Colosseum clinic in Oslo, Norway, where participants slept in
sound-attenuated bedrooms (n = 37) and at the University of
Bergen, Norway, where participants slept at home (n = 34). Lights-
on and lights-out times were self-selected. Two Somnofy units
were placed per room. One unit was placed at the nightstand (by
the head) and one was placed on the wall (above the head). Both
units aimed at the participants' chest.

The participants at the sleep clinic were not allowed to drink
alcohol 48 h prior to sleep assessment and could not smoke during
the assessments. The participants sleeping at home could use to-
bacco freely but did not consume alcohol the evening before
assessments.

2.3. Polysomnography
PSG was performed according to the technical specifications by

the American Academy of Sleep Medicine (AASM) [9] with SOM-
NOscreen plus (SOMNOmedics, Germany). The electrodes included
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Fig. 1. Distribution of participants age and gender. The x-axis is divided in five years
buckets while the y-axis shows the count of participants/nights per bucket. Gender is
denoted by orange colour for females and blue for males.

electroencephalography (EEG; F4—M1, F3—M2, C4—M1, C3—M2,
02—M1, 01-M2), bipolar submental electromyography (EMG), and
electrooculography (EOG; E1-M2, E2—M1). Additional measure-
ments were used to screen for the presence of any sleep disorder:
EMG anterior tibialis, electrocardiogram (ECG), and respiration
sensors (nasal cannula, thermistor, thoracic and abdominal respi-
ratory inductance plethysmography and pulse oximetry). Sleep
stages (W, N1, N2, N3 and R) were scored in 30 s epochs according
to the AASM criteria [9].

A total of five sleep specialists (hereafter named Europe_1,
Europe_2, Europe_3, Europe_4 and USA_1 for geographical loca-
tion) took part in manual scoring, and each recording was scored
separately by two sleep specialists.

2.4. Somnofy

Somnofy (version 0.7, VitalThings AS, Norway) with sleep al-
gorithm version 1.0 was used. Somnofy is certified according to the
Federal Communication Commission (FCC) and “Conformité Euro-
péene” (CE). Movement and respiration from the sleeping person
were derived from the IR-UWB radar. Simply put, the radar emitted
pulses that were reflected by objects and returned to a receiver. The
average sampling rate was 23.8 GHz. Through configuration, the
samples were transformed into a 3-m-long frame of 5 cm bins
which was updated with a frequency of approximately 17 Hz. Time-
of-flight (the time it takes for a signal to return to the receiver), was
used to put the signals into the different bins, denoted by the dis-
tance (range) between the object and the radar. The radar can
therefore detect multiple objects and separate them by their dis-
tance. This allows for precise measurements of behaviour of a
specific person even in the presence of, eg multiple persons in the
bed, a moving fan, or moving curtains. The received signals within
each bin were analysed using the Doppler effect and Fast Fourier
Transformation (FFT). Respiration rate was derived every second
using FFT with a 20-s Hanning window, ie every rate had 19 s
overlap with the previous rate. Movement was calculated as the
change in the received signal over time and was divided in fast
movements and slow movements analysing changes over 6 s and
20 s, respectively.

This radar technology is harmless to human beings as the high
sampling rate and large bandwidth enables the use of waves that
transmit less energy than tolerable background noise (<FCC Part 15



56 S. Toften et al. / Sleep Medicine 75 (2020) 54—61

limit). The frequencies used allowed the pulses to travel through
soft material such as bed sheets and clothes and only reflect on
denser materials like the human body.

The sleep algorithm was mainly based on non-causal temporal
neural networks like Temporal Convolutional Networks (TCN) and
Long-Short-Term-Memory (LSTM) recurrent neural networks
(RNN) that are fed with respiration and movement data from the
radar. Non-causal means that the network can use information
from the future if available, but maximum 2 h ahead. In other
words, the algorithm will go back in time and update sleep stages if
necessary. The network was trained to reduce the categorical cross
entropy of the sleep stages W, N1, N2, N3 and R when compared to
the PSG nights, ie sleep specialists acted as the supervisor in su-
pervised learning. When the sleep stages were classified, they
passed a state transition filter before N1 and N2 were merged to
N1/N2 (light sleep). Somnofy and PSG were synchronized in time
by maximizing the cross-correlation between the movement from
Somnofy and movements from PSG. The output of the algorithm
comprises sleep stages classified in 30-s epochs to mirror standard
PSG scorings.

2.5. Validation technique

The sleep algorithm was validated using a k-fold cross validation
technique. This technique enables validation of machine learning
models on the same data set it was trained on, as a neural network
can “remember” a night it has seen before. The total data set of 94
PSG nights were split in k-groups. One group was taken out of the
data set, and the algorithm was trained on the remaining k — 1
groups. After being trained, the algorithm was validated on the
group that was originally taken out. This process was performed k
times until all the groups had been validated. In the present study k
was set to 25, resulting in 3—4 PSG recordings per group.

To assure that the results were generalizable (to prevent over-
fitting), the following measures were taken: 1) All PSG nights were
scored by two sleep specialists. Only scorings from Europe_l1,
Europe_2 and Europe_3 were used for training the algorithm
(PSGTrain), while Europe_4 and USA_1 were used for validation
(PSGValidate). 2) For each bedroom, one sensor location (nightstand
or wall) was used for training the algorithm and the remaining
sensor location was used for validation. The sensor locations were
picked randomly for each bedroom for each fold in the cross vali-
dation, assuring that the sleeping environment, from Somnofy's
point of view, was unseen at the validation.

2.6. Statistical analysis

For each nightly recording, the precision of Somnofy in terms of
quantifying sleep compared to PSG was calculated for parameters
central to clinical sleep medicine and sleep research. These pa-
rameters were: time in bed (TIB; minutes from lights-out to lights-
on), total sleep time (TST; minutes asleep within TIB), sleep onset
latency (SOL; minutes from lights-out to the first epoch of any sleep
stage), R latency (minutes from SOL and to the first epoch of R),
wake after sleep onset (WASO; minutes of wakefulness between
sleep onset and final wake up), sleep efficiency (SE expressed in
percentage; TST/TIB * 100), total wake time (TWT; minutes awake
within TIB), and time spent in each stage of sleep (minutes in N1/
N2, N3 and R).

Sleep staging across trained PSG-scorers does not necessarily
agree, both due to the interpretation of scoring rules set by AASM,
the quality of the signals and any pathology during sleep, which may
complicate the defining of a specific sleep stage [10,11]. Hence, in
addition to comparing Somnofy to PSG, Somnofy was also compared
to the inter-rater variability of PSG scorers. Here, ‘Somnofy’ will be

used as agreement between Somnofy and PSGValidate (Europe_4
and USA_1), and ‘PSG’ will be used for the agreement between
PSGTrain (Europe_1, Europe_2 and Europe_3) and PSGValidate. The
agreement on the quantitative sleep parameters was assessed by
the intra-class correlation (ICC) parameter [12], which was calcu-
lated with the one-way random effects model [ 13] using the ANOVA
module in the NAG Numerical Library (website: https://www.nag.
com/numeric/py/nagdoc_latest/readme.html). ICC values less than
0.50 indicate poor reliability, values between 0.50 and 0.75 indicate
moderate reliability, values between 0.75 and 0.90 indicate good
reliability, whereas values greater than 0.90 indicate excellent
reliability [13].

Further, the mean absolute disagreement (MAD) was calculated
to estimate the expected disagreement, and standard deviation
(SD) was calculated to estimate the expected variance of the
disagreement. Subsequently, Bland-Altman plots [14,15] were
made in order to investigate if Somnofy had any tendency to un-
derestimate or overestimate any given sleep parameter. The mean
difference (or bias), and lower and upper agreements limits (mean
difference + 1.96 * SD) were calculated. Biases were tested against
zero for significance.

Finally, scorings obtained from each epoch by Somnofy and
PSGValidate, and PSGTrain and PSGValidate were cross tabulated and
the degree of agreement between them was quantified by means of
the Cohen's kappa coefficient, as well as sensitivity (accuracy for
detecting sleep), specificity (accuracy for detecting wake), and ac-
curacy for classifying the individual sleep stages (N1/N2, N3, R and
W). Cohen's kappa higher than 0.80 is considered to reflect almost
perfect agreement, 0.80 to 0.61 substantial agreement, 0.60 to 0.41
moderate agreement, 0.40 to 0.21 fair agreement, 0.20 to 0.11 slight
agreement, and values less than 0.10 are considered to reflect no
agreement [12,15].

3. Results
3.1. Quantitative sleep parameters

Table 1 shows the mean, standard deviation and range of the
quantitative sleep parameters for the 71 PSG recordings. Note that
SOL, WASO and TWT were slightly higher than normal due to warm
nights disrupting the sleep of some recordings.

The quantitative assessment of the agreement between PSG
scorers (PSGTrain versus PSGValidate), and between Somnofy and
one PSG scorer (Somnofy versus PSGValidate) for the different sleep

Table 1
Quantitative sleep parameters as calculated by PSG for the 71 nights used in the
study.

Mean (SD) Range (min, max)
TST (min) 405 (55) (190, 516)
SOL (min) 21(17) (3,78)
R Latency (min) 96 (44) (42, 248)
WASO (min) 37 (30) (5, 142)
SE (%) 88 (8) (58,97)
TWT (min) 58 (36) (12, 181)
N1/N2 (min) 233 (45) (139, 326)
N3 (min) 85 (28) (37,159)
R (min) 87 (28) (13, 141)
AHI (#/hour) 09(1.1) (0.0, 4.9)
PLMI (#/hour) 1.5(24) (0.0, 13.8)
Arl (#/hour) 7.3 (4.1) (0.0, 23.5)

N1/N2, N3 and R represent the time in minutes spent in the corresponding sleep
stages. TST = Total Sleep Time, SOL = Sleep Onset Latency, WASO = Wake After
Sleep Onset, SE = Sleep Efficiency, TWT = Total Wake Time, AHI = apnoeas and
hypopneas per hour of sleep, PLMI = periodic limb movements per hour of sleep,
Arl = arousals per hour of sleep, SD = standard deviation.
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parameters are illustrated in Table 2. The ICC coefficients indicate
that the interrater agreement between the PSG scorers was mod-
erate to excellent, while Somnofy varied from excellent to poor
agreement compared to PSG defined sleep. For all the nine variables
presented, the interrater agreement was higher for the PSG scorers
than for Somnofy. The difference was smallest for stage N1/N2 and
TST, for which Somnofy was about as reliable as PSG (ICC difference
smaller than 0.10). Somnofy was slightly less reliable than PSG for
SE and TWT (ICC difference between 0.10 and 0.20), and substan-
tially lower than PSG for measures of SOL, R latency, WASO, N3 and
R (ICC difference larger than 0.20).

The expected disagreement measured by MAD and the expected
variance of the disagreement measured by SD showed that for N1/
N2, Somnofy was almost equal to PSG. However, the expected
disagreement for TST, R latency, SE, TWT, N3 and R was about twice
as high for Somnofy compared to PSG. For SOL and WASO the ex-
pected disagreement of Somnofy was about three times higher
than PSG.

The combined box and swarm plot in Fig. 2 displays the
disagreement between Somnofy and PSG. For all sleep parameters,
the pattern in terms of disagreement for Somnofy and PSG was
similar. However, Somnofy had more outliers, which is consistent
with the high standard deviations in Table 2. For R latency, the
disagreements were either small if there were disagreements
regarding when the first R cycle started, or they were large if the
disagreements concerned whether the “first” R episode was pre-
sent. Both PSG and Somnofy had both type of disagreements, but
Somnofy had more of the large disagreements.

The Bland—Altman plots in Fig. 3 display the evaluation of the
limits of agreement between Somnofy and the average of PSGValidate
and PSGTrain per night. For SOL, Somnofy showed an average dif-
ference approximating zero and most of the points diverged little
from this average. However, Somnofy may have difficulties in
extreme cases, as suggested by the high mean value of SOL (>80 min).

The slope of the regression line was almost flat for SOL and SE
(absolute value of the slope times the range less than 0.1 SD). For
TST, R latency and time spent in R the slope was positive, indicating
that Somnofy tended to overestimate more the higher the value. On
the other hand, for WASO, TWT, N1/N2 and N3 Somnofy tended to
underestimate more the higher the value.

3.2. Epoch-by-epoch agreement analysis

Epoch-by-epoch (EBE) analysis was performed for both PSG and
Somnofy. Fig. 4a and b shows the obtained confusion matrices of

Table 2
Quantitative analysis of PSG vs Somnofy for the quantitative sleep parameters.
PSG Somnofy
ICC (95% CI) MAD (SD) ICC (95% CI) MAD (SD)
TST 0.98 (0.97,0.99) 7.91(10.83) 0.94(0.90,0.96) 14.77 (20.01)
SOL 0.92 (0.87,0.95) 3.32(6.73) 0.38 (0.16, 0.56)  9.72 (21.67)
R Latency 0.59(0.41,0.72) 19.25(45.10) 0.28 (0.05,0.48)  39.96 (62.93)
WASO 0.94 (0.91, 0.96) 6.65(10.13) 0.68 (0.54,0.79)  15.96 (22.78)
SE (%) 0.95(0.91,0.97) 1.75(2.43) 0.84(0.75,0.89)  3.14 (4.20)
W 0.95(0.92,097) 7.91(10.83) 0.83(0.74,0.89) 14.77 (20.01)
N1/N2 0.62 (0.44, 0.74) 33.71(33.08) 0.59 (0.42,0.72)  35.09 (40.89)
N3 0.57 (0.38,0.70) 21.96 (26.26) 0.08 (—0.15,0.31) 34.11 (40 50)
( ( ( )

R 0.78 (0.66, 0.85) 13.62(16.39) 0.50(0.30, 0.65) 24.73

Intraclass correlation coefficient (ICC) with 95% confidence interval (CI) and the
mean absolute disagreement (MAD) in minutes (% for sleep efficiency) for PSG
(PSGTrain vs PSGValidate) and Somnofy (Somnofy vs PSGValidate) with corre-
sponding standard deviation (SD). N1/N2, N3 and R represent the time in minutes
spent in the corresponding sleep stages. TST = Total Sleep Time, SOL = Sleep Onset
Latency, WASO = Wake After Sleep Onset, SE = Sleep Efficiency, TWT = Total Wake
Time.

the EBE agreement for the sleep stages N1/N2, N3, R and W. The
average Cohen's kappa coefficient was 0.63 (SD = 0.10) for Som-
nofy, indicating a substantial agreement with PSG, and 0.82
(SD = 0.10) for PSG indicating almost perfect agreement (Table 3).
For Somnofy the agreement ranged between 0.72 and 0.78 whilst
PSG scorers ranged between 0.83 and 0.96. The lowest agreement
was obtained for N1/N2, both for Somnofy and for PSG scorers.

Finally, Table 3 shows the accuracy, sensitivity and specificity for
PSG and Somnofy. Somnofy had substantial agreement on all three
parameters; accuracy: 0.76 (SD = 0.07), sensitivity: 0.97 (SD = 0.03)
and specificity: 0.72 (SD = 0.19). A representative hypnogram, with
kappa = 0.62, accuracy = 0.74, sensitivity = 0.95, and
specificity = 0.79 is presented in Fig. 5.

3.3. Other analyses

The performance of Somnofy in relation to data collected in a
home environment or in a sleep clinic did not differ as the Cohen's
kappa was close to identical (home environment: 0.62, SD = 0.11,
n = 34; and sleep clinic: 0.61, SD = 0.10, n = 37). Also, the position
of Somnofy in the room did not differ in terms of sleep stage
detection (nightstand: 0.61, SD = 0.10, n = 34; and mounted to the
wall: 0.62, SD = 0.10, n = 37). The body position was measured by
the PSG at the sleep clinic and showed only minor influence on
Somnofy's accuracy (left side position: 0.79, n = 6173 epochs; right
side position: 0.72, n = 5234; prone position: 0.75, n = 1362; and in
supine position: 0.76, n = 13936). The results for the nightstand
units (left side position: 0.76, n = 3182 epochs; right side position:
0.71, n = 3158; prone position: 0.79, n = 825; and in supine posi-
tion: 0.75, n = 8167) and the wall units (left side position: 0.81,
n = 2991; right side position: 0.75, n = 2076; prone position: 0.70,
n = 537; and in supine position: 0.77, n = 5769) separately did not
show significantly lower precision for the positions where the chest
was facing away from the sensor, which was the right side position
for the nightstand units and prone position for the wall units.

The accuracy and Cohen's kappa were independent of gender
with 0.76 (SD = 0.07) and 0.62 (SD = 0.10) for females and 0.75
(SD = 0.07) and 0.61 (SD = 0.11) for males, respectively. The present
data set was too limited to conclude on significance in specific
clinical population groups. However, our preliminary results showed
that for the twenty-three nights excluded from the validation study
due to indication of sleep disorders (PLMD, sleep apnoea or narco-
lepsy, n = 23), the Cohen's kappa was 0.53 (SD = 0.11), accuracy was
0.71 (SD = 0.08), sensitivity was 0.92 (SD = 0.10) and specificity was
0.69 (SD = 0.19). Compared to the results for the healthy population
kappa, accuracy, sensitivity and specificity decreased with —0.10,
—0.05, —0.05 and —0.03, respectively.

All nights were scored by two groups of sleep specialists,
PSGTrain and PSGValidate. Table 4 displays epoch-by-epoch inter-
scorer variability between all pairs of scorers present in the study.
For our sample of scorers, USA_1 disagreed with Europe_3 more
than any other pair. The difference stemmed mostly from scoring of
N1/N2 and N3, where the American scorer tended to score less N3
(nightly average of 53 min vs. 87 min) and more N1/N2 (nightly
average of 280 min vs. 226 min) than the European scorer. The ICC
for PSG for N1/N2 and N3 in Table 2 showed moderate reliability,
but if USA_1 was excluded from the calculations the ICC would be
0.85 and 0.83 respectively (ie good reliability). Somnofy was vali-
dated against USA_1 and Europe_4, and the Cohen's kappa agree-
ment was 0.60 and 0.62, respectively.

4. Discussion

The present study demonstrates the ability of Somnofy to esti-
mate sleep and wake in a healthy population. Compared to
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Fig. 2. The boxes refer to the first and third quartiles of the disagreement between Somnofy and PSGValidate. Each orange dot represents the agreement for one night between
Somnofy and PSGValidate, while each blue dot represent the difference between PSGTrain and PSGValidate for the same nights. The y-axis indicates the difference in minutes (% for
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Fig. 4. Distribution of epoch-by-epoch agreement of sleep state classification between PSGValidate on the y-axis and Somnofy (a) or PSGTrain (b) on the x-axis. Numbers are
normalized such that each row sums up to one. Epochs agreed on are found on the diagonal.

Table 3
Epoch-by-epoch analyses of PSG vs Somnofy.
PSG Somnofy
Mean (SD) Mean (SD)
Cohen's kappa 0.82(0.10) 0.63 (0.10)
Accuracy 0.88 (0.06) 0.76 (0.07)
Sensitivity 0.99 (0.02) 0.97 (0.03)
Specificity 0.85(0.11) 0.72 (0.19)

Comparison of Cohen's kappa (for W, N1/N2, N3, R classification), accuracy (for W,
N1/N2, N3, R classification), sensitivity (accuracy for detecting sleep) and specificity
(accuracy for detecting wake) for PSG (PSGTrain vs PSGValidate) and Somnofy
(Somnofy vs PSGValidate). SD = standard deviation.

manually scored PSG, Somnofy scored sleep/wake robustly with
0.97 of true sleep epochs scored correctly, and 0.72 of true wake
epochs scored correctly. The sensitivity and specificity are like that
of simplified PSG solutions that only use frontopolar EEG [16]. The
challenge for non-intrusive sleep tracking devices is to reliably
detect wakefulness. The specificity found in the present study was
higher than that reported for actigraphy (0.34—0.65) [17—19]. To
our knowledge, Somnofy shows the highest specificity compared to

other non-EEG systems, including other contactless monitoring
devices that use technology based on passive infrared, sonography,
or pressure sensation [17—23]. Validation of the radar based
Resmed S+ showed similar specificity, but their data set contained
almost twice the amount of wake as ours, most likely making it
easier to correctly classify wake [24].

The utility of the radar and the temporal neural network sleep
scoring introduced here are illustrated by the ability to detect time
spent in the different sleep stages and sleep timing parameters.
Epoch-by-epoch comparisons showed that Somnofy accurately
detected N1/N2 in 0.75, N3 in 0.74 and R in 0.78 of the epochs
compared to PSG, with an average absolute disagreement of 1, 12
and 11 min more than between manual PSG scores, respectively.
Such disagreements should be tolerable considering the average
total amount of N1/N2 (233 min), N3 (85 min) and R (87 min)
detected by PSG. PSG N3 and PSG R were mostly misclassified by
Somnofy as N1/N2 with 0.23 and 0.18 of the epochs, respectively.
Cohen's kappa for PSG was significantly larger than for Somnofy
(0.82 versus 0.63, respectively), for which much of the difference
was due to more precise timing of state transitions for PSG. Dis-
tinguishing between N1/N2, N3 and R with non-EEG based systems
has been and still is challenging. The sleep stage differentiation of
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Fig. 5. Example of an hypnogram from Somnofy and PSG for a night with approximately average score on Cohen's kappa for W, N1/N2, N3, R classification (0.62), accuracy for W,

N1/N2, N3, R classification (0.74), sensitivity (0.95) and specificity (0.79).
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Table 4
PSG inter-scorer reliability.

Europe_1—Europe_4

Europe_2—Europe_4

Europe_3—Europe_4 Europe_3—USA_1

Count (%) 19 (27%) 15 (21%)
Kappa 0.88 0.85
Accuracy 0.92 0.90
Kappa W 0.89 0.84
Kappa N1/N2 0.85 0.81
Kappa N3 0.90 0.87
Kappa R 0.91 0.89

7 (10%) 30 (42%)
0.82 0.75
0.88 0.84
0.88 0.83
0.77 0.70
0.77 0.68
0.87 0.82

Measures of PSG inter-scorer variability for the paired scorer combinations in the study. Kappa is short for Cohen's kappa for W, N1/N2, N3 and R classification. Europe_1,
Europe_2 and Europe_3 was used to train the sleep algorithm, and Europe_4 and USA_1 was used to validate the algorithm.

Somnofy was more precise than that of other non-EEG technology
providing sleep stages as Fitbit Charge 2 [22], Oura ring [21] and
Resmed S+ [24]. Simplified PSG with only frontopolar EEG showed
higher accuracy than Somnofy [16], but the less intrusive alterna-
tive, in ear-EEG, was worse [25].

An important factor evaluating sleep detecting technology is
performance on quantitative sleep parameters. The Bland—Altman
plots revealed that Somnofy was consistent with PSG on TST, TWT,
WASO, SE and SOL, except from extreme cases with long SOL, short
TST or low SE. Although the Bland—Altman intervals of agreement
were quite wide in the present study, the mean differences be-
tween Somnofy and PSG were low, indicating little bias. The ex-
pected absolute disagreement per night (MAD) between Somnofy
and PSG was 8 min more for TST, 9 min more for WASO, 8 more
minutes for TWT and 7 min more for SOL than the expected
disagreement between two manual PSG scorers. For TST, which
averaged 405 min per night, 8 min is negligible, while for WASO
(37 min per night), TWT (58 min per night) and SOL (21 min per
night) the disagreements are substantial. Similar Bland—Altman
plots have however been found for other technologies [21,22].

Somnofy seems to handle different sensor locations and
sleeping environments well. There was no significant difference in
performance when the unit was placed in a home environment or
in a sleep clinic, nor if the unit was placed on a nightstand or
mounted to the wall. Neither the sleeping position seemed to
matter in terms of validity. The accuracy was also consistent across
genders.

The results show that while PSG remains the reference method
for sleep scoring, Somnofy showed high precision in an automated
and non-invasive way. Sleep analysis with Somnofy is less rich in
content than that of PSG, as no brain wave morphology like spindles
and K-complexes are detected. Despite this fact, the hypnograms
from Somnofy provide good reliability of the night's sleep quality.
This could make Somnofy an adequate alternative to PSG for lon-
gitudinal studies on healthy adults as the cost, scalability and user
simplicity should be superior to PSG. Increased access to accurate
longitudinal studies could enhance sleep research by uncovering
new correlations and understandings about sleep and sleep
dependent physical and mental performance.

4.1. Limitations

This study was limited to a healthy population of mostly young
adults. Further studies are required in order to validate Somnofy for
elderly people that move more during sleep, and for populations
with different (sleep)disorders, including sleep related breathing
disorders and movement disorders.

Moreover, lights-out/lights-on was indicated by the partici-
pants. Somnofy's own algorithm for detecting these markers were
not investigated. Further, the study only investigated full nights of
sleep; data on power naps were not investigated. The validated

hypnograms were generated by Somnofy after final wake-up, in the
same way as manual PSG is scored in hindsight. Somnofy can also
do real-time sleep classification during the night, but this was not
validated in this study. Furthermore, the participants in the present
study slept alone. Somnofy can differentiate between two subjects
sharing the bed by setting the distance parameter in Somnofy to a
distance between them. In this study the distance parameter was
set to 3 m.

4.2. Future research

Although, yet to be investigated, we reason that Somnofy has
large potential for clinical utilization. While the present study
mainly included healthy adults, twenty-three participants showed
indications of PLMD, sleep apnoea or narcolepsy. For these nights,
Cohen's kappa and specificity were only reduced by 0.10 and 0.03,
respectively. These preliminary results must be further validated in
much larger populations as sleep consolidation and movements
will vary in accordance with age and clinical status. Nevertheless,
the results are promising and if neural networks are trained on
more cases of sleep disorders, we hypothesize a better perfor-
mance. Furthermore, information on sleep stages combined with
movement and respiration data from the radar, have the potential
to be used for development of algorithms that can be validated as a
screening tool for specific sleep disorders.

4.3. Conclusions

The present study shows that Somnofy, using radar technology
and machine learning, can provide information not only about
sleep and wakefulness, but also about sleep stages. The study
demonstrated that Somnofy can classify sleep stages with sub-
stantial agreement against PSG for healthy young adults, making it
promising for epidemiological sleep research on this population.
Further validation studies are needed in order to conclude about
the precision of this device in clinical settings, and across different
age groups.
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which make it impractical for longitudinal studies. The present
study validates non-intrusive radar technology and machine
learning (Somnofy®) against PSG. The results show that Somnofy
can provide automatic sleep stage classification with a precision
close to PSG in a sample of healthy, mostly young subjects. This type
of technology can open a wide range of opportunities for epide-
miological sleep research.
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