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Abstract—Recently, traffic flow prediction has drawn significant
attention because it is a prerequisite in intelligent transportation
management in urban informatics. The massively-available traffic
data collected from various sensors in Transportation Cyber-
Physical Systems brings the opportunities in accurately forecast-
ing traffic trend. Recent advances in deep learning shows the
effectiveness on traffic flow prediction though most of them only
demonstrate the superior performance on traffic data from a
single type of vehicular carriers (e.g., cars) and does not perform
well in other types of vehicles. To fill this gap, we propose a
wide-attention and deep-composite (WADC) model consisting of
a wide-attention module and a deep-composite module in this
paper. In particular, the wide-attention module can extract global
key features from traffic flows via a linear model with self-
attention mechanism. The deep-composite module can generalize
local key features via Convolutional Neural Network component
and Long Short-Term Memory Network component. We also
perform extensive experiments on different types of traffic flow
datasets to investigate the performance of WADC model. Our
experimental results exhibit that WADC model outperforms other
existing approaches.

I. INTRODUCTION

E have recently witnessed the rapid advances in trans-
portation cyber-physical systems (TCPS) with provi-
sion of convenient and efficient traffic management. There
are also diverse travelling manners from vehicular driving
to bicycle-riding. Meanwhile, the increased traffic flows also
result in the traffic congestion problem, which has become
one of the main obstacles for urban development [1], [2]. The
deployment of TCPS brings the opportunities to address this
problem. In particular, the proliferation of traffic data collected
from traffic sensors, instruments and other transportation fa-
cilities in TCPS also brings opportunities in overcoming the
traffic congestion, making prediction and enforcing precaution
in advance after analyzing the massive traffic data.
The core of traffic prediction is to predict the traffic tendency
for the next time interval via analyzing the historical traffic
data. In the past decades, a number of studies started to
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Fig. 1. Traffic flow comparison between vehicular data and cycling
data

adopt machine learning (ML) approaches to investigate the
extensive traffic data for traffic flow prediction. For example,
support vector regression (SVR) is one of the traditional ML
methods to predict the short-term traffic flow [3]. Meanwhile,
Artificial Neural Network (ANN) [4] is employed in predicting
traffic flow time series. However, the traditional ML algorithms
cannot capture the complex non-linear spatial-temporal depen-
dency from traffic flow data.

Recently, deep learning (DL) models have shown the advan-
tages in extracting valuable information from massive traffic
data and outperforming other ML models in terms of accuracy.
In particular, Convolutional Neural Network (CNN) model
demonstrates the outstanding performance in predicting the ve-
hicle speed after converting vehicular traffic to images, which
are then processed by CNN models [5]. Meanwhile, Long
Short-Term Memory Network (LSTM) shows the advantages
in forecasting traffic speed via learning the temporal features
from traffic flow data [6].

However, previous ML and DL approaches used in traffic
prediction have their limitations. In particular, most of ML and
DL approaches only adopt a sole ML or DL model so that they
may perform excellent on a specific dataset while performing
worse on another traffic dataset. Our urban transportation
systems essentially consist of different types of transportation
carriers. The traffic peaks at different transportation carriers
may be different from each other. Take Fig. 1 as an example,
in which there are two kinds of traffic flows: vehicular traffic
as shown in Fig. 1(a) and cycling traffic as shown in Fig.
1(b), where the traffic flow is represented by the number of
vehicles or bicycles during the ¢-th time interval from source A
to destination B. Note that both vehicular traffic and cycling



traffic are obtained from realistic datasets'. We can observe
from Fig. 1 that cycling flow data and vehicular flow data
have different peak hours while cycling flow data has more
significant fluctuations than vehicular flow data. For example,
the peak hour for vehicular flow is about 7:30 am in the
morning while the peak hour for cycling flow is 5:30 pm in the
afternoon. Moreover, vehicular traffic may last a longer period
of peak hours than cycling traffic. The reason may lie in the
fact that cycling is more like a sport being more susceptible
to weather conditions than driving vehicles, which is less
influenced by weather conditions. In addition, vehicular traffic
is often affected by many conditions, such as transportation
facility settings (the number of lanes, traffic lights, the volume
of carriers) and holidays (or special events). In contrast, cycling
traffic is less influenced by the above factors since bicycles
have often been ridden on special bike lanes, where there are
no traffic lights.

It is necessary to design a DL model to better analyze traffic
flow data with consideration of various types of traffic flows.
To this end, we originally propose a wide-attention and deep-
composite (WADC) model. The main research contributions
of the paper can be summarized as follows.

e We put forth a composite DL model to analyze dif-
ferent types of traffic flows. In particular, our WADC
model consists of a wide-attention module and a deep-
composite module. The wide-attention module can ex-
tract global key features from traffic flow data. Dif-
ferent from wide module used in existing studies, we
leverage the attention mechanism based on L; and L,
regularizations so as to better capture different features
from different types of traffic flows. Meanwhile, the
deep-composite module consisting of LSTM and CNN
components is beneficial to learn complicated features
while requiring less feature engineering.

e We run a number of experiments to investigate the
performance of our WADC model. Specially, we adopt
different types of realistic traffic flow datasets (i.e.,
vehicular traffic flow and cycling traffic flow). Mean-
while, we investigate the performance of our WADC
model with comparison with other nine representative
baseline approaches. The experimental results exhibit
that our proposed model outperforms than existing ML
and DL models. In addition, we further investigate the
impacts of various parameters, such as regularization
methods, the varied number of convolutional filters and
LSTM neurons, in WADC model. Consequently, exper-
imental results on different type traffic flow datasets
have demonstrated that our model has the advantage
in generalization, i.e., the ability of being adapted to
different type traffic flows.

The rest of the paper is organized as follows. Section II
presents the studies on tradition ML and DL models. Section
IIT describes the main proposed methods in details. Section
IV gives the experimental evaluation results. In Section V, we

ICaltrans Performance Measurement System (CPeMS) from California,
USA, http://pems.doc.ca.gov; Fremont Bridge Bicycle Counts (FBBC) at
Seattle, USA https://data.seattle.gov.

conclude this paper and outline future research directions.

II. RELATED WORK

This section reviews recent advances in traffic flow predic-
tion. We classify recent research into two types: traditional
machine learning approaches (in Sec. II-A) and deep learning
approaches (in Sec. II-B).

A. Traditional machine learning

Traditional traffic flow prediction models include parametric
models such as Autoregressive Integrated Moving Average
model (ARIMA) [7], Kalman filtering model [8] and their
extensions. For example, EMD-ARIMA model [9], Seasonal
ARIMA [10], an integration of Kalman filter and ARIMA [11]
have been reported for traffic flow prediction in literature.
These time series prediction methods have been developed
to assist Transportation Cyber-Physical Systems (TCPS) to
analyze traffic flow and predict the traffic trend.

Besides ARIMA, Kalman filtering model and their variants,
non-parametric machine learning (ML) approaches have been
widely used in traffic prediction in TCPS. The representative
ML methods include Support vector regression (SVR), deep
regression (DR) and Artificial Neural Network (ANN) that
have been adopted in the traffic prediction through learning
from massive traffic data. In particular, SVR was proposed
for short-term traffic flow forecasting in [3], which is an
online learning weighted algorithm. Meanwhile, the work of
[12] shows that ANN has been applied in short-term traffic
flow forecasting and shown a superior performance than other
traditional ML approaches.

B. Deep learning approaches

Compared with traditional ML, deep learning (DL) ap-
proaches provide a promising way in capturing the complex
features from a huge volume of data so as to have diverse
industrial applications, such as sentimental analysis [13] and
electricity-theft detection [!4]. Furthermore, DL approaches
have also been applied in traffic prediction. For example, ref.
[15] proposed a deep neural network architecture model using
auto-encoders as building blocks to learn the features for traffic
flow prediction. As in [16], the authors proposed a traffic
forecast model on top of LSTM network. The work of [17]
applied gated recurrent neural network (GRU) to predict urban
traffic flow with consideration of weather conditions.

Over the last several years, composite DL methods have
drawn significant attention since composite DL methods have
the advantages in extracting various features from traffic flow
data [18]. In particular, ref. [19] combined CNN and LSTM to
construct a LSTM-CNN model to extract the spatial-temporal
features from the traffic flow data. Ref. [20] proposed a Wide
& Deep (namely W&D) framework for jointly training deep
neural networks. As in [21], the authors present a Deep &
Cross Network (DCN) to improve the efficiency in learning
all types of features. Moreover, the composite DL models
have shown their advantages in traffic flow forecasting. To
address the challenges of spatial and temporal dependency, a
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Fig. 2. Wide-attention and deep-composite (WADC) model

novel model called Diffusion Convolutional Recurrent Neural
Network (DCRNN) was proposed by Li et al. [22]. Ref.
[23] designs an end-to-end learning architecture called Fusion
Convolutional Long Short-term Memory Network (FCL-Net)
which merges convolution processing and LSTM structure,
to address the passenger demand problem. Furthermore, ref.
[24] shows that the composite models present the excellent
performance than the sole DL models.

Therefore, we summarize the existing approaches having
two major limitations. First, most of traditional ML methods
are suffering from efforts in data preprocessing and low
prediction accuracy. Second, most of these DL models can only
capture partial features while missing multi-dimensional data.
Motivated by recent improvement in composite DL methods,
we introduce a WADC composite structure to predict the
different types of traffic flow data. Moreover, compared with
tradition ML and DL models, WADC can concentrate on
key global features via wide-attention module and extract key
local features from deep-composite module, thereby achieving
significant performance improvement.

III. OUR APPROACH

In this paper, we propose a wide-attention and deep-
composite (namely WADC) model as shown in Fig. 2. Sec-
tions III-A and III-B then give the details of wide-attention
module and deep-composite module, respectively.

A. Wide-attention module

As shown in Fig. 2, WADC model consists of wide-attention
module and deep-composite module. In particular, as shown
in Figs. 2(a) and (b) (i.e., magnified views), the wide-attention
module contains two major components: a linear model and
a self-attention mechanism. In the linear model, x; denotes
a specific traffic flow and f(z;) is the prediction function of

traffic flow x;. The relationship between f(z;) and x; can be
expressed as the following equation,

f(xi) = Wa; + b, @

where W denotes the weight value and b denotes the bias value.
The linear module is beneficial to capture the relationships be-
tween individual features via using simple feature engineering.
Specifically, feature engineering can generate various derived
features from the traffic flow. However, the embedding matrix
f suffers from the redundancy if the linear model always
obtains the approximate sum of weights each time.
Therefore, we adopt regularization optimization methods to
normalize the weights and mitigate the bias. The regularization
process can enhance the diversity of the sum values of weight
vectors across different individual features. The regularization
methods mainly include kernel-regularizer and bias-regularizer
in the neural network. The kernel-regularizer punishes the
weights and the bias-regularizer reduces the bias. In particular,
we mainly leverage these regularizers to improve the diversity
of attention mechanism and avoid overfitting for traffic flow
data regression. We first use kernel-regularizer to regularize
the weight matrices via Lo regularization [25]. The main
idea of Lo regularization is basically to minimize the sum
of the squared differentiation (denoted by S) between the
target weight and the estimated weight denoted by W and W,
respectively. The Ly regularization can expressed as follows,

N

S=> (W-W,)> @)

i=1

We then employ bias-regularizer to regularize the bias value
via L, regularization. The main idea of L; regularization is
to minimize the sum of the absolute differences (denoted by
S’) between the targeted bias and estimated bias denoted by
b and b;, respectively. The L, regularization can expressed as



follows,
N
S'=>"|b—byl. @)
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The second key component in the wide-attention module is
self-attention mechanism. In particular, self-attention mecha-
nism shows a superior equilibrium between the capability of
modeling long-term dependencies and the efficiency of com-
putation and statistics. For example, we utilize self-attention
mechanism in the feature map to calculate the feature response
representing a weighted sum of the features at all positions.
Therefore, we can calculate the attention weight with a low
computational cost. This mathematical expression of self-
attention mechanism is shown as follows,

fT (i) f(z5)
N
where e;; denotes the relation between i-th value and j-th value
and the transposed matrix of f(z;) is denoted by f7(z;). As
shown in Eq. (4), the score of attention map is divided by
\/dy, representing the square root of vector dimension of matrix
f(x;). Moreover, compared with previous methods, this step
can lead to a faster convergence.
In addition, the attention weight of the ¢-th value corre-
sponding to j-th value is also denoted by a;;, which is given
as follows,

@

€ij =

a;; = softmax(e;;) = M 5)

-2, exples)
Moreover, we denote regularization self-attention feature
maps representing the output of wide-attention module by
Yide, Which is given by the following equation,

Ywide = aij f(x;) = softmax(e;;) f(z4). Q)

B. Deep-composite module

The deep-composite module consists of an LSTM com-
ponent and a CNN component, as shown in Figs. 2(c) and
(d), respectively. The LSTM component can essentially learn
the temporal sequential dependency and the CNN component
enables to extract the features from one-dimensional (1D)
sequences traffic flow data. We then discuss the details of these
components as follows.

1) LSTM component: LSTM network is a variant of re-
current neural network (RNN) to settle the exploding and
vanishing gradient problem [26]. Basically, a common LSTM
unit is composed of a cell ¢; and three gates (i.e., input/output
gates, a forget gate), controlling the new information stored
by the input gate and the previous information discarded by
the forget gate. Thanks to the learning capability of long-
term dependencies, LSTM has the strength of capturing the
temporal sequential dependency in traffic flow prediction. The
output values of LSTM are calculated as follows,

it = o(Wize + Ushi—1 + b;), @)
fe=0(Wypae +Uphs 1+ by), (8)
ot = 0(Woxy + Ushy—1 + bo), ®
0; = tanh(Wsxy + Ushi—1 + bs), (10)

ct = ft ©ct—1 + it © O, (11)
ht = ot © o(ct), (12)

where i;, f; and o; denote input gate, forget gate and output
gate, respectively. Meanwhile, 6; is a tanh layer to create a
vector consisting of new candidate value in the cell state. We
also denote Hadamard product by operator ®. The hidden state
vector and the cell state vector are denoted by h;_1 and ¢,
respectively. In particular, Wy, U, and b, (p € {i, f,0,s})
are the learning parameters.

2) CNN component: Compared with convention artificial
neural network (ANN), the advantage of CNN is that each
neuron connects to its bordering neurons rather than all neu-
rons. Meanwhile, CNN can extract and map the internal fea-
tures from one-dimensional sequences data (denoted by CNN-
1D). Due to the excellent ability of identifying simple time
sequences, we then employ the CNN-1D layer to capture key
features from time sequences of traffic flow data. Moreover,
the CNN-1D layer only brings a low computational complexity
computational cost due the simple 1-D CNN structure.

The CNN-1D layer takes Y} as input YY, where Y} = h,.
The formulation of each convolutional layer [ can be computed
as follows,

-1
Yacep = Y}, = f(O_ conviD(Wi, Y, 1) + b)), (13)
i=1

where Yqeep 18 the output of deep-composite module, Wﬁc and
bfc denote the weight and bias at the £*® neuron at layer I,
respectively. In particular, conv1D(-) is used to perform one-
dimensional convolution and f(-) is an activation function.

C. Concatenated layer

Finally, the concatenated layer combines the outputs of
the wide-attention module and the deep-composite module.
Then, it exports the final traffic flow prediction via feeding
the combined features to the activation function. In particular,
the concatenated layer can deal with the weighted sum of the
out of these two modules together and optimize the learning
parameters, simultaneously. The concatenated layer mainly
consists of a fully-connected layer. We denote the predicted
traffic flow by Y, which can be calculated as follows,

Y= f(wt . Concat[Ywidev Ydeep] + bC)v (14)

where Concat[-] denotes a concatenated function to combine
Ywide and Ygeep. In the concatenated layer, the learning
parameters for weight and bias are denoted by W, and b,
respectively.

D. Algorithm analysis

Algorithm 1 summarizes the whole working procedure of
our proposed WADC model. In particular, our model can
extract different features via wide-attention module (lines 1-
5) and generalize the deep feature combinations via deep-
composite module (lines 6-10). Consequently, the robustness
of model can be improved and the computational cost for traffic
flow prediction can be reduced. We then combine results Y y;qe



Algorithm 1 WADC model training procedure

Input: Input features: x; and x
Output: Traffic flow prediction

1: function WIDE-ATTENTION MODULE(x;)

2 Linear model: f(x;) = W(x;) + b,

3 Self-attention: Balance long-range dependencies and computational.
4 return wide features: Yyide

5: end function
6: function DEEP-COMPOSITE MODULE(x+)
7: LSTM component: Capture the temporal sequential feature.
8 CNN component: Extract the features from 1D sequences.
9: return deep features: Yqeep
10: end function
11: function CONCATENATED LAYER(Y wide, Ydeep)
12: Concatenate wide and deep features to fully-connected layer
13: Y = f(W. - Concat[Ywide, Ydeep] + bc)
14: end function
15: Optimizer: RMSProp

and Ygeep via the concatenated layer (lines 11-14). Finally,
We select the root mean square prop (RMSProp) optimizer to
minimize the square errors between the prediction value and
the actual target value (line 15).

IV. EXPERIMENT
A. Experimental Settings

We perform the experiments on an Intel Core i7-7700HQ
CPU and 16 GB Memory (RAM). In particular, we employ a
Nvidia GTX 1050 GPU with 4 GB GPU Memory to improve
the effect of training phase. In the framework, we use Keras
2.0 (i.e., Tensorflow as backend) with Python 2.6 in Ubuntu
16.04 platform.

1) Dataset description: We run the experiments on two
widely-utilized datasets in traffic flow prediction. One is
CPeMS dataset. The CPeMS dataset is collected every 30
seconds in real-time from more than 15,000 detectors, which
have been deployed in highway systems across major urban
areas of California, USA. We excerpt a subset of data records
from a certain highway in CPeMS, in which there are 12,096
road driving records and the length of each time interval is
chosen as 5 minutes (from Jan. 04, 2016 to Mar. 31, 2016).

Another dataset is Fremont Bridge Bicycle Counter (FBBC)
dataset. It records the number of bikes, crossing the Fremont
bridge (at Portland, Oregon) on the pedestrian or bicycle
pathways. In particular, the detectors on the pathways count
the passing of bicycles regardless of travel direction. The
FBBC dataset contains 59,832 records and each time interval
is chosen as 1 hour (from Oct. 03, 2012 to July. 31, 2019).

2) Training settings: In our experiment, each dataset is di-
vided into two subsets: 1) the training set and 2) the validation
set. For example, the training set of CPeMS contains 7,776
traffic flow records from Jan. 04, 2016 to Feb. 29, 2016 and the
validation set of CPeMS contains the remaining 4,320 records.
Another training set of FBBC contains 54,744 records from
Oct. 03, 2012 to Dec. 31, 2018 and the validation set contains
the remaining 5,088 records.

3) Performance metrics: In our traffic flow prediction ex-
periments, we adopt three metrics to evaluate the predic-
tion accuracy: the root mean square error (RMSE), which

TABLE I. Performance Comparison with Conventional Models

Models CPeMS dataset FBBC dataset
RMSE | MAE | MSLE | RMSE | MAE | MsLE
ARIMA | 625e+01 | 5.42e+01 | 1.97e+00 | 1.44e+02 | 1.08¢+02 | 2.60e+00
SVR 5650400 | 4700400 | 333e-01 | 121402 | 7.43e+01 | 140400
DR 57202 | 431e-02 | 160e03 | 4.08e-02 | 230e-02 | 8.80e-04
CNN 4816-02 | 37102 | 120e-03 | 337e-02 | 2.07e-02 | 7.76e-04
SAES 485e:02 | 355¢-02 | 116e-03 | 244e02 | 1.32e:02 | 3.90e-04
LSTM | 45902 | 2.82e-02 | 107e-03 | 224e02 | 12102 | 3.17e-04
GRU 443e:02 | 239¢-02 | 101e-03 | 217e02 | 1.18e-02 | 3.09e-04
LSTM-CNN | 378e02 | 2.87e-02 | 7.60e-04 | 28202 | 1.71e-02 | 5.62e-04
DCN 849e-03 | 565003 | 8.97e05 | 8.05:-03 | 488¢-03 | 53905
WADC | 419¢03 | 2.60e-03 | 1.09e-05 | 2.51e-03 | 1.23e-03 | 4.80e-06

is RMSE £ \/ﬁ SN (yi — a;)?, the mean absolute er-

ror (MAE), which is MAE 2 LS |y, —q;| and the
mean squared logarithmic error (MSLE), which is MSLE £
LS (log(y;+1) —log(a;+1))?, where N is the number of
predicted values, y; is the forecast value of the ¢-th sample, and
a; is the actual value of the ¢-th sample. The lower values of
these three metrics mean the better performance of the models.
It is worth mentioning that we choose MSLE instead of the
mean absolute percentage error (MAPE) because MAPE may
produce undefined or infinite value when the actual value is
close to zero (or equal to zero) as indicated in [27]. The real
traffic flow data often contains the small values close to zero.
Thus, MAPE is not suitable for the case.

B. Experimental Analysis

1) Baseline models: We perform a number of experiments to
investigate our WADC model in contrast to other conventional
baselines models. In particular, we categorize the following
nine representative baseline models into three types: 1) the
traditional parametric and ML models; 2) the sole deep learn-
ing models; 3) the composite deep learning models.

Traditional parametric and ML models include ARIMA,
SVR and DR model.

e ARIMA is able to capture a suite of different typical tem-

poral structures in time series data. Moreover, ARIMA is
a financial forecasting method that has been frequently
utilized in time series investigation of financial data [28].

e SVR is an extension of SVM. In addition, SVR is
essentially a Support-Vector Classification (SVC), in
which a radial basis function kernel is adopted. It is
also a basic traditional ML method to support many
applications such as stock forecasting [29].

e DR is a basical neural network, which is composed
of two layers with tanh activation function in this
experiment. It is a typical traditional ML model with
different activation functions [30].

Sole deep learning (DL) models include CNN, Stacked

auto-encoders (SAES), LSTM and GRU.



e CNN is composed of several convolutional layers alter-
nating with pooling layers, and a fully-connected layer.
The CNN model shows the strengths in training complex
and extensive data. In the experiment, We mainly inves-
tigate the CNN structure with 2 convolutional layers.

e SAES is built by stacking auto-encoders to construct a
deep neural network, proposed in [15].

e [LSTM can be applicable to the time series features
predictions. In our experiment, we conduct the LSTM
structure with 2 LSTM layers for prediction tasks.

e GRU structure is a gating mechanism in recurrent neural
networks, proposed in [31]. Compared with LSTM,
GRU has fewer parameters due to the absence of an
output gate.

Composite deep learning models contain more than one
ML or DL models. We choose the following representative
composite models.

o LSTM-CNN consists of CNN layers following multiple
LSTM layers. We carry out LSTM-CNN model with 2
LSTM layers and 2 convolutional layers to perform the
forecasting experiment.

e DCN mainly consists of a cross network and deep
network, proposed in [21]. DCN is a variant of the wide
and deep architecture, as one of the most up-to-date
models for prediction and classification tasks.

Our proposed WADC model consists of a wide-attention
module and a deep-composite module. This model includes 1
linear model with a self-attention mechanism in wide-attention
module, 1 LSTM layer and 1 convolutional layer in deep-
composite module. Furthermore, we adopt L,& Lo regulariza-
tion optimization methods for wide-attention module, select
128 convolution filters and 12 LSTM neurons in the deep-
composite module.

2) Baseline experimental results: Table 1 shows the perfor-
mance comparison of the WADC model with other conven-
tional models. It is worth mentioning that our baseline ex-
periments are conducted on two datasets: CPeMS and FBBC.
In each dataset, we evaluate 10 models in terms of three
performance metrics, i.e., RMSE, RMAE and MSLE.

e Analysis of traditional ML approaches: As shown in
Table I, compared with other DL models, traditional
ML models such as ARIMA, SVR and DR models
have much higher values of three evaluation metrics
(including RMSE, MAE and MSLE); this implies the
poorer performance of traditional ML models. For ex-
ample, ARIMA only achieves 6.25e+01, 5.42e+01 and
1.97e+00 in RMSE, MAE and MSLE, respectively. The
results are the largest values among all baseline models
in CPeMS dataset prediction.

e Analysis of sole DL approaches: Compared with ML
models, most of these sole DL models achieve the im-
proved results (in terms of lower values of RMSE, MAE
and MSLE). The reason may owe to the fact that DL
models have superiority in generalization especially after
learning extensive traffic flow data. In addition, we also
compare 4 sole DL models with each other. As shown
in Table I, both GRU and LSTM perform better than

CNN and SEAS. For example, GRU achieves 4.43e-
02, 2.39¢-02 and 1.01e-03 in RMSE, MAE and MSLE,
respectively, which is the best among the sole models
in CPeMS dataset. This result implies that GRU and
LSTM have the advantage in learning time series data
since they can preserve long-term memory of features.

e Analysis of composite DL approaches: It is shown in
Table I that most of the composite DL models outper-
form traditional ML and sole DL models. Furthermore,
compared with other composite DL models such as
LSTM-CNN and DCN models, our WADC can achieve
even better performance. The performance improvement
may owe to the superior learning capability of WADC
brought by the wide-attention module and the deep-
composite module coordination.

3) Training phase comparison: We then perform extensive
experiments to evaluate the performance of different models
in the training phase. We select six representative models in-
cluding DR (achieving the best performance among traditional
ML models), all sole DL models (i.e., CNN, SAES, GRU
and LSTM) and our WADC model to conduct the following
experiments after 200 training iterations (epochs) mainly based
on CPeMS and FBBC datasets.

Traditional ML models vs. Sole DL models: We first
compare DR model with CNN model. Both DR and CNN
models are the most representative baselines in the traditional
ML and the sole DL models, respectively. Fig. 3 and Fig. 5
show the comparison of deep regress and CNN in terms of
loss. Compared with the loss of CNN, we can observe that
DR model has slow convergence and poor performance (in
terms of loss) in validation on FBBC dataset. Furthermore,
both DR and CNN do not achieve the best results since the
loss values of them are still unstable after 200 epochs.

Composite DL models vs. Sole DL models: We then
compare the sole DL models with the composite DL model.
We select SAES, GRU and LSTM as the sole DL models and
WADOC as the composite model. Fig. 4 and Fig. 6 indicate that
the loss of every model decreases with the increased number
of epochs. For example, the loss of every model is relatively
stable when the number of epochs is about 50. Moreover, we
observe from Fig. 4 and Fig. 6 that both GRU and LSTM have
faster convergence speed than SAES. In particular, compared
with other sole DL models, the loss of our WADC achieves
the fastest convergence and becomes fairly stable after 25
epochs. This result also implies that superior performance of
our WADC model.

C. Impacts of parameters

Then, we also analyze the performance impacts of different
parameters on WADC. As indicated in the above experimental
results, different datasets have the little influence on the perfor-
mance. Therefore, we execute the next group of experiments
based on a single dataset (i.e., CPeMS dataset). Specially,
we also consider the following key parameters: 1) o denotes
regularization methods of attention mechanism; 2) /5 denotes
the number of CNN filters; 3) v denotes the number of LSTM
neurons.
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1) Effect of regularization methods of attention mechanism:
We first consider the impact of «. In particular, the regular-
ization methods of attention mechanism include L; and Lo
regularizations. Therefore, we define o € (None, L1, Lo and
L1&Ls), where None denotes WADC without any regulariza-
tion methods, Ly and Lo denote sole L regularization, sole Lo
regularization being utilized, respectively. Specially, WADC
can also be optimized by both kernel-regularizer and bias-
regularizer, denoted by L;&Ls. We then vary o according
to the following set of values (None, L1, Ly and L1&Ls).
Meanwhile, we fix 5 to 128 and ~ to 12. We implement two
groups of experiments with RMSE and MAE as metrics.

Fig. 7 presents the experimental results after 600 iterations.
Compared with @ = None and o« = L1, we can observe that
both RMSE and MAE decrease when « is L. Moreover, when
ais Lh& Ly (i.e., both Ly and Lo regularization methods are
used), WADC achieves an even better performance than the
model with Lo regularization only. These results imply the
proper adoption of regularization methods has the significant
influence on the performance.

2) Effect of No. of CNN Filters: We next consider the
influence brought by S in the CNN component of the deep-
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composite module. Then, we vary 8 from 32, 64, 128 and 256
and fix « to be L1& L5 in the wide-attention module and ~y to
be 12.

Fig. 8 shows that RMSE increases when /3 increases from
32 to 64. Both RMSE and MAE decrease when [ is varied
from 64 to 128. Then, when [ is larger than 128, both RMSE
and MAE increase with more CNN filters. It implies that the
optimal value of 5 is 128. In particular, we can note that RMSE
and MAE have different trends. The reason can be explained
by the fact that the loss values are squared before being
averaged in RMSE calculation. Therefore, RMSE may give a
relatively higher weight to the large loss value as indicated in
[32]. Another possible reason may lie in the increased training
difficulty with more CNN filters. That is the reason why we
adopt both RMSE and MAE to investigate the impacts of
parameters on the performance.

3) Effect of No. of LSTM Neurons: We also consider the
impact of 7. We then vary  from 8, 12, 32 to 64 in the LSTM
component. We fix « to be L& Ly regularization methods in
the wide-attention module and 3 to be 128 in CNN component.

Fig. 9 shows the results of two groups of experiments. It
is worth noting that both RMSE and MAE first drop with ~
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being increased from 8 to 12. When ~y is larger than 12, both
RMSE and MAE rise with the increment of ~. It reveals that
the optimal value of ~ is 12.

Table II shows the impacts of parameters comparison for
WADC model by three evaluation metrics. As shown in Table
II, we can also observe that when o = L1&Lo, § = 128
and v = 12, RMSE, MAE and MSLE are 4.19e-03, 2.60e-03,
and 1.09e-05, respectively. Compared with models with other
settings, WADC with a = L1&Ls, § = 128 and v = 12
achieved the best performance in RMSE, MAE and MSLE.

V. CONCLUSION

In this paper, we put forth a wide-attention and deep-
composite (WADC) model for traffic flow prediction. Spe-
cially, our WADC is composed of a wide-attention module
and a deep-composite module. The wide-attention module can
extract the feature interactions though a linear model with
self-attention mechanism. The deep-composite module mainly
consists of CNN and LSTM components, which can generalize
feature combinations from the traffic flow data. Moreover,
we evaluate WADC through conducting performance com-
parison with other nine existing ML and DL models via
extensive experiments. Our experimental results reveal that
WADC outperforms traditional ML and DL (including sole DL
models and composite DL models) approaches like ARIMA,
LSTM and DCN. Regarding future work, we are going to
examine the performance advances of our WADC model via
regulating various numbers of both CNN and LSTM layers
when interpreting various types of traffic flow features. In
addition, we will explore the possible application of our traffic
flow prediction model to the emerging edge/cloud TCPS [33].
Moreover, we will also investigate the adoption of our model
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TABLE II. Impacts of parameters comparison for WADC model in
terms of three evaluation metrics

. CPeMS dataset
Parameters Options

RMSE MAE MSLE
None 5.25e-03 3.21e-03  7.81e-05

a
(8 =128, v =12) L1 5.35e-03  4.18e-03 1.57e-05
L2 4.62e-03 2.99e-03 1.10e-05
8 32 5.69-03  4.41e-03 1.90e-05
(@ = L1&La, v = 12) 64 6.52e-03 3.87e-03 1.89e-05
256 5.51e-03 3.37e-03 1.28e-05
8 6.83e-03  5.31e-03 2.93e-05

v
(@ = L1&Ls, 8 = 128) 32 4.50e-03 3.16e-03 1.18e-05
64 4.63e-03 3.20e-03 1.56e-05

o = Ll&L2
B =128 4.19¢-03  2.60e-03 1.09¢-05
v =12

to other industrial scenarios like industrial network intrusion
detection [34], [35].
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