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A Single-Arm, Multicenter Validation Study of Prostate Cancer
Localization and Aggressiveness With a Quantitative

Multiparametric Magnetic Resonance Imaging Approach
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Jurgen J. Fütterer, MD, PhD,* and Tom W.J. Scheenen, PhD*

Objectives: The aims of this study were to assess the discriminative performance
of quantitative multiparametric magnetic resonance imaging (mpMRI) between
prostate cancer and noncancer tissues and between tumor grade groups (GGs)
in a multicenter, single-vendor study, and to investigate to what extent site-specific
differences affect variations in mpMRI parameters.
Materials andMethods: Fifty patients with biopsy-proven prostate cancer from
5 institutions underwent a standardized preoperative mpMRI protocol. Based on
the evaluation of whole-mount histopathology sections, regions of interest were
placed on axial T2-weighed MRI scans in cancer and noncancer peripheral zone
(PZ) and transition zone (TZ) tissue. Regions of interest were transferred to func-
tional parameter maps, and quantitative parameters were extracted. Across-center
variations in noncancer tissues, differences between tissues, and the relation to
cancer grade groupswere assessed using linear mixed-effects models and receiver
operating characteristic analyses.
Results: Variations in quantitative parameters were low across institutes (mean
[maximum] proportion of total variance in PZ and TZ, 4% [14%] and 8%
[46%], respectively). Cancer and noncancer tissues were best separated using
the diffusion-weighted imaging-derived apparent diffusion coefficient, both in

PZ and TZ (mean [95% confidence interval] areas under the receiver operating
characteristic curve [AUCs]; 0.93 [0.89–0.96] and 0.86 [0.75–0.94]), followed
by MR spectroscopic imaging and dynamic contrast-enhanced-derived parame-
ters. Parameters from all imaging methods correlated significantly with tumor
grade group in PZ tumors. In discriminating GG1 PZ tumors from higher GGs,
the highest AUC was obtained with apparent diffusion coefficient (0.74
[0.57–0.90], P < 0.001). The best separation of GG1–2 from GG3–5 PZ tumors
was with a logistic regression model of a combination of functional parameters
(mean AUC, 0.89 [0.78–0.98]).
Conclusions: Standardized data acquisition and postprocessing protocols in
prostate mpMRI at 3 T produce equivalent quantitative results across patients
from multiple institutions and achieve similar discrimination between cancer
and noncancer tissues and cancer grade groups as in previously reported single-
center studies.

Key Words: prostate cancer, Gleason group, mpMRI, quantitative validation,
multicenter, interpatient variation, intersite variation

(Invest Radiol 2019;54: 437–447)

P rostate cancer (PCa) is the second most frequently diagnosed
noncutaneous malignancy in men in the world.1 Accurate localiza-

tion of the disease within the organ is of essential clinical importance,
as it aids in directing targeted biopsies, improves preoperative staging,
and can guide local therapies. Currently, prostate multiparametric mag-
netic resonance imaging (mpMRI) provides the best visualization of the
prostate compared with other imaging methods.2,3 This imaging exam-
ination consists of triplanar high-resolution T2-weighted (T2w) imag-
ing, as well as various combinations of functional imaging methods,
most importantly diffusion-weighted imaging (DWI), T1-weighted dy-
namic contrast-enhanced (DCE) imaging, and/or MR spectroscopic im-
aging (MRSI). It has shown promising results in PCa detection in many
single-center and multicenter studies4–6 and is recommended in interna-
tional guidelines for several indications in PCa management.7,8

Interpretation of mpMRI is based on a qualitative evaluation of
the different functional techniques of the examination. Although stan-
dardized scoring and reporting systems were used in large studies,4,5 in-
terobserver agreement between radiologists from different institutions
remains only moderate.9 Quantitative evaluation of mpMRI holds the
potential to improve interobserver agreement and the possibility to
compare or pool results between centers. It may allow defining objec-
tive decision thresholds andmeasures for diagnosis or assessment of ag-
gressiveness, and may simplify the development of machine learning
tools to help radiologists interpret the large amount of information
inherent to mpMRI. However, the wide variety of acquisition and
postprocessing protocols supported by current guidelines10,11 leads
to large additional variations in quantitative parameter values on
top of true biological variability, limiting their applicability. For in-
stance, in DWI, the maximum chosen b-value and the maximum at-
tainable magnetic field gradient dictate the timing and amplitude of
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the diffusion-encoding gradient pulses, which in turn influence the
value of the calculated apparent diffusion coefficient (ADC). In DCE-
MRI, the choice of contrast agent, injection rate, temporal resolution,
and postprocessing protocol all influence the resulting parameter
values,12 and in MRSI, pulse sequence timing, magnetic field strength,
and postprocessing models dictate the shape of the spectra and the ac-
companying values for metabolite ratios.

One approach to mitigate this issue is standardization. Although
this would eliminate variations due to differences in the image for-
mation protocols, interinstitutional variations may still remain due to
machine-related and population differences. The purpose of this study
was therefore to investigate to what extent site-specific differences af-
fect variations in quantitative prostate mpMRI parameters obtained
with highly standardized acquisition and postprocessing protocols,
and to validate their discriminative performance between PCa and
noncancer tissues and tumor grade groups in a multicenter study.

MATERIALS AND METHODS
This prospective multicenter study was performed as part of the

Prostate Cancer localization with a Multiparametric MR Approach trial
(PCAMAP, Clinicaltrials.gov identifier NCT01138527) and was over-
all approved by our institutional review board, as well as by all review

boards (Health Insurance Portability and Accountability Act-compliant
for US sites) of participating institutions. The principal institution
(Radboud University Medical Center, Nijmegen, the Netherlands)
was financially sponsored for this work by Siemens Healthcare
(Erlangen, Germany). Those authors who are not employees of or
consultants for Siemens Healthcare had control of inclusion of any data
and information that might present a conflict of interest for those au-
thors who are employees of or consultants for Siemens Healthcare.

Patients
This study aimed to include 10 patients prospectively and con-

secutively recruited at 5 institutions able to contribute data to the
PCAMAP trial.With one of the institutions withdrawing from the study
after 8 patients, the remaining 2 were consecutively included from one
other contributing institution. Patients were included between June
2010 and March 2012. All patients had biopsy-proven PCa as deter-
mined by 10- to 12-core transrectal ultrasound-guided biopsies, no his-
tory of therapy to the prostate or other pelvic organs or androgen
deprivation therapy, they were scheduled for radical prostatectomy with
whole-mount or quartile-divided histopathology of the resected pros-
tate, and written informed consent was obtained from each. An over-
view of patient characteristics is presented in Table 1.

TABLE 1. Patient and Tumor Characteristics

Institution A B C D E Overall

Number of patients 10 10 12 10 8 50
PSA, ng/mL* 4.7 [2.6–9.2] 9.0 [1.9–11.2] 9.3 [5.3–19.2] 6.0 [4.5–8.7] 5.9 [3.1–17.3] 6.5 [1.9–19.2]
Age, y* 63 [46–71] 63 [58–73] 60 [52–69] 58 [48–67] 64 [50–71] 62 [46–73]
Time between biopsy and MR examination (median/minimum days) 62/15
Time between MR examination and surgery (median/maximum days) 25/108
Pathologic stage†
T2 6 7 4 7 6 30
T3 4 3 7 3 2 19
T4 1 1

Gleason Grade† Number of tumors > 0.5 cm3

PZ Grade Group
3 + 2 1 1 1
3 + 3 1 2 5 1 6 14
3 + 4 2 3 3 4 4 1 15
4 + 3 3 2 4 1 4 11
4 + 4 4 1 1 2
4 + 5 5 1 1 2
Unknown 2 2
Total 8 7 12 9 11 47

TZ Grade Group
1 + 2 1 1 1
2 + 3 1 1 1
3 + 2 1 1 1
3 + 3 1 4 1 5
3 + 4 2 2 3 5
4 + 5 5 1 1
5 + 3 4 1 1
Unknown 3 3
Total 5 2 4 6 1 18

*Numbers are medians; values between brackets indicate the range of observed values.

†Pathologic stage and Gleason grades were determined postoperatively.

MR indicates magnetic resonance; PZ, peripheral zone; TZ, transition zone; PSA, prostate specific antigen.
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Magnetic Resonance Imaging and Postprocessing
All imaging was performed on 3 T MR systems (MAGNETOM

Trio Tim, 4 institutions; MAGNETOM Verio, 1 institution; Siemens
Healthcare, Erlangen, Germany), all running software version Syngo
MR B17. Bowel preparation was performed according to local guide-
lines at each institution and could include injection of scopolamine bu-
tyl bromide and/or glucagon, or filling the rectum with ultrasound gel.
All institutions used identical scanning protocols with spine and body
array coils for signal reception and no endorectal coil. Anatomical
T2w imaging, DWI, 3D spectroscopic imaging (MRSI), and DCE-MRI
were acquired (Table 2). All postprocessing of MR data were performed
centrally. From DWI data, ADC maps were calculated using the scanner
software, including all b-values. All MRSI spectra were quality checked
(QC) using an automated procedure14 and preprocessed and fitted using a
linear combination of model files (LCModel15) into maps of the integral
ratios of relevant prostate metabolites choline (Cho), spermine (Spm),
creatine (Cre), and citrate (Ci): (Cho + Spm + Cre)/Cit [CSC/C], Cho/
(Spm + Cre) [C/SC], and Cho/(Spm + Cre + Cit) [C/SCC]. Dynamic
contrast-enhanced MRI was analyzed semiquantitatively into maps of
curve-descriptive parameters: initial area under the contrast enhancement
curve (iAUC), relative enhancement (RE), washin (WI), and washout
(WO).16 This was done using in-house developed software implemented
in MeVisLab (MeVis Medical Solutions, Bremen, Germany). If organ
motion was observed between scans, rigid registration was performed
between native functional images (ie, the b = 0 image in case of DWI
and the first volume of DCE) and the corresponding transverse T2w
image, and the same transform was applied to the parametric maps.

Histopathologic Examination
Histopathology was performed on the excised prostates accord-

ing to the local protocol at each institution, and included at least fixation
and hematoxylin and eosin staining of whole-mount axial tissue sec-
tions throughout the prostate. Prostates were cut approximately perpen-
dicularly to the rectal wall to facilitate spatial matching to the MRI.
Each local pathologist outlined the presence and extent of cancer tissue
either on photographs of tissue sections or photographs of microscopy
slides. The localized Gleason score of tumor tissue was indicated and
classified according to the ISUP grading system for PCa,17 in which
grade groups (GGs) 1 to 5 are defined as follows: GG1, Gleason score
≤6; GG2, Gleason score 3 + 4 = 7; GG3, Gleason score 4 + 3 = 7; GG4,
Gleason scores 4 + 4 = 8, 3 + 5 = 8, and 5 + 3 = 8; GG5, Gleason
scores 9–10.

Annotation and Analysis of Regions of Interest
Regions of interest (ROIs) were placed on axial T2-weighed

MRI scans in noncancer peripheral zone (PZ), noncancer transition
zone (TZ), PZ cancer, and TZ cancer using whole-mount histopathol-
ogy sections as reference, treating tumors as TZ cancers if at least
70% of their volumewas in the TZ.18 Thiswas done by anMR physicist
(M.C.M., 6 years' experience in prostate MRI) and a radiologist (J.J.F.,
11 years' experience in prostate MRI) in consensus, using anatomical
landmarks to establish correspondence between histopathology and im-
aging while being blinded to any functional imaging results. Amaximum
of 4 ROIswere selected per tissue type in each patient, corresponding to a
theoretical maximum number of 16 ROIs per patient. Cancer lesions
were only included if they were 0.5 cm3 or larger and their Gleason score
was known.19 Regions of interest were constructed fromMRSI voxels, as
this method had the lowest spatial resolution, in the following manner
(see Fig. 1). First, an MRSI voxel (red rectangles in middle column)
was selected on the spectroscopic grid (blue lines) at a location maxi-
mally occupied by the intended tissue (top row: noncancer PZ; middle
row: noncancer TZ; bottom row: PZ cancer). Subsequently, up to 6 di-
rectly neighboringMRSI voxels (left-right, anterior-posterior, superior-
inferior) were selected, provided that they covered at least 50% of the
same tissue (yellow rectangles). Each selected MRSI voxel was used
in a single ROI only. Corresponding imaging voxels were selected by
expanding each selectedMRSI voxel to its true shape and size, a sphere
of approximately 1 cm3, induced by the weighted k-space sampling
scheme and filtering used.20 Finally, the shape of the spheres was
adapted such that they only contained imaging voxels within the tissue
of interest (Fig. 1, red and yellow outlines in right column).Within each
resulting shaped sphere, histogram analysis was performed for each
imaging parameter and the 25th percentile of parameters tending to
decrease in cancer tissue (ie, ADC, WO) and the 75th percentile of
parameters tending to increase in cancer tissue (all other parameters)
were determined. Analogous to previous work,21 one number was
extracted from each multisphere ROI for each parameter, from the
sphere with the most deviating values of that parameter (Fig. 1):
the lowest 25th percentile ADC; the highest CSC/C, C/SC, and
C/SCC; the highest 75th percentile iAUC, RE, and WI; and the
lowest 25th percentile WO. Regions of interest were excluded
from analysis of a particular parameter if the corresponding MRI
data were not acquired, if the ROI showed obvious signs of postbiopsy
hemorrhage on precontrast T1-weighted images, or suffered from
artifacts such as distortions (DWI), insufficient quality (MRSI), or
organ motion (DWI or DCE). Region of interest placement and

TABLE 2. MR Acquisition Parameters

T2w TRA T2w SAG T2w COR DWI MRSI DCE

Sequence TSE TSE TSE SS-SE-EPI PRESS TWIST
TR, ms 4000 4000 4000 3300 750 3.85
TE, ms 101 101 101 60 145 1.42
Acc. factor 2 2 2 2 2
Resolution, mm 0.6 � 0.6 0.6 � 0.6 0.6 � 0.6 2.2 � 1.6 Nominal, 7 � 7 � 7 mm; true

spherical volume, 1.0 cm3
1.6 � 1.6

Slice thickness, mm 3 3 3 3.6 3.6
Slice distance, mm 3.6 3.6 3.6 3.6 3.6
Sequence-specific b-values 0, 100, 400, 800 s/mm2 Temporal resolution 4 s
TA 04:10 03:46 03:38 04:34 08:14 05:02

MR indicates magnetic resonance; DWI, diffusion-weighted imaging; TSE, turbo spin-echo; MRSI, magnetic resonance spectroscopic imaging; DCE, dynamic
contrast-enhanced imaging; SS-SE-EPI, single-shot spin-echo echo planar imaging; PRESS, point-resolved spectroscopy; TWIST, time resolved with stochastic trajec-
tories13; TR, repetition time; TE, echo time; TA, acquisition time; T2w, T2-weighted imaging; TRA, transverse; SAG, sagittal; COR, coronal; Acc., acceleration.
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analysis was performed using a workstation developed in-house in
MeVisLab (MeVis Medical Solutions, Bremen, Germany).

Statistical Analysis
Variations of functional parameter values between institutions

and patients were quantified using a variance components analysis
(VCA), in which the total variation observed in each parameter was
decomposed into “between-institution,” “between-patient,” and “other”
variations (ie, within-patient variations and measurement fluctuations),
modeling institutions and patients as random main factors. This
was done in noncancer tissues only to avoid any influence of pop-
ulation differences in, for example, tumor stages or grades on the
results. Outliers were removed for this analysis, as these can have
a disproportionate influence on sample variances as well as esti-
mates of their separate components.22 This was done according
to Tukey's Fences method, removing points > 1.5 times the inter-
quartile range (IQR) below the 25th percentile or above the 75th
percentile of the pooled data distribution per tissue type and parameter
map from the analysis. Outliers were removed in the VCA only; all

subsequent analyses were performed using all data that passed quality
control. From the VCA, the proportion of variance (POV) attributable
to each of the 3 factors (institutions, patients, other) was calculated
for each parameter.

Differences between cancer and noncancer tissues in each pa-
rameter were analyzed separately for PZ and TZ using linear mixed
models with “malignancy” as a fixed factor and “patient” as a random
factor, accounting for multiple ROIs within one patient. A P value less
than 0.05was considered statistically significant. The ability of each pa-
rameter to discriminate between cancer and noncancer tissues was
assessed using receiver operator characteristic (ROC) analyses, and
confidence intervals of the areas under the ROC curves (AUCs) were
calculated accounting for within-patient correlations using patient-
level bootstrapping with 10,000 iterations.

Associations between quantitative mpMRI parameters and tu-
mor aggressiveness were only analyzed in the PZ due to the low number
of TZ tumors. Correlations between quantitative parameters and tumor
grade group were calculated with Spearman correlation coefficients,
and differences between tumor GG1 and GG2–5 as well as between

FIGURE 1. Example of the annotation of 3 ROIs in a 71-year-old man with a Gleason 3 + 4 prostate carcinoma in the right peripheral zone. Left column:
Hematoxylin-eosin–stained histology slices at 3 different levels between midgland and apex (top to bottom), with the tumor outlined by the
pathologist. Middle column: selection of primary MRSI voxels in noncancer PZ, noncancer TZ, and PZ cancer tissue (red rectangles in top, middle, and
bottom rows), as well as up to 6 directly neighboring MRSI voxels (left-right, anterior-posterior, and superior-inferior, yellow rectangles). Neighboring
voxels were only selected if they included the tissue of interest for at least 50%. Right column: selection of corresponding imaging voxels by expanding
each selected MRSI voxel to a sphere representative of its true size (ie, ~1.0 cm3), and adapting the shape of the spheres to only include the tissue of
interest. For each parameter map, only one sphere per ROI, that is, the sphere with the most deviating values, was used for further analysis.
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FIGURE 2. Example data set of a 69-year-old man with a Gleason 4 + 4 adenocarcinoma in the left peripheral zone. A, Transverse T2-weighted MRI scan
shows a hypointense region in the left PZ. B, The corresponding apparent diffusion coefficient map shows a decreased ADC in the same region
(minimum ADC approximately 600 μm2/s). C, Macroscopic histology slide at the same level of the prostate, with the tumor identified by the pathologist
(yellow outline). D, MRSI grid superimposed on T2-weighted image. The voxels corresponding to the spectra shown in F are outlined in blue and red;
the dashed circles indicate the approximate true MRSI voxel size. E, (choline + spermine + creatine)/citrate map showing an increased metabolite ratio
in the tumor region. F, Spectra corresponding to the voxels outlined in D. The noncancer spectrum (blue curve and blue outline in D) shows a high
citrate signal and no distinguishable choline peak. In the tumor, only choline is observed, whereas all othermetabolites are below the detection limit. Both
spectra are identically scaled. G,Washinmap. H,Washoutmap. I, Time-intensity curves of 2 voxels within the tumor. The boundary of the tumor shows
a rapidwashin and a rapidwashout (red curve and redmarkers in G and H), whereas the central part of the tumor shows a slower, and continuing washin
after the first pass of the bolus (blue curve and blue markers in G and H).
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GG1–2 and GG3–5 were assessed using mixed model analyses and
ROC analyses with patient-level bootstrapping to account for within-
patient correlations.

The performance of combinations of parameters in discriminat-
ing between cancer and noncancer tissues, between GG1 and GG2–5
PZ cancers, as well as between GG1–2 and GG3–5 PZ cancers was
assessed using the subset of ROIs for which all MR data was available,
by logistic regression modeling (LRM) using generalized estimating
equations to account for within-patient correlations.23 Model selection

was based on the corrected quasi-likelihood under independence model
criterion.24 The performance of the models was evaluated using ROC
analyses, again with patient-level bootstrapping to account for within-
patient correlations. All statistical analyses were performed using SPSS
for Windows version 22 (IBM, Armonk, NY).

RESULTS
Sixty-five PCa lesions greater than 0.5 cm3 were found and an-

notated on histopathology (PZ, 47; TZ, 18) in 50 patients. Complete

FIGURE 3. Flowchart of patients and data sets used in each analysis. NC-PZ indicates noncancer peripheral zone; PCa-PZ, cancer peripheral zone; NC-TZ,
noncancer transition zone; PCa-TZ, cancer transition zone.
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MRI datasets were acquired in 47/50 patients (representative example in
Fig. 2), and a total of 331 ROIs consisting of 1688 MRSI voxels were
annotated (average number of voxels per ROI, 5.1). Due to missing data
or artifacts, not all MR parameters could be calculated in all ROIs: an
overview of ROIs and MRSI voxels used in each analysis and tissue
type is presented in Figure 3.

Across-Center Variations in Noncancer Tissues

The standardized mpMRI protocol yielded low variations across
institutions (Fig. 4). The largest variation between institutions was
found for RE (DCE) in noncancer TZ, for which the POV explained
by differences between institutions was 46%. For all other parameters,

FIGURE 4. Variance components analysis in noncancer tissues. A, Example boxplots of parameters derived from DWI, MRSI, and DCE, separated by
institution. Boxes indicate the 25th, 50th, and 75th percentiles, and whiskers indicate minimum and maximum values. The percentages indicate the
proportion of the total variance explained by differences between institutions. B, Proportion of the total variance explained by differences between
institutions (black), between patients (gray), and other variations (within-patient variations and measurement fluctuations; white). Error bars indicate
standard errors. ADC, apparent diffusion coefficient; CSC/C, (choline + spermine + creatine)/citrate; C/SC, choline/(spermine + creatine); C/SCC,
choline/(spermine + creatine + citrate); iAUC, initial area under the gadolinium enhancement curve; RE, relative enhancement; WI, washin; WO,
washout; PZ, peripheral zone; TZ, transition zone.

TABLE 3. Statistical Analysis of Differences in mpMRI Parameters Between Cancer and Noncancer Tissues

PZ TZ

Noncancer Cancer Noncancer Cancer

Median IQR Median IQR P Median IQR Median IQR P

ADC 25p* 1.35 [1.27–1.49] 1.02 [0.87–1.14] <0.0005 1.18 [1.11–1.28] 0.99 [0.85–1.08] <0.0005
CSC/C 0.28 [0.18–0.37] 0.40 [0.30–0.62] 0.001 0.30 [0.23–0.39] 0.35 [0.25–0.52] 0.064
C/SC 0.66 [0.44–1.04] 1.19 [0.75–2.66] <0.0005 0.79 [0.47–1.12] 0.88 [0.66–1.77] 0.448
C/SCC 0.09 [0.05–0.13] 0.17 [0.11–0.29] <0.0005 0.11 [0.07–0.15] 0.13 [0.08–0.21] 0.136
iAUC 75p 11.2 [8.2–15.0] 16.4 [11.1–19.1] <0.0005 12.9 [10.5–18.6] 14.7 [11.9–18.4] 0.211
RE 75p 1.88 [1.63–2.29] 2.20 [1.83–2.70] <0.0005 2.50 [2.10–2.96] 2.25 [1.98–2.51] <0.0005
WI 75p† 12.8 [7.8–17.4] 17.6 [10.4–24.4] <0.0005 16.8 [11.4–22.5] 17.9 [12.9–21.2] 0.267
WO 25p‡ −4.6 [−11.8 to −1.6] −8.4 [−17.3 to −2.2] <0.0005 −8.8 [−16.4 to −2.4] −12.6 [−14.9 to −3.5] 0.501

P values represent the significance of the effect of malignancy on the mpMRI parameter in linear mixed modeling.

*Data are in units of 10−3 mm2/s.

†Data are in units of % of prebolus signal intensity per second.

‡Data are in units of % of prebolus signal intensity per minute.

mpMRI indicates multiparametric magnetic resonance imaging; PZ, peripheral zone; TZ, transition zone; ADC, apparent diffusion coefficient; CSC/C, (choline +
spermine + creatine)/citrate; C/SC, choline/(spermine + creatine); C/SCC, choline/(spermine + creatine + citrate); iAUC, initial area under the gadolinium enhancement
curve; IQR, interquartile range; RE, relative enhancement; WI, washin; WO, washout; 25p, 25th percentile within sphere; 75p, 75th percentile within sphere.
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the POV between institutions was less than 20%, both in noncancer PZ
and TZ. The percentage of outliers removed in the VCA in PZ were
3.3% (median) and 6.2% (maximum, corresponding to 7/113 for RE).
Median and maximum percentage of removed outliers in TZ were
2.7% and 8.5% (7/82, CSC/C). MRSI fits passed automatic and
manual QC in 66% (1092/1666) of all voxels. The quality of MRSI
varied significantly between institutions: the percentages of good
quality voxels were 69% (268/390), 63% (200/319), 73% (326/
449), 79% (224/282), and 33% (74/226) for institutions A through E,
respectively (P < 0.0005).

Differences Between Cancer and Noncancer Tissues
Differences between cancer and noncancer PZ were highly

significant for all investigated parameters (Table 3). The difference
between cancer and noncancer TZ was also highly significant for
the ADC, but much less so for MRSI and DCE parameters.

The best separation between cancer and noncancer tissue was
achieved using the ADC, both in PZ (mean [95% confidence interval]
AUC, 0.93 [0.89–0.96]) and in TZ (AUC, 0.86 [0.75–0.94]; Table 4,
Fig. 5A). Logistic regression models yielded no significant addi-
tional discriminatory performance over ADC alone in either PZ or
TZ: models including ADC, C/SCC, and iAUC in the PZ and
ADC, C/SC, and RE in the TZ reached AUCs of 0.93 [0.88–0.97]
and 0.87 [0.77–0.96], respectively.

Associations With Tumor Grade Groups in PZ
Almost all individual mpMRI parameters showed significant

correlations with tumor grade group (Table 5). The strongest associa-
tion was found with ADC (Spearman r = −0.39, P < 0.001). The MRSI
andDCE parameterswith the strongest associationwith GGwere CSC/C
(r = 0.36, P < 0.01) and WI (r = 0.33, P < 0.01), respectively.

In discriminating tumors with GG1 from those with GG2–5, lin-
ear mixed modeling (LMM) of individual parameters revealed a signif-
icant effect only for ADC (P < 0.01). This was consistent with ROC
analysis: the highest AUC was obtained with ADC (mean [95% confi-
dence interval] AUC, 0.74 [0.57–0.90]; P < 0.001), whereas none of
the other parameters had AUCs significantly greater than 0.5. Logistic

regression modeling yielded no significant additional discriminatory per-
formance over ADC alone: a model including parameters ADC, CSC/C,
iAUC, and WI yielded an AUC of 0.78 [0.60–0.90] (Table 5, Fig. 5B).

In discriminating tumors with GG1–2 from those with GG3–5,
LMM of individual parameters showed significant effects for ADC
(P < 0.01), C/SC (P < 0.05), and WI (P < 0.05). In ROC analysis, all
parameters except C/SCC and WO yielded AUCs significantly greater
than 0.5. Nevertheless, their discriminatory performance was moderate:
the highest AUC, obtained with C/SC, was 0.72 [0.56–0.85], with ADC
andWI showing AUCs of 0.70 [0.55–0.85] and 0.71 [0.54–0.85], re-
spectively. An LRM including parameters ADC, C/SC, iAUC, and
WI improved the AUC for discrimination between GG1–2 and
GG3–5 to 0.89 [0.78–0.98]; however, this was not significantly higher
than the AUC of any of the individual parameters (Table 5, Fig. 5B).

DISCUSSION
This work presents the first quantitative prostate mpMRI multi-

center trial at 3 T, the current state-of-the-art in PCa imaging. Although
the technique, interpreted in a qualitative way by radiologists, has been
successfully validated in 2 large multicenter trials for guiding biopsies
in men with high prostate specific antigen levels,4,5 full quantitation
of mpMRI offers opportunities not only to detect PCa, but also to assess
its aggressiveness and its progression over time. Interestingly, quantita-
tive parameters are not incorporated in current guidelines, but have been
suggested for use in future versions if intersite differences can be over-
come or quantified.8,11 Our study represents an important step toward
the implementation of large-scale prospective and quantitative multi-
center studies with a standardized data acquisition and postprocessing
protocol. Although many single-center studies have demonstrated the
added value of using one or several functional MR techniques to detect,
localize, and characterize PCa, a lack of standardization has compli-
cated comparison of results between different institutions and studies
as well as quality control.

Our results show that complete standardization of acquisition
and postprocessing protocols leads to quantitative functional parameter
values that are very similar across multiple sites in noncancer tissues.
Variation in the parameters is not caused by variation between institutes,
ruling out site-specific differences in histopathological description of
noncancer tissues. Instead, variation was mostly caused by interpatient
variability, for example due to natural variation and benign disease
differences between patients, and by intrapatient variations, which
in this case represent variations between different locations within
the same prostatic zone in the same patient. Both of these may also
include effects of the presence of cancer in the prostate on nearby
noncancer tissue (edema, tiny tumor infiltrates, blood flow effects,
etc). The quantitative functional parameter values enabled separa-
tion between cancer and noncancer tissues, as well as discriminating
between cancer grade groups with pooled multicenter data compara-
ble to that reported in single-center studies.25–30 This means that it is
feasible to use fixed thresholds across multiple institutions to differ-
entiate cancer from noncancer tissues in patients with biopsy-proven
PCa without compromising the discriminative performance of these
parameters. This is a prerequisite for incorporating quantitative param-
eter thresholds in multicenter predictive studies of tumor location and
grade group as well as in clinical guidelines for tumor localization
and assessment using mpMRI. Quantitative thresholds can help de-
crease the subjective interpretation of mpMRI of the prostate, which
currently results in only moderate interobserver agreement between
readers of the same data,9,31 and will facilitate the use of computer-
aided diagnosis systems. It may also enable a more objective follow-up
of patients under active surveillance or during treatment, but this would
also require an analysis of the repeatability and reproducibility of the
quantitative parameters,32 which was not part of the present study.

TABLE 4. ROC Analysis Discriminating Cancer from Noncancer
Tissue

PZ TZ

AUC Sig. AUC Sig.

ADC 25p 0.93 ± 0.04 *** 0.86 ± 0.10 ***
CSC/C 0.73 ± 0.09 *** 0.58 ± 0.14 0.143
C/SC 0.76 ± 0.09 *** 0.60 ± 0.14 0.078
C/SCC 0.78 ± 0.08 *** 0.58 ± 0.16 0.150
iAUC 75p 0.71 ± 0.09 *** 0.56 ± 0.13 0.178
RE 75p 0.63 ± 0.11 *** 0.63 ± 0.14 *
WI 75p 0.66 ± 0.11 ** 0.56 ± 0.14 0.190
WO 25p 0.58 ± 0.10 0.058 0.57 ± 0.13 0.130
LRM† 0.93 ± 0.05 *** 0.87 ± 0.09 ***

*P < 0.05; **P < 0.01; ***P < 0.001.

†Logistic regression models included parameters ADC, C/SCC, and iAUC in
the PZ and ADC, C/SC, and RE in the TZ.

ROC indicates receiver operator characteristic; PZ, peripheral zone; TZ, tran-
sition zone; ADC, apparent diffusion coefficient; CSC/C, (choline + spermine +
creatine)/citrate; C/SC, choline/(spermine + creatine); C/SCC, choline/(spermine +
creatine + citrate); iAUC, initial area under the gadolinium enhancement curve;
IQR, interquartile range; RE, relative enhancement; WI, washin; WO, washout;
25p, 25th percentile within sphere; 75p, 75th percentile within sphere; LRM,
logistic regression modeling.
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Although the high degree of standardization used in this study
might not be realistically achievable on a full clinical scale, for example,
involving a variety of systems and vendors, our results may be used to
assess what degree of standardization would be required in multicenter
studies and clinical guidelines. For instance, in preparation for nonstan-
dardized studies, preliminary data may be used to quantify variations
between patients and institutions and to compare them to those found
in this work. This will enable investigators to assess whether protocol
changes at one or more of the participating institutions may be useful
to reduce interinstitutional variation. Diffusion-weighted imaging
yielded good separation between PCa and noncancer tissues in both
PZ and TZ, with mean AUC of 0.93 and 0.86, respectively. The added
value of ADC for tumor localization is indeed well established in the
PZ.13,33,34 In the TZ, however, the advantage is not as clear: previous
histology-referenced ROI studies have reported similar results as those
shown here, but reader-based localization studies have not clearly dem-
onstrated an added value of ADC in the TZ.35–37 Consequently, the
T2w image series is the most dominant sequence for the TZ in the re-
cent version of the Prostate Imaging Reporting and Data System (PI-
RADS v2).8,38 It remains unknown what causes this discrepancy, but
our results suggest that incorporating quantitative ADC thresholds into
the reading strategy might improve localization accuracy in the TZ.
However, the number of TZ tumor foci in our study was low.

Adding information fromMRSI and DCE-derived parameters to
the ADC maps using logistic regression did not improve separation be-
tween cancer and noncancer tissue. This agrees with earlier studies: al-
though several studies have reported strongly improved localization
accuracies for both MRSI and DCE compared with T2w alone,39,40

an incremental value of these methods over ADC has not been firmly
established.41,42 This may be attributable to several factors. For in-
stance, all measurements were performed without an endorectal coil.
The associated SNR reduction led to a lower overall spectral quality, il-
lustrated by a decreased number of voxels passing quality control.21

This was partially compensated by using a larger voxel size, which
however also increased partial volume effects. Spectral quality was also
affected by operator experience at the local sites, illustrated by the large
between-site differences in the number of QC-passed voxels. MRSI
could only be considered for reintroduction into the PIRADS system
if voxel failure rates get smaller and less dependent on local expertise.
For DCE analysis, we only used semiquantitative parameters to obtain
quantities independent of any model assumptions. It may be that phar-
macokinetic modeling with patient-specific arterial input functions
would reduce the large between-patient variations; however, deter-
mining the arterial input functions and the quantitative precontrast
T1-maps needed for pharmacokinetic modeling would also intro-
duce additional variations, possibly offsetting this advantage. Finally,

FIGURE 5. ROC analyses. A, Separation between nonmalignant and malignant tissues in PZ as well as TZ. B, Separation between grade group 1 versus
grade groups 2 to 5 PZ tumors, as well as between grade groups 1–2 versus grade groups 3–5. In each plot, the ROC curve of the best performing
individual parameter derived from each acquisition method, as well as that of the logistic regression model are shown. Numbers indicate the mean AUC
obtained from 10,000-fold patient-level bootstrapping.
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regions of benign disease such as BPH were not indicated on histopa-
thology, and no attempt was made to place noncancer ROIs outside of
such regions. This especially affected DCE results in the TZ, which is
known to have enhancing BPH nodules, and contributed to the large
variation in DCE results in this zone.

Quantitative parameters derived from each of the functional im-
aging methods were found to correlate with tumor grade group in the
PZ, and also the separation between tumor grade groups in this multi-
center dataset, as quantified in ROC analysis, was comparable to previ-
ously published single-center studies.21,43 For separating GG1 from
higher-grade groups in PZ tumors, the ADC was found to be the best
performing individual parameter, and adding information from MRSI
and DCE by LRM modeling did not appreciably improve this perfor-
mance. However, for separating higher-grade group (ie, GG≥ 3) PZ tu-
mors from lower and intermediate ones (ie, GG ≤ 2), combining
parameters fromDWI,MRSI, and DCE by LRMdid result in a substan-
tially higher area under the ROC curve than found with any of the indi-
vidual parameters. Although this improvement was not statistically
significant, this suggests that MRSI and/or DCE may have additional
value in separating high-grade group PZ tumors from low to intermedi-
ate ones. This should be validated in a different and larger patient cohort
that better reflects the clinical reality of not only localizing and grading
biopsy-proven cancers, but also detecting possible cancers.

Special attention was paid to the methodology of ROI placement
and matching between MRI and histopathology in this study. Histo-
pathologic analysis was performed locally at each site only, and no
centralized analysis was performed. Therefore, variability in sample
preparation and interreader variability between pathologists, which
likely influences the discriminatory performance of these multicenter
mpMRI data,44 could not be quantified. Furthermore, advanced methods
for correlating histopathology to MRI45 were not available. To overcome
these challenges, we used a method of ROI placement minimizing the
effect of spatial mismatch on the results. No attempt was made to fully
delineate entire tumor or nontumor regions onMRI scans; instead, only
ROIs with a high certainty of residing within the intended tissue type
were defined using only histopathology and T2w MRI scans. This
avoided bias of drawing ROIs on suspicious regions in functional pa-
rameter maps. Furthermore, we designed our method to be sensitive
to the hot spots that are often observed in functional parameter maps

in PCa tissue, which are arguably most representative of tissue abnor-
mality, but are typically smaller than our unit of ROI definition (spheres
of MRSI voxel size). The histogram analysis performed in each sphere
(with 25th and 75th percentiles of functional parameter values) allowed
to capture these hot spots, rather than assuming a symmetric distribu-
tion of parameter values.46 By including multiple overlapping spheres
in each ROI and selecting only the most aberrant value (ie, highest me-
tabolite ratio, lowest 25th percentile, or highest 75th percentile) out of
these spheres for each parameter separately, our approach accounted
for the fact that hot spots in PCa tissue may be found at different loca-
tions in different parameter maps. Biasing tumors to more extreme
values was avoided by following this same approach in cancer as well
as in noncancer tissues. Finally, restricting the maximum number of
spheres in each ROI to 7 reduced biases induced by differing ROI sizes,
as larger ROIs are intrinsically more likely to contain extreme values. A
drawback of this approach is that known confounding features that can
be recognized by experienced radiologists (eg, symmetrical contrast en-
hancement in the transition zone, contrast-enhancing BPH nodules, or
sharply demarcated benign lesions on T2w images) are not excluded
from noncancer tissue. The combination of radiological experience
with a quantitative mpMRI approach might ultimately prove to be the
best solution toward PCa detection, localization, and grade group as-
sessment. Whether translation of the mpMRI methods to ultrahigh
magnetic field strengths47 could further improve this is a direction of
future research.

In conclusion, standardized data acquisition and postprocessing
protocols in prostate mpMRI at 3 T can produce equivalent quantitative
results across multiple institutions in a single-vendor setting. Stan-
dardized quantitative multicenter mpMRI data can separate PCa from
noncancer tissues and discriminate between cancer grade groups sim-
ilarly well as previously reported single-center data, which is an im-
portant step toward objective or automated interpretation of prostate
mpMRI examinations.
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