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Abstract 
This paper proposes a real-time energy management system (EMS) suitable for rooftop PV installations with 
battery storage. The EMS is connected to a smart grid where the price signals indirectly control the power output 
of the PV/battery system in response to the demand variation of the electricity networks. The objective of the 5 

EMS is to maximize the revenue over a given time period while meeting the battery stored energy constraint. The 
optimization problem is solved using the method of Lagrange multipliers. The uniqueness of the proposed EMS 
remains in the reactive real-time control mechanism that compensates for the PV power forecast error. The 
proposed EMS requires only forecasting the average PV power output over the total optimization period. This is 
in contrast to the predictive power scheduling techniques that require accurate instantaneous PV power forecast. 10 

The proposed EMS method is verified by benchmarking against the predictive brute-force dynamic programming 
(DP) approach. The simulation analysis considers days with varying solar irradiance profiles. The simulation 
analysis shows the proposed EMS operating under practical assumptions, where the battery storage capacity is 
subject to constraints and the PV power output is not known a priori.  
Keywords: photovoltaic, energy management, smart grid, power scheduling, optimal control 15 

 

1. Introduction 
Due to the intermittency of PV, large-scale deployment of distributed PV generation poses technical challenges to 
the grid. High penetration levels of distributed PV generation cause reverse power flow in the distribution 
networks. This leads to the problem of voltage rise, as demonstrated in simulation analyses using actual load and 20 

solar irradiance data [1], [2]. Reverse power flow also introduces additional loading and power losses in the 
distribution transformers and the primary feeder sections [3], [4]. Mitigating these challenges will reduce grid 
reinforcement costs and operational costs [5].  

To operate as a dispatchable generator similar to the conventional power sources, PV systems need energy storage 
device to balance the intermittency. The energy storage unit is used to balance intermittent PV generation. It 25 

stores the excess PV power when solar irradiance is abundant or when load consumption is low. On the other 
hand, it discharges when the demand rises or when PV ceases generation.  

The techniques for finding a solution to the power scheduling problem of PV with energy storage encompass the 
traditional mathematical approaches and the modern approaches of artificial intelligence. The method of Lagrange 
multipliers is a mathematical technique for optimization problems subject to constraints. The Lagrange relaxation 30 

method is used to solve the optimal dispatch and security-constrained unit commitment problems of a PV/battery 
in a large power system with thermal units in [6]. In [7], a linear programming routine is used to minimize the 
grid power flow in a PV/battery system in real-time when the residential load exceeds the PV production. 
Furthermore, [7] adds a simple scheduling strategy to charge the battery during off-peak pricing period and 
discharge the battery during on-peak pricing period. Linear programming is also used in [8] to schedule different 35 

energy sources (a PV, a conventional energy source and a battery storage) and optimize the profit. The power path 
and conversion losses are assumed negligible in [7], [8] hence providing only linear functions in the constraints 
and objective functions. In order to account for the nonlinear input–output characteristics and the discrete working 
ranges of the building energy systems, mixed-integer nonlinear programming is utilized in [9] to optimize the 
scheduling of grid-connected energy systems consisting of PV and thermal energy storage. Dynamic 40 

programming technique is used in [10] for PV/battery scheduling with the objective of minimizing the operational 
cost. The operational cost in [10] includes the battery replacement cost, and the monetary transaction for selling 
and buying the electricity. Quadratic programming algorithm is used in [11] to maximize the revenue of a 
residential PV/battery system. The PV/battery system is assumed connecting to a grid with pricing scheme that 
aims to minimize the reverse power flow and peak loading in [11].  45 
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The scheduling approaches presented in [8], [9] [10], [11] are predictive algorithms where perfect forecast of PV 
generation is assumed available. In [12], the comparative analysis shows that the scheduling of PV with energy 
storage can be improved by reducing the PV forecasting error. The day-ahead scheduling problem for a system 
with PV/battery has been reformulated as a fuzzy optimization problem to account for PV generation uncertainty 
in [13]. A membership function that represents varying degrees of truth models the uncertain PV generation, 50 

which in turn yields a fuzzy objective function. The uncertainty in the renewable energy system scheduling 
problem can also be approached by utilizing robust approach [14] or chance-constrained programming [15]. A 
two-stage robust approach is used in [16] to schedule the building energy system with PV and thermal energy 
storage, in order to minimize the operational cost. The “budget of uncertainty” of the robust scheduling strategy 
that yields low average operation costs with small standard deviations needs a priori determination. In [17], a unit 55 

commitment problem of wind power generation is formulated as a chance-constrained two-stage stochastic 
program, where the risk level is determined a priori. 

Distributed generation unit such as PV can be indirectly controlled via price signals in response to demand 
variation. This brings about market integration of PV generations, and the optimal power flow is achieved through 
market mechanism. The economics of price distortion due to the lack of exposure of retail customers to the spot 60 

prices is explained in [18]. Among the price-based demand response mechanisms are time-of-use pricing, critical-
peak pricing and real-time pricing schemes [19], [20]. A market-based demand response model involves the end 
consumers in the bidding processes. Due to the complexity that arises from the large number of residential 
appliances that participate in demand response, the end consumers need an interface with the market structure 
consisting of aggregators as considered in [21] or a microgrid coordinator as proposed in [22].  65 

This paper proposes an energy management system (EMS) for grid-connected PV inverters with battery storage. 
The EMS is connected to a smart grid that employs demand response model. The EMS has the objective of 
maximizing the total revenue over a given time period. This paper aims to address the limitation of predictive 
power scheduling approach that requires a priori knowledge of instantaneous PV power. The proposed EMS 
utilizes reactive real-time control mechanism to compensate for the PV power forecast error. For a 24-hour period 70 

power scheduling, the proposed EMS requires only the average daily PV power output.  

The paper is organized as follows. Section 2 develops the system level power flow model for use in formulating 
the economic optimization problem of a PV/battery system. Dynamic programming (DP) method that is used as a 
benchmark for the proposed EMS is presented in Section 3. The DP method is a predictive brute-force approach 
that requires accurate instantaneous PV power to be known a priori. Section 4 presents the proposed EMS that 75 

uses the method of Lagrange multipliers for solving the constrained optimization problem. In order to enable the 
reactive real-time control mechanism, the proposed EMS uses linear approximation for the dispatch function and 
a direct method for the Lagrange multiplier estimation. Section 5 provides a simulation analysis that compares the 
proposed EMS to the brute-force DP approach. Final discussion and conclusions are offered in Section 6. 

  80 
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2. System Modeling 
The battery-link topology as depicted in Fig. 1 is a variant of dc-link topology similar to that proposed in [23]. 
The battery module is connected directly at the dc-link between the two step-up converters. The first step-up 
converter boosts the PV voltage Vpv to the battery voltage Vb. The second step-up converter further boosts Vb to 
the dc-link voltage, Vdcl.  85 

 

 

 

 

PV 

Boost 

Converter1 

Vpv � Vb 

Battery 

Pb 

Ppv 
Boost 

Converter2 

Vb � Vdcl 

Pg 

Pd 

Pac Full-Bridge 

Inverter 

Vdcl � Vg 

Lpv 

Lb 
Local 

demand 

Lac 

 

Figure 1: Block diagram of battery-link topology 

 

Fig. 2 depicts the basic circuit implementation of the conventional dc-link topology. The operating principles of 90 

the boost converter, the bidirectional dc-dc converter and the full-bridge PWM inverter are available in the power 
electronics textbooks, such as [24].  
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Figure 2: Circuit diagram of the conventional battery-link topology. 95 

The system power flow of the battery-link topology is described in (1). The arrows besides the power variables 
Ppv, Pb, Pac, Pg and Pd indicates the direction of positive power flow, where the variables are defined as follows. 
The terms Ppv and Lpv denote the power and the loss functions of the PV power path. The output of Ppv branches 
into the battery power path Pb and the ac power path Pac. The variable Lac is loss function of the ac power path. 
The variable Lb is loss function of the battery power path.  100 

 

pv pv ac ac b b=− + + +P L P L P L  
(1) 

where 
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p pv pv= −P P L  
(2) 

ac g dP P P+=  
(3) 

 

The ac power path Pac is the sum of the grid power Pg and the local demand power Pd.  

This section aims to establish the mathematical models for the power loss functions, and represent the system 105 

power flow as a simple mathematical function. This allows mathematically deriving the power flowing through 
each power path in the PV/battery system. The power flowing through each power path needs to be derived to 
solve the power scheduling problem.  

Fig. 3 provides the experimental result of Lac of a battery-link topology PV/battery inverter. The ac power path 
loss function Lac of the battery-link topology is the aggregate of the boost converter and full-bridge inverter 110 

conversion losses. Each boost converter consists of a 680 µH inductor (labeled respectively as LB1 and LB2 in Fig. 
2) and it operates at 50 kHz switching frequency. MOSFET IXTP42N25P is used as the switching device for both 
the boost converter and the full-bridge inverter. The flyback diode (labeled respectively as DB1 and DB2 in Fig. 2) 
in the boost converter is SDT06S60. The full-bridge inverter consists of two 1 mH inductors (labeled as LI in Fig. 
2). 115 

This paper assumes the ac power path loss Lac can be modelled as a quadratic curve-fit function, where the ac 
power output Pac is the explanatory variable. The method of ordinary least squares can be used to estimate the 
unknown coefficients of the linear regression model [25]. The ac power path loss in a quadratic function can be 
written as 

 120 

2
ac ac acα β χ= + +L P P  (4) 

 

The quadratic function as given in (4) is used to model the experimental results where the estimated coefficients 
of the linear regression model are α = 3.69 × 10-2, β = 1.29 × 10-3, χ = 5.23.  

This paper assumes lithium-ion battery, which has negligible faradic power losses [26]. A lithium-ion battery 
module is used to obtain the experimental results of the battery loss Lb, as shown in Fig. 4. The lithium-ion battery 125 

module H2B182-B from HY-LINE AG is used to measure the battery power loss. Each battery module consists of 
four battery cells in series and three strings of cells in parallel. The lithium-ion battery cell is the popular 18650 
cylindrical type, where the nominal voltage is 3.6 V. Two battery modules are connected in series to obtain 28.8 
V nominal voltage. By observing the experimental results, we assume the battery loss Lb is proportional to the 
squared of the battery power 130 

 

2
b bκ=L P  (5) 

 

where κ is a constant.  
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The loss function given in (5) is fitted to the empirical results where the coefficient κ of the curve-fit model equals 
4.62 × 10-4. By assuming the models as given in (4) and (5) provide sufficient curve-fitting accuracy, we can write 135 

the system power flow as a polynomial function 

 

( ) 2 2
p, ac, ac, b, b,1t t t t tP P P P Pα β χ κ+ + += + +

 
(6) 

 

 

Figure 3: Ac power path conversion losses in a battery-link topology 140 

 

 

Figure 4: Characteristic of battery power loss 

3. Dynamic Programming (DP) 
This section presents the dynamic programming (DP) method that is used as a benchmark for the proposed EMS. 145 

The DP method presented here is based on the basic principles found in [27, 28]. In order to apply the dynamic 
programming (DP) approach, the PV/battery scheduling problem is formulated as a multistage problem. The 
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battery stored energy is the state variable. We wish to find the optimum trajectory of the battery stored energy 
states over a given time period that maximizes the total sum of revenues. Consider the battery stored energy states 
in two consecutive time intervals 150 

 

b, , b, b, 1,t j t t iE P t E −= ∆ +  (7) 

 

for i = 1, …, N and j = 1, …, N. The lower limit of the battery stored energy state is given as Eb,t,1 whereas the 
upper bound is given as Eb,t,N. Also, ∆t is the step size of the time interval. The system operates in a liberalized 
electricity market where the electricity price πg,t is time variable. The revenue function for a given time interval is 155 

given as 

 

( ) ( )b, , b , 1, g , b , , b , 1, g,, ,t t j t i t t j t i t tR E E P E E π− −= ∆  (8) 

 

We consider the battery-link topology as shown in Fig. 1, in which the power loss model is provided in the 
previous section. The grid power Pg,t as a function of the battery stored energy state can be obtained by 160 

substituting (3) and (7) in (6) 

 

( ) ( )2

,

g , b , , b , 1, d ,

1 4 1
,

2
ij t

t t j t i t

c
P E E P

α β α
β−

+ + − −
= −  

(9) 

where 

2

b, , b, 1, b, , b, 1,
, p,

t j t i t j t i
ij t t

E E E E
c P

t t
κ χ− − 

= + + − 
− − 

  ∆ ∆ 
 

 

 

Let ( )1 b, 1,− −t t iF E  be the maximum total sum of revenues up to the time interval t–1. Then, for arbitrary i and j 165 

battery stored energy states, the total sum of revenues at time interval t is  

 

( ) ( ), b , , b , 1, 1 b , 1,,t ij t t j t i t t iF R E E F E− − −= +  (10) 

 

We wish to maximize the total sum of revenues over a given time period. An optimal choice of i is the one that 
maximizes Ft,ij function. We thus obtain the basic recursive form functional equation for maximizing the total sum 170 

of revenues for a given time period as 
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( )
{ }

( ) ( )b, , b , , b , 1, 1 b , 1,max ,t t j t t j t i t t i
i

F E R E E F E− − −
 = + 

 (11) 

 

The forward dynamic programming (DP) algorithm that maximizes the total sum of revenues over the given time 

period T is shown as a flow chart in Fig. 5. We introduce ( )b, ,t t jS E for storing the t–1 state Eb,t–1,i that maximizes 175 

the total sum of revenues at t state Eb,t,j. A variable Fmax is used to store the “maximum revenue so far” and track 
the optimal result in each i state iteration and it is reset to an arbitrary minimum value every time j is assigned a 
new value. Note that the DP algorithm is a predictive approach that requires accurate PV power to be known a 
priori. The instantaneous PV output power Pp,t is required to obtain the grid power Pg,t as given in (9), which in 
turn is used to calculate the total revenue as given in (10). 180 

 

 
Figure 5: Flow chart for solving the PV/battery scheduling problem using DP 
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4. Energy Management System Based on the Method of Lagrange Multipliers 
The proposed EMS aims to provide a mean for reactive real-time control to the PV/battery system. Here we use 
the method of Lagrange multipliers to obtain a closed form expression for the optimal dispatch function. The 
objective function for maximizing the total sum of revenues over the given time period T can be written as  

 190 

g, g,
1 1

max max π
= =

= = ∆∑ ∑T t t
t t

T T

tR R P t  (12) 

 

The objective function is subject to the law of power conservation:  

 

( ) 2 2
p, ac, ac, b, b, 01φ α β χ κ= − + − − − − =t t t t t tP P P P P  (13) 

 

The objective function is also subject to constraint that ensures the battery stored energy over the given time 195 

period meet the target Eb,T 

 

b, b ,
1

0t T
t

T

P Etψ
=

= −∆ =∑  (14) 

 

4.1 Method of Lagrange Multipliers 
The constrained optimization problem can be addressed using methods of calculus involving the Lagrange 200 

function L as follows: 

 

g, g,
1 1

π λ φ γψ
= =

∆= + +∑ ∑t t t

T

t t

T

tP tL  (15) 

 

where λ and γ are Lagrange multipliers.  

For any given values of Pp and Pd the independent variables are Pg and Pb. The solutions for the partial derivatives 205 

of the Lagrange equation yield the optimum point 
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( ) ( )

( )

g, g, d,
g,

b,
b,

2

0

1

0

1 0

2 0

π λ β α

γ λ κ

φ
λ

ψ
γ

 = ∆ +− + + = 

= − +

= =

∆ =

= =

t t t t
t

t t
t

t
t

d
P P

dP

d
P

dP

d

d

d

d

t

t

L

L

L

L

 
(16) 

 

We solve these two sets of constraints in two stages. The first stage is to find the solution for optimal dispatch 
problem and eliminate the first Lagrange multiplier λ. By solving the first three equations in (16), the solution for 210 

the battery power Pb,t and the grid power Pg,t, at any given t are as follows:  

 

( ) ( )
2

2 g,
p,

b, 2

g,

1 4 1
1

1
2

π
β χ α

γ
κ π β

γ κ

   + + − −   = − + 
  +  
  

+ t
t

t

t

P

P  (17) 

 

g, g,
g, b, d,

1
1

2

π κ π
α

γβ β γ
 

= + − − − 
 

t t
t t tP P P  (18) 

 

The second stage is to solve the daily scheduling by adjusting the Lagrange multiplier γ to satisfy the battery 215 

stored energy constraint Eb,T as given in the last equation in (16). The dimension of the second Lagrange 
multiplier γ is analyzed by observing (18). The loss coefficients κ and β have no units, so we can conclude that γ 
has the same unit as the grid feed-in price πg. We can infer that the Lagrange multiplier γ is the “shadow price” of 
the battery. The Lagrange multiplier γ represents the total revenue the system would generate for increasing one 
unit of battery stored energy. Equation (18) gives a nonlinear relationship between the Lagrange multiplier γ and 220 

the battery power Pb. An iterative method is required to find the exact value of the Lagrange multiplier γ that 
satisfies the battery stored energy target Eb,T as given in the last equation in (16).  An iteration process using the 
gradient search method to solve for the Lagrange multiplier γ is presented in [29]. In order to enable the reactive 
real-time control mechanism in the proposed EMS, a direct method is developed to estimate the Lagrange 
multiplier γ as presented in the next subsection.  225 

 

4.2 Proposed Energy Management System (EMS) 
The results from the method of Lagrange multipliers are used to obtain the optimal dispatch function solution in 
closed form. The real-time battery power target value Pbr,t as a closed form optimal dispatch function is the linear 
approximation of the battery power Pb,t, as given in (17), at zero  230 
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( )
2

2 g,

br, p,2 2
g, g,

1 4

4

π
α χβ

γβ
π πκ β κ βγ γ

 
+ − − 

 +
    + +    

     

=

t

t t

t t

P P  
(19) 

 

Equation (19) is a computationally efficient linear equation. The dynamic variables in (19) are the PV power 
output Pp,t and the electricity price signal πg,t, which typically changes hourly. 

Next, we wish to develop a direct method to estimate the Lagrange multiplier γ. We assume the power scheduling 235 

algorithm has a daily cycle time, that is, the optimization duration T corresponds to a 24-hour period. Let πg,d be a 
constant value representing the electricity price signal for a given day. Substituting the daily representative value 
πg,d as a constant for the time varying πg,t in (19), we estimate the second Lagrange multiplier as  

 

( ) ( )
b,

g, 2

p, b,1

4 1

4

d
d

d d

P

P P
γ π

α
κ

χβ
+

≈
+ − −+

 (20) 

 240 

where Pb,d is the average daily battery power and Pp,d is the average daily PV power output. The daily 
representative electricity price πg,d and the average daily PV power output Pp,d need to be obtained in advance. As 
part of the reactive control mechanism to compensate for the Pp,d forecasting error, the average daily battery 
power Pb,d is dynamically adjusted by comparing the battery stored energy target Eb,T to the actual energy value at 
interval t  245 

 

b, b,
b, 1

− =  − + 

T t
d c T t

E E
P f  (21) 

 

where fc is a scale factor used to convert the time variables, t and T, to units compatible with the battery stored 
energy variables Eb,t and Eb,T.  

The control configuration of the proposed EMS for a PV/battery system is shown in Fig. 6. The first boost 250 

converter is controlled by the voltage mode controller Cpv. The maximum power point tracker (MPPT) adjusts the 
reference signal to the voltage mode controller Cpv to ensure the PV module operates close to the maximum power 
point. The MPPT unit also provides the PV power output Pp,t in real time to the EMS. The battery management 
system (BMS) sets the reference signals to the battery charge controllers Cibat and Cvbat. The voltage mode 
controller Cvbat ensures that the predetermined upper limit of battery termination voltage is never exceeded. The 255 

battery charging and discharging current is adjusted by the current mode controller Cibat, where the reference 
signal Iref,bat is derived from the EMS battery power target value Pbr,t. The grid feed-in controller for the full-bridge 
inverter consists of two loops. The outer loop feed-forward controller Cff regulates the power transfer between the 
full-bridge inverter and the second boost converter. The phase locked loop PLL generates a reference sine wave 
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that is in phase with Vg. The inner loop controller Ciac regulates the ac output current of the full-bridge inverter to 260 

ensure it is in phase with the grid voltage. The EMS under real-time pricing scheme [19], [20] communicates πg,t 
directly with the utility system operator every hour. For market structure that involves bidding processes, the 
EMS may communicate πg,t with the aggregator that bids on behalf of the PV/battery system [21]. 

Fig. 7 shows the proposed EMS reactive real-time control algorithm in a flow chart. After initialization, the 
program loops at a constant ∆t time step to read the real-time PV power Pp,t from the MPPT and then write the 265 

calculated battery power target value Pbr,t to the BMS. Note that the proposed EMS does not require the 
instantaneous PV power output forecast. Only the average daily PV power output Pp,d needs to be forecasted as 
part of the initialization process. A hardware timer is assumed to ensure the program loops at a constant ∆t time 
step.  

The EMS algorithm steps that involve data passing between the EMS and other subsystems (such as the BMS) are 270 

highlighted with circled capital letters Ⓐ, Ⓑ, Ⓒ and Ⓓ in Figs. 6 and 7. On the other hand, the algorithm steps 

that involve calculation using the equations as given in (19)-(21) are highlighted with circled small letters ⓧ, ⓨ 
and ⓩ in Fig. 7. The main algorithm steps of the proposed EMS are summarized as follow: 

Step 1. As part of the initialization process, the EMS resets the following variables at the beginning of each 
daily cycle  275 

o The average daily PV power output Pp,d is forecasted 
o The daily representative value for the electricity prices πg,d is estimated 
o The initial value for the time variable t is reset to 1 
o The initial value for the loop counter q is reset to the end value qlast 

Step 2. The EMS reads the battery stored energy Eb,t from the BMS. This process is indicated as Ⓐ in Figs. 280 

6 and 7. 
Step 3. The average battery power Pb,d is adjusted by comparing the real time value Eb,t (as read in Step 2) to 

the target value Eb,T. This step uses the equation as given in (21) and it is indicated as ⓧ in Fig. 7. 
Step 4. The EMS reads the time varying πg,t from the utility system operator. This process is indicated as Ⓑ 

in Figs. 6 and 7. 285 

Step 5. The Lagrange multiplier γ as the “shadow price” of the battery is calculated using the equation as 
given in (20). This step is indicated as ⓨ in Fig. 7. The variables are obtained in the previous steps:  
o The average daily PV power output Pp,d iss forecasted in Step 1 
o The average daily battery power Pb,d is calculated in Step 3 
o The time varying πg,t is read in Step 4 290 

Step 6. The EMS reads the real-time PV power Pp,t from the MPPT. This process is indicated as Ⓒ in Figs. 
6 and 7. 

Step 7. The battery reference set point power target value Pbr,t is calculated using the equation as given in 
(19). This step is indicated as ⓩ in Fig. 7. The variables are obtained in the previous steps: 
o The time varying πg,t is read in Step 4 295 

o The Lagrange multiplier γ is calculated in Step 5 
o The real-time PV power Pp,t is read in Step 6 

Step 8. The EMS writes the calculated battery power target value Pbr,t to the BMS. This process is indicated 
as Ⓓ in Figs. 6 and 7. 

The Lagrange multiplier γ does not require rapid adjustment to compensate for the average daily PV power output 300 

Pp,d forecasting error. The average daily battery power Pb,d and the Lagrange multiplier γ are computed only when 
the loop counter q reaches the end value qlast. The EMS algorithm Steps 2-5, which are indicated as Ⓐ, Ⓑ, ⓧ and 
ⓨ in Fig. 7, are bypassed for each q increment iteration.  
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In summary, the proposed EMS continuously adjusts the battery power (by setting the power target value Pbr,t) in 
order to achieve the objective of maximizing the total sum of revenues RT and meeting the battery stored energy 305 

constraint target Eb,T over a given time period. The EMS computes the battery power target value Pbr,t and sends it 
to the BMS for adjusting the battery charging and discharging current. 

 

 
Figure 6: EMS control configuration of battery-link topology. 310 
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Figure 7: Flow chart of the proposed real-time EMS 

 

5. Simulation Analysis 315 

This section presents the simulation analysis of PV/battery system power scheduling with the objective of 
benchmarking the proposed real-time EMS (as presented in Section 4) against the brute-force DP approach (as 
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presented in Section 3). The DP and proposed EMS algorithms are simulated by implementing the flow charts (as 
shown in Fig. 5 and Fig. 7) in the Microsoft VBA (Visual Basic for Application) software. The power scheduling 
algorithms aim to maximize the total sum of revenues over a 24-hour period. The approach for assigning values to 320 

the parameters required for the calculation steps (as presented in Sections 3 and 4) are summarized here: 

• The simulation time interval step size ∆t is arbitrarily selected as 5 minutes.  
• The time variable T is set equal to 288 since the algorithms aim to maximize the daily total revenue. 
• The battery charge is cycled to the initial capacity for every 24-hour period to maximize the utilization of 

the battery. Hence, the target total battery stored energy constraint Eb,T is set equal to zero.  325 

• The coefficients of the mathematical models presented in Section 2 are derived from the experimental 
results. The coefficients for the ac power path loss Lac quadratic function as given in (3) are α = 3.69 × 10-
2, β = 1.29 × 10-3, χ = 5.23. Additionally, the coefficient for the battery loss Lb given in (5) assumes the 
coefficient κ equals 4.62 × 10-4. 

• For the simulation of the DP approach, the battery stored energy state Eb,t is incremented in a step size of 330 

5/12 Wh. This provides 5 W granularity in the battery power Pb,t calculation for 5 minutes of time interval 
step size ∆t. Apparently, the increment size of Eb,t determines the value of N, number states of the battery 
stored energy. For example, N shall be set to 6000 if Eb,t,1 equals 0 Wh, and Eb,t,N equals 500 Wh. 

• For the simulation of the proposed EMS, the loop counter end value qlast is set equal to 3 because 15 
minutes of interval is arbitrarily selected for adjusting the Lagrange multiplier γ in order to compensate 335 

for the errors in the PV power forecast. 
• For the simulation of the proposed EMS, the daily representative value for the electricity prices πg,d is set 

equal to the arithmetic mean of the hourly electricity prices. 
• For the simulation of the proposed EMS, the average daily PV power output Pp,d needs to be forecasted. 

One trivial forecast approach is the basic 24-hour persistence model [30], [31], where Pp,d of the current 340 

day is set (at the initialization stage) equal to the calculated value of Pp,d of the previous day. 

Fig. 8 shows the PV power output Pp obtained from the outdoor measurement results of a 1.71m2 poly-silicon PV 
module in Grimstad, Norway between July 10 and July 12, 2011. Days with varying solar irradiance profiles are 
chosen to illustrate the effect of forecast errors on the proposed EMS. The first two days (July 10 and July 11) 
have cloudy conditions whereas the third day (July 12) has a clear sky condition. The time-varying electricity 345 

price signal πg for the simulation analysis is represented by the hourly electricity spot price of the Nord Pool day-
ahead market [32] in the pricing area of Grimstad (Kristiansand), Norway between July 10 and July 12, 2015.  

 

 
Figure 8:  Measured PV power Pp,t and the electricity price πg,t for three consecutive days of July in Southern Norway 350 
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The comparative simulation analysis where the proposed real-time EMS operates under the ideal condition is first 
presented to validate the approximation methods. Fig. 9 shows the power scheduling simulation results assuming 
unconstrained battery energy capacity conditions. Also, the proposed EMS has a priori knowledge of the PV 
power for accurate forecasting of the daily average Pp,d in the calculation of the Lagrange multiplier γ as given in 
(20). In order to provide a comparison for the daily total sum of revenues, the total revenue Rt is reset to zero 355 

Norwegian Krone (NOK) every day at the midnight. In Fig. 9, the power scheduling traces of the proposed EMS 
closely track those of the baseline DP. We can conclude that the approximations used in estimating the battery 
power target Pbr,t as given in (19), and the Lagrange multiplier γ as given in (20) yield negligible errors. 

Next, we wish to show the proposed EMS operating under practical assumptions, where the battery storage 
capacity is subject to constraints and the PV power output is not known a priori. The average daily battery power 360 

Pb,d and the Lagrange multiplier γ  are adjusted every 15 minutes to compensate for the errors in the PV power 
forecast. For this simulation analysis, the basic 24-hour persistence forecast model [30], [31] is used in the real-
time EMS.  

Fig. 10 shows the comparative simulation analysis considering the battery maximum capacity is limited to 500 
Wh. July 10 and July 11 have similar daily average PV power output. Figs. 10a and 10b show that the power 365 

traces (Pb,t and Pac,t) of the proposed EMS and the baseline DP track closely between t0 and t1. Since the battery 
stored energy Eb,t is the integral of battery power Pb,t over time, the errors in Eb,t gradually increase. Between t1 
and t2, the real-time EMS readjusts γ, and it increases Pb,t in order to charge the battery to the initial 200 Wh 
battery capacity at t2 (and meet the target Eb,T). On July 12, the proposed EMS charges the battery to the 
maximum limit of Eb,t early on whereas the DP approach reaches the maximum capacity only at t3. Since the 370 

proposed EMS uses the 24-hour persistence PV power forecast model, higher average PV power on July 12 is 
unforeseen by the proposed EMS. Even though Eb,t continues to deviate after t3, the proposed EMS manages to 
readjust γ toward the end of July 12 and meet the target Eb,T. Note also that the daily revenues Rt generated by the 
proposed EMS on July 11 and July 12 are similar to those generated by the baseline DP. Given that a trivial PV 
power forecast model is implemented, the proposed EMS yields reasonable results in meeting the battery energy 375 

target Eb,T while maximizing the revenues. We can conclude that the average daily battery power Pb,d function as 
given in (21), which in turn adjusts the Lagrange multiplier γ, provides sufficient reactive real-time control for 
compensating the PV power forecasting errors.  

The approximations used in the proposed EMS provide a computationally efficient real time control at the 
expense of less accurate optimization results. One the other hand, the DP method is a brute-force approach that 380 

assumes an accurate instantaneous PV power forecast is available. As shown in Figs. 9 and 10, the 
approximations used in the real-time EMS produce slight deviations of results between the proposed EMS and the 
brute-force DP approach. The approximations used in the proposed EMS are summarized as follow: 

• The battery power target value Pbr,t as the dispatch function of the proposed EMS is a linear 
approximation. 385 

• In order to use a direct method to approximate the Lagrange multiplier γ, the proposed EMS assumes the 
daily electricity price signal can be represented by a constant value πg,d.     

• The proposed EMS uses the arithmetic mean of the hourly electricity prices to approximate πg,d..  
• For simulation analysis under practical assumptions (where the results are as shown in Fig. 10), the 

proposed EMS estimates the average daily PV power output Pp,d using the basic 24-hour persistence 390 

forecast model.  
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(a) Battery power Pb,t 395 

 
(b) Ac power output Pac,t 

 
(c) Battery stored energy Eb,t 

 400 
(d) Daily total revenue Rt 

Figure 9: Power scheduling simulation results comparing the proposed EMS to the DP method assuming unconstrained battery capacity. 
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(a) Battery power Pb,t 

 405 
(b) Ac power output Pac,t 

 
(c) Battery stored energy Eb,t 

 
 (d) Daily total revenue Rt 410 

Figure 10: Power scheduling simulation results comparing the proposed EMS to the DP method assuming battery capacity is constrained. 
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6. Conclusion 
This paper presents a real-time energy management system (EMS), which maximizes the total revenue for the 
PV/battery system that connects to a smart grid with time varying electricity prices. The proposed EMS utilizes 
reactive real-time control mechanism to compensate for the PV power forecast error. Hence, it addresses the 415 

limitation of predictive PV power scheduling approach that requires an accurate instantaneous PV power forecast. 
The proposed reactive real-time control mechanism requires only forecasting the average PV power output over 
the total optimization period. The proposed EMS is based on the method of Lagrange multipliers, and the power 
scheduling algorithm is shown in Fig. 6. In order to enable the reactive real-time control, this paper proposes a 
closed form optimal dispatch function of the battery power as given in (19) and a direct method for estimating the 420 

Lagrange multiplier γ as given in (20). The proposed EMS method is verified by benchmarking against the brute-
force dynamic programming (DP) approach. The comparative simulation analysis (between the proposed EMS 
and the brute-force DP approach) first shows that the approximations used in the dispatch function and the 
Lagrange multiplier estimation yield negligible errors (Fig. 9). Next, the comparative simulation analysis shows 
that the compensation function as given in (21) can adjust the Lagrange multiplier γ to compensate for the PV 425 

power forecasting error. The comparative simulation analysis as given in Fig. 10 shows that the proposed EMS 
yields reasonable results in meeting the objective of maximizing the revenue under practical assumptions where 
the PV power is forecasted and the battery storage capacity is constrained. We may conclude that the proposed 
EMS presents a practical approach that is capable of reactively compensating for errors in the forecasting, system 
modeling or both.  430 
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Acronyms and Symbols 
BMS   battery management system  
DP   dynamic programming  
EMS   energy management system 440 

PLL   phase lock loop 
PV    photovoltaic 
MOSFET  metal–oxide–semiconductor field-effect transistor 
MPPT    maximum power point tracker  
NOK   Norwegian krone 445 

Wh   watt hour, a unit of energy 
Cpv   voltage mode photovoltaic controller 
Cibat    current mode battery charge controller  
Cvbat    voltage mode battery charge controller  
Cff    feed-forward controller 450 

Eb,t,1    lower limit of battery stored energy state  
Eb,t–1,i    battery stored energy at state i and time interval t–1 
Eb,t,j    battery stored energy at state j and time interval t  
Eb,t,N   upper limit of battery stored energy state 
Eb,T    battery stored energy target over the total optimization time period T 455 

Ft,ij    maximum total sum of revenue up to time interval t, and at state i 
Lac    loss function of ac power path  
Lb    loss function of battery power path  
Pac,t   ac power at time interval t 
Pb,d    average daily battery power  460 

Pb,t    battery power at time interval t 
Pbr,t    battery power target at time interval t 
Pd    local demand power 
Pg,t    grid power at time interval t 
Pp,d    average daily photovoltaic power output 465 

Pp,t    output power of photovoltaic power path at time interval t 
Ppv    input power to the photovoltaic system 
Rt    revenue function at time interval t 
RT    total sum of revenues over the total optimization time period T 
t    time interval 470 

T   power scheduling total optimization time period  
α, β, χ    coefficients of the loss function of ac power path  
∆t    step size of time interval  
γ    second Lagrange multiplier 
κ    coefficient of the loss function of battery power path  475 

λ    first Lagrange multiplier 
πg,d    daily representative value for the electricity prices 
πg,t    electricity price at time interval t  
 
  480 
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Highlights 

- The proposed energy management system (EMS) maximizes the revenue of the smart-grid connected 

PV/battery system over a given time period while meeting the battery stored energy constraint. 

- The proposed EMS utilizes reactive real-time control mechanism to compensate for the PV power forecast error. 

Hence, it addresses the limitation of predictive PV power scheduling approach that requires an accurate 

instantaneous PV power forecast.  

- The proposed reactive real-time control mechanism requires only forecasting the average PV power output over 

the total optimization period.  


