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A 91-Channel Hyperspectral LiDAR for
Coal/Rock Classification
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Abstract— During the mining operation, it is a critical task
in coal mines to significantly improve the safety by precision
coal mining sorting and rock classification from different layers.
It implies that a technique for rapidly and accurately classifying
coal/rock in-site needs to be investigated and established, which
is of significance for improving the coal mining efficiency and
safety. In this letter, a 91-channel hyperspectral LiDAR (HSL)
using an acousto-optic tunable filter (AOTF) as the spectroscopic
device is designed, which operates based on the wide-spectrum
emission laser source with a 5-nm spectral resolution to tackle
this issue. The spectra of four-type coal/rock specimens collected
by HSL are used to classify with three multi-label classifiers:
naive Bayes (NB), logistic regression (LR), and support vector
machine (SVM). Furthermore, we discuss and explore whether
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Gaussian fitting (GF) method and calibration with the reference
whiteboard (RB) can enhance the classification accuracy.
The experimental results show that the GF technique not only
improves the accuracy of range measurement but also optimizes
the classification performance using the spectra collected by the
HSL. In addition, calibration with RB can improve classification
accuracy as well. In addition, we also discuss methods to improve
the calibration-free classification accuracy preliminarily.

Index Terms— Acousto-optic tunable filter (AOTF), coal/rock
classification, Gaussian fitting (GF), hyperspectral LiDAR (HSL).

I. INTRODUCTION

SOFT rock mining belongs to the group of mining tech-
niques used to extract coal, oil shale, potash, and other

minerals from underground sedimentary rocks. As one of
the most important soft rock ores, coal counts approximately
70% of the primary energy consumption in China today [1].
However, the casualty of the coal mining accidents is also
enormous. It is anticipated to adopt modern practices to
significantly improve the safety in coal mines. Especially,
the application of laser scanning technology is used to verify
spatial changes of underground mining works, to assess stabil-
ity conditions of mining workplaces [2], to detect large-scale
deformation [3], and to monitor the strata surface displace-
ments during and after mining [4]. A laser scanner is also
a powerful tool for classification, identifying, and recording
the condition of coal rocks, which is beneficial to mine
safety [5], [6].

Most laser scanners operate at a single wavelength providing
accurate point clouds data with a high spatial resolution and
the intensity data of the employed wavelength, which is widely
used in 3-D reconstruction and allowed object classification
based on their geometric properties [7] or spectral character-
ization [8], whereas the monochromatic system configuration
of the traditional LiDAR strongly restricts the performance of
application.

Active hyperspectral LiDAR (HSL) [9]–[11] can collect the
object point cloud information with abundant spectral profile,
which is more beneficial to target classification than the tradi-
tional LiDAR sensors operating with a single-wavelength laser
source. However, the applicability of previously developed
HSLs is strongly restricted due to their limited and discrete
spectral channels. To solve this problem, an acousto-optic
tunable filter (AOTF)-based HSL, termed as AOTF-HSL,
is designed, with a 5-nm spectral resolution, resulting in a
91-channel HSL covering from 650 to 1100 nm. We investi-
gated its capability for coal/rock classification based on three
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Fig. 1. Schematic illustration configuration.

classification methods: naive Bayes (NB), logistic regression
(LR), and support vector machine (SVM). The four-type
coal/rock specimens (coal, rock from roof layer, rock from
floor layer, and gangue-rock) were collected from Wanglou
coal mining, Jining, Shandong province, China, and the site
depth is 1000 m underground.

Gaussian fitting (GF) technique is a commonly used
methodology to improve the range performance of LiDAR
waveform, especially, when the signal-to-noise (S/N) ratio is
poor [12], [13]. In this letter, we try to evaluate whether/how
the GF can enhance the classification results based on the
spectra collected by the HSL. We conducted case studies to
explore the influence of GF on AOTF-HSL.

The major contributions of this letter are listed as follows.
1) This letter reveals a 91-channel AOTF-HSL with a 5-nm

spectral resolution covering from 650 to 1100 nm.
2) This letter first explores the coal/rock classification

based on the AOTF-HSL spectral.
3) This letter explores the improvement of classification

based on the GF method and discusses the calibra-
tion influence on coal/rock classification with reference
whiteboard (RB).

The rest of this letter is organized as following four sections.
Apart from the first Introduction section, an overview of
the AOTF-HSL instrument and measurements are given in
Section II; Section III includes the GF method and the
multi-label classifiers; Section IV describes the data process-
ing, the detailed experimental results, and the analysis of the
results; and Section V concludes this letter and discusses future
development.

II. INSTRUMENT AND MEASUREMENTS

A. AOTF-HSL

The system configuration of the 5-nm spectral resolution
AOTF-HSL is designed based on the previous 10-nm spec-
tral resolution version using a supercontinuum laser source
(YSL SC-OEM) [14], as shown in Fig. 1. An AOTF model
(YSL) [15] is employed in the lab test as the spectroscopic
device that is installed in front of the supercontinuum laser
source to select the wavelength of the emitted laser pulse
at each time slot, which covers the spectrum from visible
(VIS) to near-infrared (NIR). Thus, it offers both range mea-
surement and consecutive spectral measurement from 650 to
1100 nm. A Cassegrain telescope collects the scattered laser
pulse from the target and focuses it on a silicon avalanche

Fig. 2. Experimental setup and coal/rock specimens. (a) HSL experimental
setup. (b) Coal specimen on testing. (c) Specimens (①: coal, ②: rock from
roof layer, ③: rock from floor layer, and ④: gangue-rock).

photodiode (APD) installed on the focal point of the telescope.
The output signals of the high-voltage-bias APD are recorded
by a high-speed oscilloscope. The transmitted pulse is sampled
by a reflector placed at the optical axis of the Cassegrain
telescope, as shown in Fig. 1. The telescope also collects
the scattered laser echoes from the target. By such optical
design, only one APD sensor is required for the system, and
the investment for hardware can be saved since less high-speed
A/D converters are used.

B. Range Measurements

With the current experimental setting, the coal/rock spec-
imens were put on a base with a range of 17.85 m toward
the HSL, and the range was assured with a commercial Leica
laser telemeter (Leica D8) by measuring the range between
the Cassegrain telescope and the coal/rock targets as refer-
ence value rather than authentic value for range performance
evaluation. Due to the nature of the complex optics design of
the HSL, the authentic range cannot be directly derived.

C. Hyperspectral Measurements

The measurements were conducted under a controlled
laboratory environment to obtain hyperspectral information
and distance by AOTF-HSL, as shown in Fig. 2(a) and (b).
Fig. 2(c) shows the coal/rock specimens.

In this letter, the measurements of the spectral channels were
selected in a range from 650 to 1100 nm, for the low sensitivity
of the APD and the low transmitted power intensity of the
supercontinuum laser below 650 nm [10], [14]. The waveforms
of pulses reflected from coal/rock specimens were collected by
an oscilloscope operating at a 20-GHz sampling rate.

The echo intensities are normalized by applying spec-
tral calibration with a standard whiteboard (70% reflectance,
Spectralon) at the same distance as the coal/rock specimens
during the lab test [16], [17], which is calculated as follows:

ri (λ) = rcoali (λ) /rpanal (λ) (1)

where rcoal and rpanel represent the specimen radiance and
standard radiance at a wavelength λ.
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All coal/rock specimens were in the same distance from
the experimental table in test, and the laser beams were pro-
jected perpendicularly on the surface of specimens, as shown
in Fig. 2(c), so the affection of the range differences of
coal/rock specimens on spectra is neglectable [16].

III. DATA ANALYSIS METHOD

A. Gaussian Fitting

Using the Gaussian function to fit the observed data, which
is commonly used in various signal processing disciplines. Due
to the symmetry of a Gaussian function, the Gaussian peak
position is determined very efficiently [18]. Therefore, the GF
method is applied widely to calibrate the reflected pulse in
LiDAR for more accurate distance measurement between the
HSL and target [11]–[13].

In this letter, we fit the trigger and echo signal waveforms
by using the Gaussian function [19]. Once the transmit-
ted and return echo positions and widths are determined
from the fitting waveform, distances are measured first, and
then, the hyperspectral intensities are extracted by the fitted
Gaussian peak heights. Furthermore, classification features are
derived from the unfiltered/filtered echo waveform.

B. Classification Methods

The goal of the classification method is to understand how
to map a set of input features to its corresponding output. The
data provided to classification must be labeled for training.
Each label represents the correct prediction for its related
input. Classification methods depend on the assignments of
class labels that based on their input samples and can be
categorized into binary-label classifications and multi-label
classifications. The multi-label classifications are increasingly
required by complex task applications for their more accurate
predictions.

To explore coal/rock classification based on AOTF-HSL
spectra, three classifiers are used in this letter including NB
[20], LR [21], and SVM [22]. The multi-label classifications
are implemented by the scikit-learn Python package [23].

IV. RESULT AND ANALYSIS

Based on the schematic setup of the AOTF-HSL described
in Section II, the range and hyperspectral measurements are
conducted in the lab experiments.

A. Data Processing

The AOTF-HSL collects the original waveforms, from
which the general range precision, time-of-flight (ToF) mea-
surements, and reflectance of different spectral channels are
calculated. Fig. 3 illustrates the outputted waveforms by
averaging eight HSL waveforms for each spectral channel
of a dedicated specimen. The waveform includes both the
transmitting pulses and the echoes due to the optical design
presenting in Fig. 1. To illustrate clearly, we select waveforms
of ten spectral bands from 650 to 1100 nm with a 50-nm
interval rather than all 91 spectral channels, as shown in Fig. 3.

From Fig. 3, we can observe that the responses after
1000 nm are weak due to the fact that the spectral sensitivity

Fig. 3. Original waveforms for coal specimen (ten channels only).

Fig. 4. Echo maximum and reflectance measurement for coal/rock specimens.

at that spectrum range of the employed silicon APD is at
least one magnitude lower than its peak value (∼2.5 A/W
at 1050 nm versus 50 A/W at 800 nm).

The amplitude peaks are extracted from echo waveforms
as spectral measurements. We can observe from Fig. 4(a)
that the difference of the maximum spectral measurements
of four coal/rock specimens is slight, especially when the
wavelength is beyond 1050 nm. The measurements extracted
from coal and roof layer rock almost coincide with each other
especially when the wavelength exceeds 875 nm, and the
difference between gangue-rock and floor layer rock is minor
after 950 nm, which may hinder the classification performance.
As a result, classification based on an echo signal may require
a more robust algorithm.

Supported by the reference board, we obtain the maximum
values of reflectance after processing by employing (1), and
then, the reflectance of each channel is averaged by eight
measurements. Clear differences in the reflectance of spectral
domain can be observed in Fig. 4(b). However, it is difficult to
install the reference white panel in-site coal mining in practical
operation, which is vulnerable to be contaminated with dust.
It is obvious that roof layer rock specimen has considerably
lower spectral reflectance values than other coal/rock speci-
mens. Coal and floor layer rock have similar spectral profiles,
especially between 700 and 900 nm. In general, the difference
by utilizing the calibration board can be easily observed, which
might facilitate the classification.

B. Range Performance

Range measurement is critical and determines the accuracy
of the collected spatial information. As aforementioned,
the referenced range is not available due to the current
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Fig. 5. Range measurements of the AOTF-HSL (coal specimen).

AOTF-HSL optical design. To determine the flying time of
each pulse, the positions of the maximum amplitude of the
transmitting pulse and the echo waveform are determined from
the collected waveform. By multiplying the speed of light, the
distance between the LiDAR and the target can be calculated.

Fig. 5 shows that the distances extracted from the wave-
forms of different spectral channels, and their values differ
from 17.78 to 18.08 m, which are obtained by averaging of
eight measurements for each spectral channel to archive better
precision. The uniformity of the range measurements over
all spectral channels of AOTF-HSL is evaluated and verified,
but the measured distances become large after 1070 nm
due to the low S/N ratio signals collected in that spectrum
range. We also utilize the GF technique to process the raw
waveforms, and the averaged filtered waveforms present a
smoother range measurement over the spectrum as the red
line with a triangle mark illustrated in Fig. 5, especially in the
low S/N ratio spectral range. The average standard deviation of
the distance measurements for all spectral channels is 3.89 cm
without GF, and it is mitigated to 1.35 cm based on the
GF technique, reducing by 65.94%. Furthermore, we divide
the spectral range into two parts (Part 1: 650–1045 nm and
Part 2: 1050–1100 nm). The standard deviation of the distance
measurements for Part 1 is 0.48 cm without GF and further
0.38 cm with GF, reducing by 20.83%. Especially for Part 2,
the standard deviation drops 83.41% from 8.86 to 1.47 cm.
It is clear that the GF technique can enhance the range mea-
surement accuracy obviously when S/N ratio is low. And even,
GF can also improve the accuracy of range measurements of
HSL in the high S/N ratio cases.

C. Classification Performance

In order to honestly evaluate the improvement in
classification introduced by GF and reference data from RB,
four test cases evaluated during the experiments using different
classification features, they are as follows:

1) CASE I: disable GF and without RB;
2) CASE II: enable GF and without RB;
3) CASE III: disable GF and with RB;
4) CASE IV: enable GF and with RB.

As we suppose that both GF and the reference from RB
have a positive influence on the final classification result,
the classification performance should improve from CASE I
to CASE IV.

TABLE I

COMPARISON OF CLASSIFICATION RESULTS BASED ON
THE FOUR CASES

TABLE II

COMPARISON OF CLASSIFICATION RESULTS BASED ON THE

SAME DATA SET

For the analysis of classification results, we used 50%
samples (11 000) for training data set and the remaining 50%
samples (11 000) for testing data set, and the labels were set
as {0, 1, 2}.

Table I presents the comparison of results by three classifiers
with different feature cases. The number in Table I indicates
the minimum number of spectral channels (MNSCs) used to
acquire 100% classification accuracy. According to the classi-
fication experimental results, all classifiers can achieve 100%
classification accuracy when the training data are sufficient.

It is worth noticing that the GF method effectively improves
the classification result, especially for NB and SVM classifies.
Based on the NB classifier, the MNSC needed to reach 100%
accuracy with CASE II decrease from 47 channels for CASE I
to 30, reducing by 36.17%. Furthermore, supported by the RB,
the required MNSC considerably decreases to 25 without GF
and further 15 with GF, respectively. The similar promising
results based on the SVM classifier can also be found that
the MNSC drops from 12 to 7, 4, and 3, which indicates that
the classification can be fulfilled by a reference-board-enabled
dual-wavelength LiDAR. It is a meaningful finding that GF
can improve the classification result from HSL measurements,
for the GF method may eliminate noise and clutter signal to
enlarge the difference of classification feature.

Table II lists the classification accuracy (%) of three
classifiers with different cases based on the same data set
(two channels). It can be seen that a higher accuracy with
GF exceeds echo maximum value only, and the increments
vary with classifiers, such as 0.04% in NB, 9.12% in SVM,
and 8.42% in LR; Compared to CASE I, the results based
on RB improve 3.36%, 10.29%, and 8.44%, respectively. The
results based on CASE IV outperform other cases. Compared
to CASE I, the classification results of the three classifiers
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increase by 20.87%, 21.25%, 16.72%, respectively. We can
draw a conclusion that RB is beneficial for classification; also,
combing with GF can further improve the classification results.
When there are no calibration data available, GF technique
might improve the classification performance.

As can be observed, the classification performance of NB
classifier is worst among these classifiers. The explanation is
straightforward: the attribute independence assumption harms
NB classification performance when it is violated in reality as
we have known [20]. SVM can reach desirable classification
accuracy for HSL derived spectra. Also, it is worth noticing
that the multiple LR classifier stands out by having the fewest
channels reach 100% accuracy, which outperforms the other
two selected classifiers.

V. CONCLUSION

In this letter, HSL covering spectrum range from 650- to
1100-nm-based AOTF is presented, offering consecutive spec-
tral measurements with a 5-nm spectral resolution and range
measurement with 7.5-mm range resolution. Then, we present
a feasibility study using the AOTF-HSL for coal/rock speci-
mens classification, which were collected in the underground
coal mining environment. Classification with three standard
multi-label classifiers NB, SVM, and LR is investigated. The
case study is conducted to explore the influence of availability
of the calibration data and the GF technique. Finally, we draw
the following conclusion.

1) GF can not only improve the accuracy of range
measurement but also enhance the classification result
no matter whether the calibration data are available or
not, the noise mitigation functionality offered by the GF
technique might improve the classification performance.
It has not been reported before in HSL to the authors’
best knowledge.

2) The performance drop in the calibration-free classifica-
tion can be compensated to some extent by utilizing
the GF technique. However, a more robust classification
method under calibration-free condition is worthy of
further investigation.

3) The selection of suitable classifier is also critical for
HSL-based classification due to the nature of data.

4) Calibration with whiteboard is effective to improve the
classification accuracy, but it may be difficult to obtain
under a practical operation condition.

Although only four types of coal/rock specimens are inves-
tigated in this letter, the results can be considered suggestive.
More rocks and other types of material utilized in coal mining
environment will be further investigated for sounder research.
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