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Abstract—In this work, a decentralized PI passivity-based
controller (PI-PBC) is applied to Modular Multilevel Converters
(MMCs) to ensure global stability of a multi-terminal HVDC
system. For the derivation of the controller, an appropriate model
with constant steady-state solutions is obtained via a multi-
frequency orthogonal coordinates transformation. The control
design is next completed using passivity arguments and per-
formance guarantees are established by a small-signal analysis.
The obtained results are validated by means of detailed time-
domain simulations both on a single-terminal and a four-terminal
benchmark.
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I. INTRODUCTION

Multi-Terminal (MT) High-Voltage Direct-Current (HVDC)
transmission systems form part of one of the major infras-
tructure developments of our times. This kind of architecture
is the preferred solution for the integration of large volumes
of renewable energy into the existing power grids, since it
potentially mitigates the inherent intermittency of the remotely
located and uneven geographically distributed sources by in-
terconnecting them over very long distances [1].

The main components of MT-HVDC grids are ac to dc
power converters, which interface ac sources—typically asso-
ciated to renewable energy source or to ac grids—to a high-
voltage dc network through a dc bus. Although two-level volt-
age source converters (2L-VSCs) have been traditionally em-
ployed for this purpose, in recent years we have witnessed the
rise in popularity of Modular Multilevel Converters (MMCs)
[2]. Compared to 2L-VSCs, MMCs have significant advantages
for HVDC applications, especially in terms of reduced losses,
modularity, scalability and low harmonic distortion in the
output ac voltage with correspondingly reduced requirements
for filtering [3].

Independently from the choice of the specific components,
MT-HVDC grids are expected to be multi-vendor by nature,
thus posing the problem of interoperability of the components,
in particular of the power converters and the corresponding
local controllers [4]. Although the concept of interoperability
has several valid interpretations, it is widely acknowledged
that a key role is played in this context by the stability and
performance properties of the closed-loop system [5]. The
analysis of such properties is far from being trivial, since power
converter local controllers are usually implemented by different
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vendors and are subjected to confidentiality agreements, yet
they require seamless plug and play operation [1].

A possible approach for a stability and performance-
guaranteed control design with the desired plug and play
features is based on passivity theory [6]. In fact, the notion
of passivity can be used to identify a wide class of stabilizing
controllers—see [7]–[9] and reference therein for an overview
on this topic—and for which a performance analysis can be
realized a posteriori. Nevertheless, motivated by its simplicity,
robustness and popularity in industrial applications, the use of
PI passivity-based control (PI-PBC) design is largely preferred
in practice. Contrary to conventional PI controllers that usually
act directly on error signals of interest, the PI-PBC acts instead
on the passive output of the system. Interestingly, driving the
passive output of the system to zero would ensure global
(asymptotic) stability [10], making the PI-PBC a promising
control design alternative able to cope with large-signal per-
turbations. PI-PBC has been already, successfully applied to
traditional power converters and MT-HVDC systems based
on 2L-VSCs, with the purpose of guaranteeing stability and
adequate performance of the closed-loop system [10], [11].

Unfortunately, the application of the same methodology
adopted in [11], [12] for the case of MT-HVDC systems based
on 2L-VSCs is not straightforward, when these are replaced
by MMCs, the reasons being the following. First, conventional
coordinate transformations consisting of a single frequency
Park transform fail to map the desired steady-state behavior
of the system—which consist of periodic solutions in abc
coordinates—to a fixed equilibrium point in dqz coordinates,
thus stimying the formulation of the control problem as a
regulation problem—refer to [13], [14] for more details. This
is since, unlike 2L-VSCs, MMCs present multiple frequency
components in their steady-state voltage and current variables
[13]. Second, the design requires the system to be represented
in a suitable port-Hamiltonian form, this being not obvious,
considering that MMCs are characterized by complex internal
dynamics associated to the circulating currents and the internal
capacitor voltages of the upper and lower arms of each phase
[15], [16].

To overcome these shortcomings, in this paper we propose
an equivalent averaged formulation of an MMC with time-
invariant solutions (along the lines of [13], [14]) and next
represent the system using an appropriate port-Hamiltonian
representation. This is done in Section II. The modelling of
a general HVDC system based on MMCs1 is then developed
in Section III, using the same formalism adopted in [11].
Based on such a representation, in Section IV the results
of [10], [11] are directly applied both for the case of an
individual MMC and of an MT-HVDC with meshed topology.
The stability properties and performance guarantees of the
resulting controllers are validated and thoroughly analyzed
with the support of detailed time-domain simulations on a
single and meshed four-terminal configuration in Section V.
Thus, this work extends our initial result presented in [17],
which was limited to the radial case, and lacked detailed time-

1In the remainder of this paper, unless explicitly stated, we refer to an
HVDC system based on MMCs simply as an HVDC system.
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Fig. 1. Topology of the modular multilevel converter under consid-
eration.

domain validation.
Notation. All vectors are column vectors. Given positive

integers n, m, symbols 0n ∈ Rn denotes the vector of all
zeros, 1n ∈ Rn the vector with all ones, In the n × n
identity matrix, 0n×m the n×m column matrix of all zeros.
x := col(x1, . . . , xn) ∈ Rn denotes a vector with entries
xi ∈ R, when clear from the context it is simply referred
as x := col(xi). diag(ai) is a diagonal matrix with entries
ai ∈ R. bdiag{Ai} is a block diagonal matrix with entries

Ai ∈ Rn×n. We define the matrix J2 :=

[
0 −1
1 0

]
∈ R2×2.

For a function f : Rn → R, ∇f denotes the transpose of its
gradient. We use sin(·)+ ∈ R3, cos(·)+ ∈ R3 to denote three-
phase balanced signals in positive sequence. Alternatively
we use sin(·)− ∈ R3, cos(·)− ∈ R3 to denote three-phase
balanced signals in negative sequence. The symbol ◦ denotes
the Hadamard product, i.e. the element-wise multiplication
between vectors.

II. MODELING OF MODULAR MULTILEVEL CONVERTERS

A. Arm Averaged Model
A single MMC with three upper and three lower arms in

half bridge configuration is considered, the topology of which
is represented in full detail in Fig. 1. Both upper and lower
arms are constituted by an arm inductor—characterized by an
inductance Lσ and a resistance Rσ—connected in series with
N sub-modules (SMs). Each SM includes two IGBTs, their
respective free wheeling diode and an equivalent capacitor.
The circuit is completed by an RL element, located at the ac
output, that takes into account the leakage inductance of the
transformer and additional inductive filters.

Due to the complexity of the system, suitable, simplified
models are usually employed in literature, based on the fol-
lowing, widely accepted, assumptions—see [16], [18]–[21] for
more details.
A1. Switching dynamics are neglected.
A2. All SMs voltage signals in the same arm are identical.
A3. Balanced operation of the phases.

Assumption A1 is justified by the very fast operation of
the switches, compared to the time-scale at which the other
electrical variables evolve. Assumption A2 allows to represent
the MMC capacitive dynamics with only one equivalent capac-
itor in each arm, significantly reducing the size of the model.
Indeed, the validity of this assumption rests on a low level
SM capacitor balancing algorithm that would ensure equal
voltage among the arm SMs [2]. Furthermore, it was proven
in [22] that the model derived under this assumption remains

accurate even for realistic MMC designs intended for HVDC
applications characterized by a large number of levels, which
do not typically exhibit strictly equal individual sub-module
capacitor voltages per arm2. Finally, Assumption A3 can be
legitimized by appropriate design of the system components.
Under these assumptions, the switching dynamics of the series-
connected SMs can be approximated by their averages, which
leads to the following average model of the upper (j = U )
and lower (j = L) arms:

Cσ v̇
j
Cabc = mj

abc ◦ i
j
abc

Lσ i̇
j
abc = −Rσijabc −m

j
abc ◦ v

j
Cabc + vjσ,

(II.1)

where we have further defined: as state vector, the collection of
the three-phase arm voltage vjCabc ∈ R3 and current ijabc ∈ R3;
as control vector, the three-phase insertion index mj

abc ∈ R3;
as input vector, the three-phase voltage vjσ ∈ R3; as parameters
Cσ, Lσ, Rσ ∈ R+, corresponding respectively to the arm
equivalent capacitance, inductance and resistance.

To facilitate the interconnection of the arms dynamics with
the RL element preceding the grid, it is convenient to trans-
form the system (II.1) in more suitable Σ-∆ coordinates, which
are defined as follows:

vΣ
Cabc := vUCabc + vLCabc, v∆

Cabc := vUCabc − vLCabc
iΣabc :=

1

2
(iUabc + iLabc), i∆abc := iUabc − iLabc

mΣ
abc := mU

abc +mL
abc, m∆

abc := mU
abc −mL

abc,

where currents iΣabc and i∆abc have clear physical meanings,
since they correspond to the three-phase circulating current
and the three-phase current flowing into the grid through the
RL element, see also Fig. 1. After some simple manipulations,
the arms dynamics in Σ-∆ coordinates can be combined with
the dynamics of the RL element, thus leading to:

Cσ v̇
Σ
Cabc = mΣ

abc ◦ iΣabc +
1

2
m∆
abc ◦ i∆abc;

Cσ v̇
∆
Cabc = m∆

abc ◦ iΣabc +
1

2
mΣ
abc ◦ i∆abc;

Lσ i̇
Σ
abc =

13vdc
2
−RσiΣabc −

mΣ
abc ◦ vΣ

Cabc +m∆
abc ◦ v∆

Cabc

4
;

Lδ i̇
∆
abc = −Rδi∆abc −

mΣ
abc ◦ v∆

Cabc +m∆
abc ◦ vΣ

Cabc

4
− v∆

Gabc;

(II.2)
where we used the following relations—obtained by inspection
of Fig. 1:

vUσabc + vLσabc = 13vdc,

vUσabc − vLσabc = −2(Rf i
∆
abc + Lf i̇

∆
abc + v∆

Gabc)
(II.3)

and further defined the equivalent ac inductance Lδ := Lσ/2+
Lf and resistance Rδ := Rσ/2 + Rf . The model (II.2) is
referred in the sequel as the Arm Averaged Model (AAM) of
the MMC.

B. Steady-state analysis

A fundamental step towards the analysis and the control
design is the identification of the steady-states of interest for
the correct and safe operation of an MMC. It is typically
required that—see [2], [15] for a precise justification:
R1. The ac grid current is a periodic three-phase sinusoidal

2Low-level arm balancing algorithms with reduced switching frequency in
the lines of [23] are usually used to decrease the switching losses in HVDC
applications, which result in having some differences in the SMs capacitor
voltages within the same arm.
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signal at the fundamental frequency ω > 0, i.e.

i∆ss = I∆
ss sin(ωt+ ϕ∆

ss )+, I∆
ss ∈ R, ϕ∆

ss ∈ S;

R2. The upper arm insertion indices are phase-shifted of
π rad with respect to the lower arm insertion indices,
i.e.

mΣ
ss≈13, m∆

ss≈Mss sin (ωt)+ ;

R3. The sum of the circulating current in all phases is a dc
signal, i.e.

1
>
3 i

Σ
ss = const;

R4. The sum of arm capacitor voltages is a dc signal, i.e.

1
>
3 v

Σ
C,ss = const.

These requirements complicate the control design, since the
steady-state of interest does not coincide with a fixed equilib-
rium point. However, an analysis of the steady-state oscilla-
tions exhibited by (II.2) in simulations revealed the following
situation in steady-state conditions [13]:

• ∆-variables consist mainly of the sum of a signal os-
cillating at the fundamental frequency ω with a signal
oscillating at frequency 3ω.

• Σ-variables consist mainly of the sum of a dc signal with
a signal oscillating at frequency −2ω.

Remark 1. Actually, Σ- and ∆-variables are in general
characterized at steady-state by additional higher order har-
monics. However, their magnitude is small and therefore can
be neglected [13].

Remark 2. Note that, at steady-state, the grid current i∆
only oscillates at the fundamental frequency by definition,
while the circulating current iΣ might consists of a simple
dc signal, in the case that a Circulating Current Suppression
Controller is adopted [24].

C. A multi-frequency coordinates transformation

The classification presented in the previous section was
instrumental in [13], [14] to determine a suitable, multi-
frequency coordinates transformation that maps the oscillating
steady-states of interest to constant quantities, while preserv-
ing the original model nonlinear structure and avoiding the
dynamic phasor approximation used in [25]. This approach,
based on an appropriate combination of Park and rotational
transformations, is sketched here for the sake of completeness.

We first introduce the following definitions. A positive and
negative sequence Park transformation of a three-phase signal
x = col(xa, xb, xc) ∈ R3 with transformation angle φ(t) =
ω0t ∈ R, ω0 > 0, are respectively defined by:

xdqz :=
2

3

cos(ω0t)
>
+

sin(ω0t)
>
+

1
21
>
3

[xaxb
xc

]
= Pω0xabc,

xdqz :=
2

3

cos(ω0t)
>
−

sin(ω0t)
>
−

1
21
>
3

[xaxb
xc

]
= P−ω0

xabc,

with xdqz = col(xd, xq, xz) ∈ R3. Let x∆
abc ∈ R3, xΣ

abc ∈ R3,
be general three-phase signals in ∆-, Σ-coordinates respec-
tively, and define the following transformations:

xΣ
dqz :=col(xΣ

dq, x
Σ
z ) = P−2ωx

Σ
abc,

x∆
dqz :=col(x∆

dq, x
∆
z ) = Pωx

∆
abc.

(II.4)

By splitting dq and zero components, the AAM model (II.2)
in new coordinates—see [13] for a detailed derivation—reads

then:

Cσ v̇
Σ
Cdq = iΣMdq + J2Cσ2ωvΣ

Cdq, Cσ v̇
Σ
Cz = iΣMz,

Cσ v̇
∆
Cdq = i∆Mdq + J2Cσωv

∆
Cdq, Cσ v̇

∆
Cz = i∆Mz,

Lσ i̇
Σ
dq = −vΣ

Mdq + (J2Lσ2ω −RσI2)iΣdq,

Lσ i̇
Σ
z = −vΣ

Mz −RσiΣz +
1

2
vdc,

Lδ i̇
∆
dq = v∆

Mdq + (J2Lδω −RδI2)i∆dq − v∆
Gdq,

(II.5)

and the following definitions:

iΣM := P−2ω

(
P−1
−2ωm

Σ
dqz ◦ P−1

−2ωi
Σ
dqz + P−1

ω m∆
dqz ◦

P−1
ω i∆dqz

2

)

i∆M := Pω

(
P−1
ω m∆

dqz ◦ P−1
−2ωi

Σ
dqz + P−1

−2ωm
Σ
dqz ◦

P−1
ω i∆dqz

2

)

vΣ
M := P−2ω

P−1
−2ωm

Σ
dqz ◦ P−1

−2ωv
Σ
Cdqz + P−1

ω m∆
dqz ◦ P−1

ω v∆
Cdqz

4

v∆
M := −Pω

P−1
ω m∆

dqz ◦ P−1
−2ωv

Σ
Cdqz + P−1

−2ωm
Σ
dqz ◦ P−1

ω v∆
Cdqz

4

with iΣM := col(iΣMdq, i
Σ
Mz), i∆M := col(i∆Mdq, i

∆
Mz) and vΣ

M :=

col(vΣ
Mdq, v

Σ
Mz), v∆

M := col(v∆
Mdq, v

∆
Mz) corresponding to the

three-phase modulated currents and voltages respectively.

ω, 3ω 3ω

v∆
C Pω

vΣ
C

P−2ω

v∆
Cz

T3ω

⊥90◦

v∆⊥
Cz

vΣ
Cdqz

v∆
Cdq

v∆
CzDQ

i∆ Pω

iΣ P−2ω iΣdqz

i∆dq

mΣ P−2ω mΣ
dqz

m∆ Pω m∆
z

T3ω

⊥90◦

m∆⊥
z

m∆
dq

m∆
zDQ

−2ω, dc dc

M
M

C
In

te
rn

al
S

ta
te

V
ar

ia
b

le
s

C
on

tr
ol

V
ar

ia
b

le
s

Fig. 2. Multi-frequency coordinates transformation.

Under the aforementioned assumption of negligible high-
order harmonics, we have then that the steady-states of the Σ-
variables are mapped to a constant vector xΣ

ss,dqz . By contrast,
∆-variables are mapped to a vector

x∆
ss,dqz = col(x∆

dq,ss, x
∆
z,ss) ∈ R3,

where only x∆
dq,ss is a constant quantity, while the zero-

component x∆
z,ss still oscillates at frequency 3ω. Hence, as

illustrated in Fig. 2, the transformation is completed by an
additional change of coordinates, which is employed to map
these harmonics to constant values. This change of coordinates
is usually adopted in single-phase ac systems [26] and employs
an auxiliary, virtual variable x⊥ ∈ R, shifted of π

2 rad from
the original signal x ∈ R:

xDQ :=

[
cos(ω0t) sin(ω0t)
sin(ω0t) − cos(ω0t)

] [
x
x⊥

]
= Tω0

x,

with xDQ = col(xD, xQ) ∈ R2. Then, by applying this change
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of coordinates to the zero component of ∆-variables we have

x∆
zDQ =

[
x∆
zD

x∆
zQ

]
= T3ω

[
x∆
z

x∆⊥
z

]
, (II.6)

that, for the only ∆−variables equipped with a zero compo-
nent, requires the definition of the additional variables

v∆
CzDQ :=

[
v∆
CzD

v∆
CzQ

]
, m∆

zDQ :=

[
m∆
zD

m∆
zQ

]
.

D. Stationary AAM in port-Hamiltonian form

Before presenting the AAM with time invariant solutions
based on the transformations (II.4)-(II.6), an additional yet
simple variables and parameters change is adopted. This slight
modification eases the derivation of a port-Hamiltonian repre-
sentation of the system, which is instrumental for the control
design carried out in the next section. We then introduce the
variables

m̂Σ
z := 2mΣ

z , v̂Σ
Cz := 2vΣ

Cz, îΣz := 2iΣz , î∆dq := i∆dq/2

and the reparametrization:

L̂δ := 16Lδ L̂σ := 8Lσ L̂σz := 4Lσ
R̂δ := 16Rδ R̂σ := 8Rσ R̂σz := 4Rσ Ĝdc := 8Gdc/3

Ĉσ := 2Cσ Ĉσz := Cσ Ĉdc := 8Cdc/3

Based on these definitions, the AAM model can be rewritten
in compact form as

P ż = A(m)z + E, (II.7)

with: state vector

z := col(vΣ
Cdq, v̂

Σ
Cz, v

∆
Cdq, v

∆
CzDQ, i

Σ
dq, î

Σ
z , î

∆
dq, vdc) ∈ R13;

control vector

m := col(mΣ
dq, m̂

Σ
z ,m

∆
dq,m

∆
zDQ) ∈ R7;

constant input vector

E := col(02, 0, 02, 02, 02, 0,−8v∆
Gdq,−

8

3
idc) ∈ R13;

matrices A(m), P ∈ R13×13, with

P = bdiag{ĈσI2, Ĉσz, ĈσI4, L̂σI2, L̂σz, L̂δI2, Ĉdc}
and A(m) defined as in (II.8). The model (II.7) will be referred
in the sequel as the Stationary Arm Averaged Model (sAAM)
of an MMC. Now it can be easily seen that with the use of
the energy variables as the new state vector

x = Pz ∈ R13,

containing the collection of charges of the capacitors and the
magnetic fluxes of the inductors, i.e.:

x := col(qΣ
Cdq, q̂

Σ
Cz, q

∆
Cdq, q

∆
CzDQ, φ

Σ
Cdq, φ̂

Σ
Cz, φ̂

∆
dq, qdc) ∈ R13,

the system (II.7) can be rewritten in the port-Hamiltonian
representation, as

ẋ =(J (m)−R)∇H+B +Gup, H(x) :=
1

2
x>Qx,

yp =G>∇H
(II.9)

where we have further introduced: the appropriate decom-
position of the matrix A(m) in a symmetric positive part
R = R> ≥ 0 referred to as the system dissipation matrix,
and a skew-symmetric part J = −J>, referred to as the
interconnection matrix; the system Hamiltonian H ∈ R, with

Q = P−1; the decomposition of the vector E = B + Gup,
with up = −idc ∈ R, yp := 8

3vdc ∈ R and B,G ∈ Rn defined
in the Appendix. In addition, noting that the control variables
appear linearly in (II.8), it is possible to write

J (m) := J0 +

7∑
h=1

Jhmh,

for some appropriate skew-symmetric matrices
J0,Jh ∈ R13×13, which are given in the Appendix.

Remark 3. Notice that the port-Hamiltonian representation
of the MMC in (II.9) emphasizes the role of the energy or
Hamiltonian function H(x) in the system dynamics, as well
as the systems interconnection pattern J and its dissipation
R; the main ingredients for passivity-based controllers.

III. MODELING OF MT-HVDC SYSTEMS

Following the methodology adopted in [11], a general
multi-terminal HVDC system can be viewed as a graph
G (V ,E ,M ), where: V is a set of nodes, with cardinality c, as-
sociated to the points of connection between each of the MMCs
and the HVDC grid; E is a set of edges, with cardinality t,
associated to transmission lines dynamics; M ∈ Rc×t is the
incidence matrix of the graph, capturing the HVDC network
topology [27].
The HVDC network can be characterized by t meshely
connected RL transmission lines, the dynamics of which is
described by the following port-Hamiltonian system

ẋt =−Rt∇Ht(xt) + M>uo

yo =M∇Ht(xt)
(III.1)

with: state vector xt := ψt = col(ψt,i) ∈ Rt, the collec-
tion of the lines magnetic fluxes; interconnection variables
uo := col(vo,i) ∈ Rc, yo := io,i ∈ Rt corresponding respec-
tively to the node voltages and leaving currents; dissipation
matrix Rt := bdiag{Rt,i} ∈ Rt×t, where Rt,i are the lines
resistance; energy function

Ht(xt) :=
1

2
xtQtxt, Qt := diag(1/Lt,i),

where Lt,i are the line inductances.
Concerning the MMCs composing the HVDC system, we

employ the port-Hamiltonian representation (II.9) that has been
already identified in the previous section. Moreover, to provide
a compact representation of the c MMCs constituting the
HVDC system, we define the aggregated model

ẋc = [Jc(mc)−Rc]∇Hc +Bc +Gcuo

−yo =G>c ∇Hc
(III.2)

with: state vector xc := col(xi) ∈ Rcn; interconnection vari-
ables uc := vcol(vc,i) ∈ Rc, −yc := idc,i ∈ Rc corresponding
to the node voltages and entering currents; interconnection,
dissipation matrices

Jc := bdiag{Ji} ∈ Rnc×nc, Rc := bdiag{Ri} ∈ Rnc×nc;

source vector and input matrix

Bc := col(Bi) ∈ Rnc, Gc := bdiag{Gi} ∈ Rnc×c,

and the energy function Hc :=
∑c
i=1Hi(xi).

Finally, for the interconnection of the MMCs with the HVDC
networks, it suffices to combine (III.1) with (III.2) to get the
overall model with time-invariant solutions:

ẋtot = (Jtot(mc)−Rtot)∇Htot + Etot (III.3)

with: state vector xtot := col(xc,
8
3xt) ∈ Rnc+t; interconnec-
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A(m) := . . . (II.8)

0 −Ĉσ2ω 0 0 0 0 0 m̂Σ
z 0 mΣ

d m∆
d +m∆

zD m∆
zQ −m∆

q 0

Ĉσ2ω 0 0 0 0 0 0 0 m̂Σ
z mΣ

q m∆
q +m∆

zQ m∆
d −m∆

zD 0

0 0 0 0 0 0 0 mΣ
d mΣ

q

m̂Σ
z

2
m∆
d m∆

q 0

0 0 0 0 −Ĉσω 0 0 m∆
d +m∆

zD m∆
q +m∆

zQ m∆
d mΣ

d + m̂Σ
z mΣ

q 0

0 0 0 Ĉσω 0 0 0 m∆
zQ −m∆

q m∆
d −m∆

zD m∆
q mΣ

q m̂Σ
z −mΣ

d 0

0 0 0 0 0 0 −Ĉσ3ω m∆
d −m∆

q m∆
zD mΣ

d −mΣ
q 0

0 0 0 0 0 Ĉσ3ω 0 m∆
q m∆

d m∆
zQ mΣ

q mΣ
d 0

−m̂Σ
z 0 −mΣ

d −m∆
d −m∆

zD m∆
q −m∆

zQ −m∆
d −m∆

q −R̂σ −L̂σ2ω 0 0 0 0

0 −m̂Σ
z −mΣ

q −m∆
q −m∆

zQ m∆
zD −m∆

d m∆
q −m∆

d L̂σ2ω −R̂σ 0 0 0 0

−mΣ
d −mΣ

q −
m̂Σ
z

2
−m∆

d −m∆
q −m∆

zD −m∆
zQ 0 0 −R̂σz 0 0 4

−m∆
d −m∆

zD −m∆
q −m∆

zQ −m∆
d −mΣ

d − m̂Σ
z −mΣ

q −mΣ
d −mΣ

q 0 0 0 −R̂δ −L̂δω 0

m∆
q −m∆

zQ m∆
zD −m∆

d −m∆
q −mΣ

q mΣ
d − m̂Σ

z mΣ
q −mΣ

d 0 0 0 L̂δω −R̂δ 0

0 0 0 0 0 0 0 0 0 −4 0 0 −Ĝdc



tion, dissipation matrices

Jtot(mc) :=

[
Jc(mc) −GcM
M>G>c 0t×t

]
∈ R(nc+t)×(nc+t),

Rtot := bdiag{Rc,
8
3Rnet} ∈ R(nc+t)×(nc+t);

source vector Etot := col(Ec, 0t) ∈ Rnc+t, and energy
function Htot = Hc + 3

8Ht, where the scaling factor 8/3 has
been introduced in the HVDC network dynamics subsystem to
preserve skew-symmetry.

IV. PI-PASSIVITY BASED CONTROL

The control methodology follows the results presented in
[10]—applicable to averaged models of switched power con-
verters with steady-state time-invariant solutions—and next
extended to MT-HVDC systems based on 2L-VSCs in [11].
In both cases, the system was represented in the following
port-Hamiltonian form:

ẋ = (J0 +

p∑
h=1

Jhmh −R)∇H(x) + E, (IV.1)

where: x ∈ Rn is the state vector; m := col(mh) ∈ Rp is the
control vector; E ∈ Rn is the input vector; Ji = −J>i and
R = R> ≥ 0 are the n-dimensional square interconnection
and dissipation matrices; energy function

H(x) =
1

2
x> diag(pi)x

for some pi > 0. Before recalling the main result, the following
definition of assignable steady-state is necessary.

Definition IV.1 An admissible steady-state for the system
(IV.1) is given by any point x? ∈ Rn that verifies:

0 = (J0 +

p∑
h=1

Jhm?
h −R)∇H(x?) + E, (IV.2)

for some constant m? := col(m?
h) ∈ Rp.

Notice that, since p < n there might exist x ∈ Rn that do
not verify (IV.2) for any u ∈ Rp. We are now ready to recall
the main result presented in [10].

Proposition IV.2 Consider a port-Hamiltonian system of the
form (IV.1). For any admissible steady-state x? ∈ Rn, the PI-

PBC controller
mh = −KPhyh +KIhγh, γ̇h = −yh,
yh = ∇H>(x?)J>h ∇H(x), h = 1 . . .m,

(IV.3)

with KP ,KI ∈ Rp×p+ , guarantees that for all initial conditions
(x(0), ξ(0)) ∈ Rn × Rm the trajectories of the closed loop
system are bounded and limt→∞ x(t) = x? if y is detectable.

The previous result is established proving that y is a passive
output for the system (IV.1). Hence, since a PI controller is
output strictly passive, the closed-loop system is L2 stable. See
[10] for further details, and [8], [9] for some basic material
in passivity theory. Furthermore, it was proven in [11] that
a strong connection exists between the passive output and
Akagi’s instantaneous active and reactive power definitions
method for the case of the 2L-VSC, as driving y to zero could
be reinterpreted as a (active and reactive) power equalization
objective.

Since the model of the MMC in single-terminal configura-
tion (II.9) matches with the port-Hamiltonian system (IV.1), the
same result reported in [10], resumed in Proposition IV.2, can
be applied. In particular, the passive output can be computed
according to (IV.3), thus leading to

y1 =îΣ?z vΣ
Cd − îΣz vΣ?

Cd + iΣ?d v̂Σ
Cz − iΣd v̂Σ?

Cz + i∆?d
(
v∆
Cd + v∆

CzD

)
−
(
v∆?
Cd + v∆?

CzD

)
i∆d + i∆?q

(
v∆
CzQ − v∆

Cq

)
−
(
v∆?
CzQ − v∆?

Cq

)
i∆q ,

y2 =îΣ?z vΣ
Cq − vΣ?

Cq î
Σ
z + iΣ?q v̂Σ

Cz − v̂Σ?
Czi

Σ
q + i∆?q

(
v∆
Cd − v∆

CzD

)
−
(
v∆?
Cd − v∆?

CzD

)
i∆q + i∆?d

(
v∆
Cq + v∆

CzQ

)
−
(
v∆?
Cq + v∆?

CzQ

)
i∆d ,

y3 =iΣ?d vΣ
Cd − vΣ?

Cdi
Σ
d + iΣ?q vΣ

Cq − vΣ?
Cqi

Σ
q + i∆?d v∆

Cd − v∆?
Cd i

∆
d

+
1

2

(
îΣ?z v̂Σ

Cz − v̂Σ?
Cz î

Σ
z

)
+ i∆?q v∆

Cq − v∆?
Cq i

∆
q ,

y4 =i∆?d
(
vΣ
Cd + v̂Σ

Cz

)
−
(
vΣ?
Cd + v̂Σ?

Cz

)
i∆d + i∆?q vΣ

Cq − vΣ?
Cqi

∆
q

+ iΣ?d
(
v∆
Cd + v∆

CzD

)
−
(
v∆?
Cd + v∆?

Cd

)
iΣd + îΣ?z v∆

Cd

− v∆?
Cd î

Σ
z + iΣ?q

(
v∆
Cq + v∆

CzQ

)
−
(
v∆?
Cq + v∆?

CzQ

)
iΣq ,

y5 =i∆?q
(
v̂Σ
Cz − vΣ

Cd

)
−
(
v̂Σ?
Cz − vΣ?

Cd

)
i∆q + i∆?d vΣ

Cq − vΣ?
Cqi

∆
d

+ iΣ?q
(
v∆
Cd − v∆

CzD

)
−
(
v∆?
Cd − v∆?

CzD

)
iΣq + îΣ?z v∆

Cq

− v∆?
Cq î

Σ
z + iΣ?d

(
v∆
CzQ − v∆

Cq

)
−
(
v∆?
CzQ − v∆?

Cq

)
iΣd ,

(IV.4a)
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y6 =i∆?d vΣ
Cd − vΣ?

Cdi
∆
d − i∆?q vΣ

Cq − vΣ?
Cqi

∆
q + iΣ?d v∆

Cd − v∆?
Cd i

Σ
d

− iΣ?q v∆
Cq − v∆?

Cq i
Σ
q + îΣ?z v∆

CzD − v∆?
CzD î

Σ
z ,

y7 =i∆?q vΣ
Cd − vΣ?

Cdi
∆
q + i∆?d vΣ

Cq − vΣ?
Cqi

∆
d + iΣ?q v∆

Cd − v∆?
Cd i

Σ
q

+ iΣ?d v∆
Cq − v∆?

Cq i
Σ
d + îΣ?z v∆

CzQ − v∆?
CzQî

Σ
z .

(IV.4b)
For the overall MT-HVDC system based on MMCs, it

suffices to note that the model (III.3) also admits the port-
Hamiltonian representation (IV.1) and the Proposition IV.2
can be applied as well. Interestingly, the same output (IV.4)
is obtained for each MMC, which implies that the same
PI-PBC controllers ensure global asymptotic stability of the
interconnected system in a decentralized fashion.

Remark 4. Notice that the PI-PBC is universal [11], since
it can operate in dc-voltage control mode, or power control
mode, depending on which equilibria are assigned as desired
references, and which one is consequently determined by
solving (IV.2). As explained in [11], an inherent advantage
of this universal property is that there is no need to switch
between different controllers when the MMCs are requested
to change their mode of operation.

V. PERFORMANCE GUARANTEES

Although stability has been assessed theoretically for the
sAAM, no guarantees on the performance of the controller
have been provided. Time domain-simulations are then
developed both on a single-terminal and a multiterminal
HVDC system based on MMCs with the following two
objectives. First, to validate the sAAM in port-Hamiltonian
form given by (II.9). In fact, recall that this model has
been derived under the assumption of negligible high-order
harmonics—see Remark 1—an assumption that will be
validated for the MMC in single-terminal configuration, when
controlled by PI-PBC.3 Second, to investigate performances
of the PI-PBC for the MMC under single- and multi-terminal
configurations that, unfortunately, has been already shown to
have serious limitations for the latter when based on 2L-VSCs
[11].

For the sake of comparison, we then provide detailed
simulations of the following models, which are tested both in
single and four-terminal configurations, and are implemented
in Matlab/Simulink.

i. The sAAM of a single MMC in port-Hamiltonian form,
as expressed by (II.7), and the stationary model of
an HVDC system, as expressed by (III.3). Simulation
results obtained with these models are identified in the
legend of the figures by the corresponding variables
name;

ii. The AAM of a single MMC as obtained in Section II—
before the multi-frequency coordinates transformation—
and its multiterminal counterpart. This model can be also
found in [16], [18], [19] and is implemented using the
SimPowerSystem toolbox. Simulation results obtained
with this model are identified in the legend of the figures
as “AAM”.

iii. An Electro-Magnetic Transient (EMT) model of both
a single MMC and its multiterminal counterpart, im-
plemented using OPAL-RT Artemis toolbox. The MMC
model describes an MMC having 200 sub-modules per
arm, with a capacitance of 0.04232 F each. This model
includes non-linear effects, the switching operations and

3Similar MMC models have been validated in [13], [14]. However, such
models were not described in port-Hamiltonian form and included the well-
known Circulating Current Suppression Control [24].

the dynamics of a sub-module arm voltage balancing al-
gorithm. Simulation results with this model are identified
in the legend of the figures by “EMT”.

For the simulations, we assume that in the multi-terminal
configuration all MMCs are characterized by the same param-
eters and that transmission lines can be represented by the
frequency-dependent model detailed in [28], where the line
inductance effect is neglected to simplify our tractation4. On
the other hand, for the single-terminal configuration, we simply
consider the case where one of such an MMC is connected to
a constant dc current source, rather than the HVDC network.
The parameters are summarized in Table I.

Table I: Simulation parameters.

MMC physical and control parameters
Rf 0.3429 [Ω]

Sn 1200 [MVA] Lf 62.9 [mH] KP,1−7 1 · 10−10

Uacn 380 [kV] N 200 [-] KI,1−4 1 · 10−8

fn 50 [Hz] Cσ 21.16 [µF] KI,5 2 · 10−7

Udcn 620 [kV] Rσ 0.6017 [Ω] KI,6−7 1 · 10−9

Lσ 30.6 [mH]

Transmission line parameters acording to the
CIGRE B4 dc grid test system [29]

c′ 0.1906 [µF/km] l′ 2.112 [mH/km] r′ 9.5 [mΩ/km]

A. Single-terminal configuration
We consider a single MMC, controlled via a PI-PBC as

sketched in Fig. 3, subject to a perturbation applied to the
dc current idc, which steps from 0.339 p.u. to 0.423 p.u.,
at t = 0.05 s. This event automatically demands for a shift
of the active current reference i∆?d from −0.4 p.u. to −0.5
p.u., to balance the dc current injection. Moreover, we are
interested in keeping the reactive power to zero, i.e. i∆?q = 0,
in guaranteeing the objectives R1-R4 as defined in Section
II-B, and in obtaining the steady-state the values

m∆?
zDQ = 02, iΣ?dq = 02, vΣ?

Cz = 1.25.

On the other hand, the remaining references vΣ?
Cdq , v

∆?
Cdq ,

v∆?
CzDQ and iΣ?z can be computed according to the equilibria

equations defined by (IV.2), which also determine the steady-
state control input m?. All figures involving variables in dqz
components are split into two sub-figures showing the dq and
the the zero components separately.

The dynamics of the voltage sum and difference are illus-
trated in Fig. 4 and Fig. 5 respectively. Note that—for clarity
of presentation—the latter takes as reference for the zero
component the time-periodic signal v∆

Cz rather than its time-
invariant equivalent v∆

zDQ. The following two observations
then immediately follow. First, the responses of the sAAM
match with great accuracy both the responses of the AAM and
the EMT model. Second, the dynamics of the zero component
of the voltage sum shows a slow, yet acceptable, convergence
rate, which is instead not observed for the zero component of
the voltage difference.

The dynamics of the circulating current iΣdqz and grid
current i∆dq are illustrated in Fig. 6 and Fig. 7 respectively.
As for the voltages, responses of the sAAM closely follow
the responses of the AAM and EMT model, except for some
small, negligible, discrepancy in the latter, which is typically

4In [28] it was shown that neglecting the inductive effect in transmission
lines with only one parallel branch is a good approximation of the frequency
dependent model. We adopt this approximation here to prove that the conver-
gence rate of the MT-HVDC is uniquely related to the interconnection pattern
and not to the cable states.
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Calculation of Passive Outputs,
according to (IV.4)

PI

PI

PI

PI

PI

PI

PI

y1

y2

y3

y4

y5

y6

y7

mΣ
d

mΣ
q

mΣ
z

m∆
d

m∆
q

m∆
zD

m∆
zQ

P−1
ω

P−1
−2ω

T−1
3ω

m∆
z

mΣ
abc

m∆
abc

[Σ-∆]−1
mU

abc

mL
abc

MMC

v∆
Gabc

vUCabc

vLCabc

iUabc

iLabc

Σ-∆

P−2ω Pω

T3ω

v∆
Cz P−2ω Pω

vΣ
Cabc v∆

Cabc iΣabc i∆abc vΣ
Cabc

v∆
Cabc

iΣabc

i∆abc

Σ-∆

⊥

PI-PBC

Measurements

Signal Processing

iSdc

vΣ
Cdq v

Σ
Cz v

∆
Cdq v

∆
CzDQ iΣdq iΣz i∆dq

vΣ?
Cdq v

Σ?
Cz v

∆?
Cdq v

∆?
CzDQ iΣ?

dq iΣ?
z i∆?

dq

Fig. 3. Control diagram of an MMC in single-terminal HVDC
configuration under PI-PBC

⋆

vΣCd

vΣCq

AAM

EMT

Time [s]

v
Σ C
d
q
[p
u
]
×
10

−
3

0 0.05 0.1 0.15 0.2
−5

0

5

10

15

⋆ vΣ
Cz

AAM EMT

Time [s]

v
Σ C
z
[p
u
]

0 1 2 3 4 5

0 0.05 0.1 0.15 0.2

1.248

1.25

1.252

1.249

1.25

1.251

1.252

Fig. 4. Voltage sum response in dqz coordinates under PI-PBC in
single-terminal configuration.

related to switching dynamics. No significant difference is
observed in performance neither for the zero sequence, nor for
the direct and quadrature components. Finally, the dynamics
of the voltage at the dc terminal vdc is illustrated in Fig. 8.
For this variable, a behavior similar to the one observed for
the zero component vΣ

Cz is revealed. Nevertheless, despite the
slow, yet satisfactory, rate of convergence, the convergence
error remains sufficiently small. From these simulations, it can
be thus concluded that the sAAM used for the control design
describes the system in closed-loop with the PI-PBC with good
accuracy.

B. Multi-terminal configuration
We now consider a four-terminal MT-HVDC system with

meshed configuration, as in Fig. 9, where the MMCs are
controlled locally via PI-PBC in a decentralized fashion. More
precisely, MMC#1 is operating in dc voltage control mode
regulating the dc voltage to 1 p.u., whereas the rest of the
converters are in constant power (current) control mode. The
system is perturbed at t = 6 s, by a sudden change in the active
current references, which is communicated in a centralized
manner by an higher-level controller. More precisely, i∆?d,2 steps
down from −0.4 p.u. to −0.5 p.u., i∆?d,3 steps up from 0.6 p.u.

⋆

v∆Cd

v∆Cq

AAM

EMT

Time [s]

v
∆ C
d
q
[p
u
]

0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

v∆
Cz

AAM

EMT

Time [s]

v
∆ C
z
[p
u
]
×
10

−
3

0 0.01 0.02 0.03 0.04 0.05

0 0.1 0.2 0.3 0.4

−1

0

1

−1

0

1

2

3

4

5

Fig. 5. Voltage difference response in dqz coordinates under PI-PBC
in single-terminal configuration.

⋆ iΣd iΣq AAM EMT

Time [s]

iΣ d
q
[p
u
]
×
10

−
3

0 0.02 0.04 0.06 0.08 0.1

0 0.1 0.2 0.3 0.4

−4
−2
0
2
4

0

5

10

15

⋆ i
Σ

z
AAM EMT

Time [s]

iΣ z
[p
u
]

0.05 0.1 0.15 0.2

0 0.1 0.2 0.3 0.4

−0.425

−0.424

−0.423

−0.422

−0.45

−0.4

−0.35

−0.3

Fig. 6. Circulating current response in dqz coordinates under PI-PBC
in single-terminal configuration.

⋆ i∆d AAM EMT

⋆ i∆q AAM EMT

Time [s]

i∆ q
×

10
−
3
[p
u
]

i∆ d
[p
u
]

0 0.1 0.2 0.3 0.4

0 0.1 0.2 0.3 0.4

−5

0

5

−0.55
−0.5
−0.45
−0.4
−0.35

Fig. 7. Grid current response in dq coordinates under PI-PBC in
single-terminal configuration.

to 0.7 p.u. and i∆?d,4 steps down from 0.7 p.u. to 0.5 p.u.. These
simultaneous changes automatically demand for a shift of the
active current reference i∆?d,1 such that the voltage v?dc,1 is kept
at its nominal value of 1 p.u.. Moreover, as for the single
terminal case, we are interested in keeping the reactive power
to zero at each terminal, i.e. i∆?q,i = 0, and in guaranteeing
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⋆

vdc

AVM

EMT

Time [s]

v d
c
[p
u
]

0 1 2 3 4 5

0.999

0.9995

1

1.0005

Fig. 8. DC voltage response under PI-PBC in single-terminal config-
uration.

MMC #2

MMC #3

Meshed MTDC System

MMC #4

100 km

100 km

15
0
km

MMC #1

20
0
k
m

20
0
k
m

380 [kV]

Rf , Lf

Rf , LfRf , Lf

Rf , Lf

380[kV ]

380 [kV]

380 [kV]

Rσ, Lσ, Cσ

c′, l′, r′

c′
,
l′
,
r′

c′, l′, r′

c
′ , l

′ , r
′

c′
,
l′
,
r′

vdc,1

vdc,4

vdc,2

vdc,3

vΣ
Cz,2

i∆dq,2

i∆dq,3 i∆dq,4

i∆dq,1

3 · iΣz,1

3 · iΣz,4

3 · iΣz,2

3 · iΣz,3

Rσ, Lσ, Cσ

vΣ
Cz,1

Rσ, Lσ, Cσ

vΣ
Cz,3

Rσ, Lσ, Cσ

vΣ
Cz,4

Fig. 9. Meshed multi-terminal configuration under study. Refer to
Table I for the MMC and transmission line parameter values.

the requirements R1-R4 as defined in Section II-B, and in
obtaining the steady-state values

m∆?
zDQ,i = 02, iΣ?dq,i = 02, vΣ?

Cz,i = 1.25

with i = 1, . . . , 4. The remaining references can be thus
computed according to the equilibria equations defined by
(IV.2), which implicitly define also the steady-state control
inputs m?

i .

The dc voltage responses vdc,i are illustrated in Fig. 10a,
while the zero components of the arm voltage sums vΣ?

Cz,i
are depicted in Fig. 10b. Both dc voltage and zero compo-
nent variables are characterized by very small steady-state
errors. However, in contrast with the results observed for the
single-terminal configuration, they show unacceptably slow
transients. This is particularly true for the zero components
of the voltage sum, which takes approximately two minutes
to converge to the steady-state of interest. The responses
of the zero component of the circulating currents iΣz,i and
grid currents i∆d,i are instead illustrated in Fig. 10c. Unlike
the voltages, current responses are characterized by good
performances.

To illustrate the potential deleterious effects of the aforemen-
tioned slow transients, we now consider a perturbation at t = 6
s where only the voltage sum reference of the first converter
vΣ?

Cz,1 is stepped from 1.25 p.u. to 1.35 p.u.. The dynamics of
the MT-HVDC system under this perturbation is illustrated in
Fig. 11. The slow convergence rate of vΣ

Cz,1 is shown in Fig.
11b where it can be seen that not only convergence requires
approximately two minutes, but also the steady-state error is
not negligible.

C. Small Signal Analysis
Although stability is guaranteed for all positive PI-PBC

gains, their choice certainly affects the quality of the transient
performance. To evaluate this aspect a small-signal analysis of
the closed-loop system is realized—see Fig. 12. First, consider
the slowest eigenvalues of the single-terminal configuration,
which can be easily identified from Fig. 12c as the com-
plex conjugated poles λ19, λ20 located at −2.211 × 10−5 ±

0.0148i. A participation factor analysis [30] is performed
for these eigenvalues, revealing that these oscillatory modes
are uniquely associated with the controller states γ6 and γ7,
which are in their turn related with the control inputs m∆

zD
and m∆

zQ—see Fig. 13a. However, no physical states of the
converter seem to be affected by this slow oscillatory modes
and therefore their effect is not visible in simulations.

For a more accurate analysis, we now consider the partici-
pation factor of the second slowest eigenvalue pair λ17 − λ18

located at −0.085 ± 3.859i and depicted in Fig. 12b, which
reveals a strong relationship with the converter states vΣ

Cz , as
well as with the controller state γ3 and the dc voltage vdc—see
Fig. 13b. Moreover, the controller state γ3 is associated to the
MMC input m̂Σ

z . The location of this complex conjugated pole
is indeed reflecting the dynamical behaviour observed in vΣ

Cz
since the imaginary part corresponds to the visible oscillation
of 0.6142 Hz and attenuation–or neper frequency–of 0.085
s−1. Since this last analysis revealed the strong influence
of the control state γ3 in the performance of the system,
controller gains associated to m̂Σ

z are re-tuned in an attempt
to improve the settling time. However, as depicted in Fig.
13c, increasing KI has almost no effect in the displacement
of the eigenvalues. An interesting aspect is, however, that
performance is increased as the absolute value of the active
current (power) is increased—see Fig. 13d.

As for the single-terminal case, we perform a small-signal
analysis of the closed-loop MT-HVDC system under consider-
ation to prove that the performance and/or slowest convergence
rate of the voltage variables cannot be improved by changing
the controller gains.

Consider now the slowest eigenvalues of the MT-HVDC
system, which can be directly identified in Fig. 12c, located at
−0.00105±0.0168i. A participation analysis is performed for
these eigenvalues–see Fig. 14–revealing that these oscillatory
modes are local to MMC#2, and are associated to its controller
states γ6,2 and γ7,2, which are in turn related with the control
inputs m∆

zD,2 and m∆
zQ. In addition, the participation factor

analysis also reveals that these eigenvalues are related to a
lesser extent to the physical variables vΣ

Cz,2 and vdc,2. Nonethe-
less, the influence of this oscillatory mode is rather small
on the physical variables extremely slow convergence rate as
revealed by the participation factor analysis, as well as by the
fact that by removing these poles (selecting m∆

CzDQ = 02),
the convergence rate remains practically unchanged. Shifting
our attention to the three following slowest oscillatory modes
that are easily identifiable from Fig. 12c and performing a
participation factor analysis reveals similar conclusions, yet
for the remaining three MMCs, and thus have been omitted
for brevity.

For a more accurate analysis, we now consider the participa-
tion factor analysis of the three slowest real poles highlighted
in Fig. 12c located respectively at −0.0067, −0.013358 and
−0.0222. Notice that no equivalent real poles appear in the
single-terminal case. The participation analysis results for each
of the these three real poles of interest is given in Fig. 15.

The participation factor analysis reveals that these real poles
are not local, but instead represent the interactions between
the different MMC converter stations. This explains why no
equivalent real pole appears in the single-terminal scenario.
Moreover, it also explains why the extremely slow behaviour
was only observed in the multi-terminal case, whereas the
single-terminal presented a faster performance. In all these
three real poles of interest, it can be noticed that there is
a strong participation of vΣ

Cz,i, which is indeed the variable
that experiences the slowest convergence rate, as well as a
strong participation of the PI-PBC states γ3,i associated to the
control input mΣ

z , and to a lesser extent a participation of γ6
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Fig. 12. Eigenvalues of the MMC(s) in single- and multi-terminal configurations under PI-PBC, and different levels of zoom.

associated to the control input m∆
CzD. Similarly to the single-

terminal configuration analysis, the coefficient KI,3 associated
to the integral state of the PI-PBC γ3 is re-tuned two orders
of magnitudes without achieving a significant performance
improvement, as depicted in Fig. 16.

D. Outer Loop Control
It was shown in [31] that it can be advantageous to control

the aggregate capacitive energy of the MMC by acting on
the circulating current reference for improved performance.
Taking inspiration on this approach, we propose to include
a conventional outer-loop formed by a simple PI controller
acting on the error signal between the zero-sequence arm
voltage sum reference vΣref

Cz and its corresponding measured
signal vΣ

Cz , similar to the one that was used in [31] to improve
the stability margins of the MMC5. The output of the PI,
defined as iΣ∗z,i in (V.1) for the ith MMC, is further added to the
desired reference of the circulating current iΣref

z to produce the
output of the outer loop. However, contrary to the approach in
[31] where the output of the outer loop iΣref

z is implemented
by conventional inner current loops, iΣ∗z is here added with
its desired reference iΣref

z,i and is instead assigned to iΣ?z , as
indicated in the second line of (V.1), and as sketched in Fig. 17.
Finally, this new value of iΣ?z,i will be enforced by the PI-PBC
method, through the calculation of the passive output (IV.4).

5A small difference between these outer loops is that the one used in [31]
acted on the equivalent energy variable error (wΣref

Cz − wΣ
Cz) instead.

iΣ∗z,i := −kol
P,i

(
vΣref
Cz − vΣ

Cz

)
− kol

I,i

∫ (
vΣref
Cz − vΣ

Cz

)
dt

iΣ?z,i ← iΣref
z,i + iΣ∗z,i

(V.1)

Replacing (V.1) into the passive output definition (IV.4) will
compromise the stability result presented in section IV. More
precisely, the stability proof is only valid when iΣ?z is constant
and belongs to the admissible equilibrium set E . Therefore,
at this point it is necessary to invoke a time-scale separation
assumption between the outer-loop and the inner PI-PBC.
However, the outer-loop solution has the interesting property
of being able to deal with potential instability issues arising
in a MTDC grid scenario, by adjusting only the outer loop
parameters of the MMCs kol

P,i and kol
I,i

6.
The time-domain simulation results of the four-terminal

MMC-based HVDC are repeated under the same two distur-
bances as before (step reference change in the active currents
i∆d and zero-sequence voltage sum vΣ

Cz) but now with the
outer-loop included. The resulting dynamics are depicted re-
spectively in Fig. 18 and Fig. 19. Indeed, the convergence rate
of all variables is now very good, particularly for the voltage
sum variable (approximately two orders of magnitude faster).

6Since these are the only parameters that have been excluded in the stability
proof, and selecting them both equal to zero would result in the globally
asymptotically stable case.



10

0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13 .1 .2 .3 .4 .5 .6 .7

0

0.2

0.4

0.6
6

19
 - 6

20

.6(m
"
zD) and .7(m

"
zQ)

Controller statesConverter states

(a)

0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13 .1 .2 .3 .4 .5 .6 .7

0

0.2

0.4

0.6
6

17
 - 6

18

.3(m
'
z )

vdc

v'Cz

.4(m
"
d )

(b)

Re

Im λ19, λ20

λ18

λ17

−0.2 −0.15 −0.1 −0.05 0
−15

−10

−5

0

5

10

15

(c)

-1

-0.5

0

0.5

1

Re

Im

λ18

λ17

−0.6 −0.4 −0.2 0

−10

−5

0

5

10

(d)
Fig. 13. Participation factor analysis of: (a) modes λ19 − λ20 and
(b) λ17 − λ18 of the MMC in single-terminal HVDC configuration.
Movement of the eigenvalues λ17−λ18 under: (c) a variation of KI,3,
from 10−8 to 10−5 and (d) a variation of the active current i∆?d from
−1 to 1 in p.u..
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Fig. 14. Participation factor analysis of slowest eigenvalues corre-
sponding to the multi-terminal HVDC configuration.

VI. CONCLUSIONS

We have applied a PI-PBC to the MMC under both, single-
terminal HVDC configuration, as well as for the meshed MT-
HVDC case.

The procedure takes as a starting point a convenient re-
formulation of the averaged MMC single-terminal model in
dqz coordinates with fixed equilibrium point instead of the
standard formulation based on its natural time-periodic coor-
dinates. We then have further manipulated this model such
that it can admit a port-Hamiltonian representation suitable
for the PI-PBC method, as it allows for the straightforward
calculation of the MMC passive output, upon which a standard
PI around it renders the system globally stable. In addition,
the meshed multi-terminal configuration was also investigated.
Interestingly enough, the passive output of the full MT-HVDC
system is the union of the passive outputs of each of the
individual MMCs, yielding a decentralized controller, while
globally stabilizing the interconnected system.

We observed that the controller presents good performance
for the single-terminal case, but cannot be further improved
by re-tuning of the control parameters, as revealed by a small-
signal eigenvalue analysis. Unfortunately, the situation worsens
for the multi-terminal case; i.e., the performance is deteri-
orated as an unacceptably slow convergence rate dominates
the system. A small-signal analysis revealed that the slow
performance is related to additional interconnection real poles
which only appear in the MT-HVDC case, very close to the
origin which cannot be significantly moved via control tuning.
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Fig. 15. Participation factor analysis of the real poles appearing only
in the multi-terminal configuration.
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Fig. 16. Movement of eigenvalues of interest corresponding to the
multi-terminal configuration, under a variation of KI,3, from 10−8

to 10−6.

Finally, we introduced a practical fix in the form of an outer-
loop control invoking the assumption of time-scale separation
with respect to the inner PI-PBC, resulting in improved dy-
namics for the MT-HVDC configuration.

APPENDIX

The dissipation matrix R of the MMC can be expressed as

R := diag(0>7 , R̂σ, R̂σ, R̂σz, R̂δ, R̂δ, Ĝdc) ∈ R13×13

and the interconnection matrix J0 as:

J0 =

 J0

09
4
02

0>9 −4 0>2 0

 ∈ R13×13

with J0 ∈ R12×12 defined as

J0 := bdiag(J2Ĉσ2ω, 0, J2Ĉσω, J2Ĉσ3ω, J2L̂σ2ω, 0, J2L̂δω),

with J2 :=
[

0 1
−1 0

]
∈ R2×2.

Furthermore, the MMC has 7 control modulated intercon-
nection matrices Jh ∈ R13×13; which can all be directly
identified from (II.8), and are given in the following lines.
Each of the 7 interconnection matrices can be written as a
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under PI-PBC+ vΣ

Cz outer-loop

function of 4 sub-matrices with the form

Jh :=

 Jh
−Jh

> 012

0>12 0

 ∈ R13×13,

with Jh ∈ R7×5 defined as Jh :=

[
Ah Bh
Ch Dh

]
for some

Ah ∈ R3×3, Bh ∈ R3×2, Ch ∈ R4×3 and Dh ∈ R4×2. Of
these sub-matrices, those which are non-zero are given below
for h = 1...7.

A1 =

[
0 0 1
0 0 0
1 0 0

]
, D1 =

[1 0
0 −1
1 0
0 1

]
A2 =

[
0 0 0
0 0 1
0 1 0

]
, D2 =

[0 1
1 0
0 −1
1 0

]
,

A3 =

[
1 0 0
0 1 0
0 0 1

2

]
, D3 =

[1 0
0 1
0 0
0 0

]
, B4 =

[
1 0
0 1
1 0

]
, C4 =

[1 0 1
1 0 0
1 0 0
0 1 0

]
,

B5 =

[
0 −1
1 0
0 1

]
, C5 =

[ 0 1 0
−1 0 1
0 −1 0
1 0 0

]
, B6 =

[
1 0
0 −1
0 0

]
, C6 =

[1 0 0
0 −1 0
0 0 1
0 0 0

]
,

B7 =

[
0 1
1 0
0 0

]
, C7 =

[0 1 0
1 0 0
0 0 0
0 0 1

]

Finally, the input and the interconnection vectors of the
MMC E ∈ R13 and G ∈ R13, can be directly identified from
the vector B in (II.7), noting that B = E +Gu. Thus, for the
selected input u = idc,s, they can be respectively defined as

E := col(010,−8v∆
Gdq, 0); G := col(012,−

4

3
).
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