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Abstract

Parameter estimation problems can be nonlinear, even if the dynamics are expressed by a linear model. The

extended Kalman �lter (EKF), even though it is one of the most popular nonlinear estimation techniques,

may not converge without su�cient a priori information. This paper utilizes a globally convergent nonlinear

estimation method�the double Kalman �lter (DKF)�for a vibrating cantilever beam. A globally valid

linear time-varying (LTV) model is required by the �rst stage of the DKF depending on some conditions

on input and output excitation. Without considering noise, this LTV model provides the �rst stage and is

globally equivalent to the nonlinear system. Since the neglected input and output noises can degrade the

quality of estimation, the second stage linearizes the nonlinear dynamics, utilizing the nominally globally

convergent estimate of the �rst stage, and improves the quality of estimation. Both estimation methods

were applied to a cantilever beam setup in real-time. An adaptive linear quadratic regulator utilizes the

estimated parameters to attenuate unknown transient disturbances. Di�erent scenarios have been explored,

providing a fair comparison between EKF and DKF. These methods have been implemented on an embedded

ARM-based microcontroller unit and illustrates improved convergent properties of the DKF over the EKF.

The global stability of the DKF is veri�ed and it has been observed that it needs twice the computational

cost of the EKF.

Keywords: joint state and parameter estimation problem, globally convergent Kalman �ltering, real-time

embedded implementation, adaptive vibration attenuation.

1. Introduction

The extended Kalman �lter (EKF) has been proven to be an e�cient nonlinear state estimation technique

in many applications. It has been without a doubt the most popular state estimation technique in di�erent
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engineering applications; for instance in the �eld of robotics and mechanical systems, see [1], [2] and [3].

Its simple and practical algorithm depends on linearized state space models, and by proper tuning, its

performance is sometimes comparable to sophisticated estimation techniques such as the moving horizon

estimation [4], even though inherently EKF can not deal with constraints in its design. Basically, EKF is

the solution to a least-squared optimization problem [5] and since it is incorporating nonlinear dynamics, in

general, it is reasonable to expect existence of several local minimums or sub-optimal solutions.

Although EKF performs reliably in a nominal scenario, its fundamental drawback originates from the

internal feedback loop; i.e. utilizing the estimated state as a linearization point. This feature, even though

it simpli�es the method in practical sense, makes EKF sensitive to erroneous initial guesses and/or wrong

tuning parameters. This means that EKF can begin with a wrong initial guess, which is used to construct a

trajectory for calculating the linearized model and consequently ends up with instability. Divergence of the

EKF has been reported; see [6, 7, 8, 9, 10]. In other words, it is clear that EKF is not globally convergent,

but it might not even be locally convergent; see [11, 12] for an example. In this paper, a globally convergent

estimation method achieves the conventionally true estimates for an arbitrary choice of initial state. On the

other hand, a locally convergent estimation technique would require a region of states in which the initial

state must be selected to guarantee convergence. Even though the initial state and tuning parameters for

a nominal operating point can be selected properly, a sudden change in the structure of system dynamics

might create a wrong linearization point for EKF, which potentially results in divergence. Here, we will

investigate some of these scenarios in detail and propose a globally convergent estimation technique to

adaptively attenuate the vibration of a cantilever beam.

Cascaded Kalman �lters making use of two ore more algorithm stages have been proposed before ; e.g. in

[13, 14] the authors developed a dual Kalman �lter for linear time-varying systems to prevent the numerical

issues regarding unobservability and rank de�ciency of the estimation problem. In the topic of nonlinear state

and parameter estimation, a novel type of two stage state estimation approach has been recently introduced

in [15], where the �rst stage (auxiliary estimator) provides a linearization point for the second stage. One

of its variants, the double Kalman �lter (DKF), has been analyzed in the continuous-time domain [16] and

its global stability properties in discrete-time have been studied in [17]. Furthermore, its performance has

been evaluated by a simulation study using pseudo-range measurements for position estimation [12].

The �rst stage of DKF employs a technique, which eliminates nonlinearities of the system using a model

transformation that results in a linear time-varying (LTV) model. This model reformulation uses previous

outputs and control inputs without optimally considering the input and output disturbances. Suboptimal

modeling of disturbances degrades the performance, hence the second stage, a linearized Kalman �lter

(LKF), utilizes estimates from the �rst stage as its linearization point. Compared to EKF, where the

previously calculated estimates de�ne a linearization trajectory, DKF makes use of a globally convergent

estimation technique in its �rst stage as auxiliary Kalman �lter (AKF), which uses the transformed LTV
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model to provide the second stage with useful information for linearization; independent from the result of

LKF. While technically an entire class of cascaded estimation algorithms consisting of two Kalman �lter

stages can be called double, in this paper we will use the term double Kalman �lter to refer only to the

combination of a �rst stage based on a LTV model (the AKF) that is augmented by a linearized Kalman

�lter (the LKF) as its second stage.

This con�guration actually prevents the instability mechanisms of internal feedback, which can otherwise

result in divergence for an estimation method such as EKF. Other popular nonlinear estimation methods,

such as the moving horizon estimation (MHE) [4] and the unscented Kalman �ltering (UKF) [18, 19, 20]

are locally convergent in their nominal design. Since MHE in general is solving a non-convex optimization

problem, the existence of several local solutions is expected. Also the divergence properties of the UKF has

been studied in [6].

From the implementation point of view, limited resources means limited model complexity and simpli�ed

algorithms. A vibrating cantilever beam is the case study we consider in this paper and its parameters are

going to be estimated and supplied to a linear quadratic regulator (LQR) for adaptive vibration attenuation.

This structure may, for example, represent a �exible wing; see [21]. In these vibrating structures the scale

of change in dynamics is signi�cantly longer than the chosen sampling period.

Basically, any system can be described by a complicated nonlinear model, however, sometimes even a

simple model can result in computational complexity, that is intractable for applied control problems. As we

will later show, the application of such a model in control and estimation is on the verge of not being real-

time feasible on current embedded microcontrollers, hence a linear model has been adopted to demonstrate

the behavior of the beam, creating a joint state and parameter estimation problem that is nonlinear.

In this paper we derive a globally nominally equivalent LTV model that fully represents the original

nonlinear parameter estimation problem for a vibrating structure represented by a single degree-of-freedom

model. The existence of this LTV model relies on the persistent excitation (PE) of input and output signals,

which is detailed in Sect. 2.

Furthermore, to the best knowledge of the authors, this paper presents the �rst experimental real-time

validation of the DKF method. In addition to the real-time feasibility study itself, this work takes a look at

an embedded application of the DKF on a microcontroller unit (MCU); foreshadowing its possibilities and

limitations in low-cost applications.

We put forward an adaptive vibration control scheme in Sect. 3 making use of the proposed LTV model

in a DKF parameter estimation algorithm that is combined with control. Convergence issues and practical

performance of both EKF and DKF have been investigated through di�erent implementation scenarios, and

are described in Sect. 4.

The experimental validation of this cascade estimation con�guration with a LQR controller is demon-

strated on a 32-bit ARM Cortex-M4 architecture MCU. The timing analysis provides an insight in the
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computational complexity regarding di�erent estimation and control techniques.

Structural changes and external additive measurement noise have also been emulated to contrast the

behavior of the two estimation techniques in the adaptive vibration control of the structure in Sect. 5.

2. Model transformation

A vibrating cantilever beam can be described by nonlinear partial di�erential equations in general.

However, for small de�ections we may use the linear model, since the dynamics of a highly �exible cantilever

is dominated by its �rst resonant frequency. Such �exible structures are often described by simple second

order linear models [22, 23]. It should be noted that a linear model including higher non-dominant frequencies

can be used but is not feasible to be implemented on a typical MCU. With only one extra higher frequency

involved (one extra measurement will be needed), the number of augmented states will double in size.

Therefore, this extra burden for computational complexity is not feasible for our assigned MCU and we

utilize the following simple model for estimation and control:

ẋ1(t) =x2(t), (1a)

ẋ2(t) =− ω2
n(t)x1(t)− 2ξ(t)ωn(t)x2(t) + α(t)u(t). (1b)

The displacement of the beam is denoted by x1 and the corresponding velocity is expressed by x2. The

control input, or in the case of free vibration, the excitation signal, is denoted by u. The parameters, natural

frequency ωn [rad/s], proportional damping ξ [-] and input gain α [N/V], along with the states and input

signal are assumed to be time-varying (functions of time t). Compared to a LTI model with time invariant

parameters, this assumption helps the simple LTV model (1) to be valid for a wider range of operating

systems. In the context of joint state and parameter estimation it is common to augment the state vector

with parameters evolving slowly with time according to a Wiener process. This assumption makes it possible

to augment the states with parameters as the following nominal nonlinear model

ẋ1(t) = x2(t), (2a)

ẋ2(t) = x1(t)x3(t) + x2(t)x4(t) + x5(t)u(t), (2b)

ẋ3(t) = 0, (2c)

ẋ4(t) = 0, (2d)

ẋ5(t) = 0, (2e)

y(t) = x1(t), (2f)

where x3(t) = −ω2
n(t), x4(t) = −2ξ(t)ωn(t) and x5(t) = α(t) are augmented states corresponding to respec-

tive parameters. In equation (2) the only known values are the measurement that is denoted by y(t) and
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the control input u(t), hence all the augmented parameters (x3, x4 and x5) and the tip-mass velocity (x2(t))

are unknown. It should be noted that process noise will be added to the nominal model (2) in order to

describe the time-varying and stochastic nature of the expected parameter variations. The properties of the

additive process noise, needs to be adjusted properly. In an adaptive control framework or an estimation

algorithm, this augmentation makes it possible to calculate the updated parameters at the same time with

time-varying states.

Implementing any model-based control or estimation algorithm on an embedded MCU requires the

dynamic model in discrete time. In order to simplify the notation, we make use of xik to represent the ith

state at time instance k2; hence using Euler integration with sampling time Ts, the following discrete time

model is valid

x1
k+1 = x1

k + Tsx
2
k, (3a)

x2
k+1 = Tsx

1
kx

3
k + (1 + Tsx

4
k)x2

k + Tsx
5
kuk, (3b)

x3
k+1 = x3

k, (3c)

x4
k+1 = x4

k, (3d)

x5
k+1 = x5

k, (3e)

yk = x1
k. (3f)

It should be noted that even a di�erent explicit integration scheme can be used with the model trans-

formation. However, an implicit integration scheme might lead to additional computational complexity.

Furthermore, the main challenge in using this augmented model in the estimation tasks is, having the mul-

tiplicative nonlinearity between states (displacement and velocity) and parameters (augmented states). In

order to translate the state equation (3) to a LTV model, we utilized the approach presented in [17].

To this end, it is necessary to obtain all elements of xk based on measurements. Re-writing (3a) one

sample backward (k → k − 1) gives x1
k = x1

k−1 + Tsx
2
k−1. Furthermore, using (3f) one can calculate

x2
k−1 = (yk − yk−1)/Ts := dyk. The same procedure can be used for (3b) as follows

x2
k = Tsx

1
k−1x

3
k−1 + (1 + Tsx

4
k−1)x2

k−1 + Tsx
5
k−1uk−1,

= Tsyk−1x
3
k + (1 + Tsx

4
k)dyk + Tsx

5
kuk−1, (4)

where the parameters are assumed to be constant over a small number of sampling periods. It is necessary to

do these steps three more times. Therefore, we can write x1
k−j = yk−j and x2

k−j−1 = dyk−j for j = 0, 1, . . . , 4.

2The upper numerical indices in this paper are not powers, instead denote the state formulation element index.
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Re-writing (4) one sample backward in a sequential way, gives

x2
k−1 =Tsx

1
k−2x

3
k−2 + (1 + Tsx

4
k−2)x2

k−2 + Tsx
5
k−2uk−2,

→ dyk =Tsyk−2x
3
k + (1 + Tsx

4
k)dyk−1 + Tsx

5
kuk−2, (5)

→ dyk−1 = Tsyk−3x
3
k + (1 + Tsx

4
k)dyk−2 + Tsx

5
kuk−3, (6)

→ dyk−2 = Tsyk−4x
3
k + (1 + Tsx

4
k)dyk−3 + Tsx

5
kuk−4. (7)

Let us assume that uk−2, uk−3 and uk−4 are also known, so we can solve the linear system for x3
k, x

4
k

and x5
k described by (5)�(7) as follows

x3
k

x4
k

x5
k

 =
1

Ts


yk−2 dyk−1 uk−2

yk−3 dyk−2 uk−3

yk−4 dyk−3 uk−4


−1 

dyk − dyk−1

dyk−1 − dyk−2

dyk−2 − dyk−3

 , (8)

where the existence of matrix inversion will be analyzed in two cases below. If it exists, unknown parameters

based on the previous measurements and controls will be obtained as
x3
k

x4
k

x5
k

 :=


φ3(Yk

k−4,U
k−2
k−4 )

φ4(Yk
k−4,U

k−2
k−4 )

φ5(Yk
k−4,U

k−2
k−4 )

 , (9)

where

φ3(Yk
k−4,Uk−2

k−4 ) =
1

∆k

(
(yk−1 − yk−3)

(
uk−2(yk−3 − yk−4)+

uk−4(yk−2 − yk−1)
)
− (yk−2 − yk−4)

(
uk−2(yk−2 − yk−3)+

uk−3(yk−2 − yk−1)
)
− (yk − yk−2)

(
uk−3(yk−3 − yk−4)+

uk−4(yk−3 − yk−2)
))
,

φ4(Yk
k−4,Uk−2

k−4 ) =
1

∆k

(
(yk − yk−2)(uk−3yk−4 − uk−4yk−3)

−((yk−1 − yk−3)(uk−2yk−4 − uk−4yk−2))+

((yk−2 − yk−4)(uk−2yk−3 − uk−3yk−2))
)
,

φ5(Yk
k−4,Uk−2

k−4 ) =
1

∆k

(
(yk−1yk−4 − yk−2yk−3)

(yk−1 − yk−3)−((yk−2 − yk−4)(−y2
k−2 + yk−1yk−3))−

(yk − yk−2)(−y2
k−3 + yk−2yk−4)

)
.

The determinant is ∆k = uk−2(y2
k−3 − yk−4yk−2) + uk−3(yk−1yk−4 − yk−2yk−3) + uk−4(y2

k−2 − yk−1yk−3),

Yj
i is a set of measurements from yi to yj , and U j

i is a set of controls from ui to uj for j ≥ i.
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Case 1: The value of ∆k can be zero, when no input and no output excitation exists. In this scenario

φ3, φ4 and φ5 are ill-posed. Therefore, a condition on the existence of a non-zero ∆k is crucial. This is

similar to the PE condition on signals, where the the matrix of data is de�ned in (8); see [24].

Case 2: With no input signal, but with non-zero output signal; e.g. near the steady-state mode of a

possible adaptive control scenario, uk will be calculated as zero, hence ∆k becomes zero. In this scenario,

the estimator could freeze the �fth parameter associated with φ5 to the previously calculated value, and the

reduced problem assumes a �xed α, hence (8) converts tox3
k

x4
k

 =
1

Ts

yk−2 dyk−1

yk−3 dyk−2


︸ ︷︷ ︸

Ay

−1  dyk − dyk−1

dyk−1 − dyk−2

 (10)

where its existence does not depend on the input anymore. It should be noted that in this scenario the

input gain parameter can not estimated anymore. Also, in practice during the steady-state mode, control

is not applied, so this estimated parameter causes no harm to the adaptive control strategy.

Remark 2.1. To be able to use (10), it is necessary to investigate the rank of Ay. In practice (3f) becomes

x1
k = yk − vk and x2

k−1 = dyk + dvk, where dvk = (vk − vk−1)/Ts. Re-writing (5) and (6) gives

dyk + dvk =Ts(yk−2 + vk−2)x3
k + (1 + Tsx

4
k)(dyk−1 + dvk−1) + Tsx

5
kuk−2,

dyk−1 + vk−1 = Ts(yk−3 + vk−3)x3
k + (1 + Tsx

4
k)(dyk−2 + dvk−2) + Tsx

5
kuk−3,

and therefore, (10) becomesx3
k

x4
k

 =
1

Ts

yk−2 + vk−2 dyk−1 + dvk−1

yk−3 + vk−3 dyk−2 + dvk−2

−1  dyk − dyk−1 + dvk − dvk−1

dyk−1 − dyk−2 + dvk−1 − dvk−2

 . (11)

Therefore for the steady-state case, even if yk−2 and yk−3 are zero, by assuming a Gaussian white

measurement noise, (11) is almost always well-posed, as the rank condition is

rank(Ay) = rank(

vk−2 vk−1

vk−3 vk−2

) = 2,

which means Ay is full rank, since in general vj and vj−1 are assumed to be uncorrelated. However, it should

be noted that this does not mean that some kind of observability is de�ned, since noise has no information for

estimation tasks, hence it does not imply that parameter estimates will converge with zero excitation. Hence,

the experiments are designed in a way to avoid the aforementioned cases. It will be shown by experiments in

Sect. 5 that the existence of Ay, which depends on the output excitation was not an issue, and it was always

well-posed during our tests. �
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Remark 2.2. From a practical point of view, estimation/adaptation must be disabled in steady-state mode,

since there is no point of control in such cases. Also, PE condition in real-life applications (e.g. plane wing)

is usually satis�ed and the system can typically do not go to a perfect steady-state; there will usually be some

mechanical excitations. �

Using (9) we can obtain x2
k from (4) as a function of previous measurements and controls

x2
k =Tsyk−1φ3(Yk

k−4,Uk−2
k−4 ) + (1 + Tsφ4(Yk

k−4,Uk−2
k−4 ))dyk

+ Tsφ5(Yk
k−4,Uk−2

k−4 )uk−1 := φ2(Yk
k−4,Uk−1

k−4 , Ts)

and this makes it possible to transform the model (3), without any approximation in dynamics to a LTV

model as follows

xk+1 = F (Yk
k−4,Uk

k−4)xk +G(Yk
k−4,Uk

k−4)uk, (12)

where the matrices F and G in (12) are given as

F =



1 Ts 0 0 0

(1− η)Tsφ3 1 + (1− η)Tsφ4 ηTsyk ηTsφ2 ηTsuk

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


G =

[
0 (1− η)Tsφ5 0 0 0

]T
,

where η ∈ R is a free parameter and for simplicity its value is selected as 0.5; it should be noted that

this value does not in�uence the validity of the transformed model, and merely demonstrate that it is not

unique. Furthermore, the arguments of functions φj(·, ·) for j = 2, 3, 4, 5 are not given in (12) for brevity.

It should be noted that F (·, ·) and G(·, ·) in (12) are known time-varying matrices. Also, in our case study,

the measurement function is linear (yk = Cxk, where C =
[
1 0 0 0 0

]
). For the rest of the paper, the

LTV system matrices will be denoted by Fk and Gk.

The method presented here is indeed scalable and how it is carried out varies case by case, since at the

moment a formal treatment of this approach is not developed yet. In [17] some stability properties have been

studied, which can be useful for moving this research forward. In this paper, our goal was to demonstrate

the real-time feasibility of this method for microcontroller deployment. Considering two physical state (tip-

mass displacement and its velocity) and three time-varying parameters, the augmented system has 5 states.

Since one sensor is employed (for measuring the tip-mass displacement), it has been demonstrated that 5

steps of previous and current measurements is required; {Yk
k−4, Uk

k−4} . One can argue that if a more

sophisticated model is employed (for example including more dominant vibration modes) the number of
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linearization

LKF

(a) Scheme of the EKF

AKF LKF

linearization

(b) Scheme of the DKF

Figure 1: Estimation schemes

steps in the window of measurement will increase. However, similar to the discussion provided in Remark

2.1, equation (8) needs to be checked for the rank de�ciency and the existence of the matrix inversion.

3. Adaptive vibration attenuation scheme

This section summarizes the estimation techniques that have been utilized in the adaptive control frame-

work. Algorithms with low complexity are given, that need minimum e�ort for being deployed to an em-

bedded system. Furthermore, the adaptive LQR formulation is described. It is necessary to point out that

the control method is not in focus here, rather its performance depending on the convergence of estimated

parameters is our main interest.

3.1. EKF

The extended Kalman �lter�an extension to the classical Kalman Filter (KF)�deals with nonlinear

dynamics by linearizing it about the previously calculated estimates; see Fig. 1a. Let us denote the nonlinear

dynamics of the vibration system given by (3) as follows

xk+1 = f(xk, uk) + wk, (13a)

yk = Cxk + vk, (13b)

where f(·, ·) is the nonlinear state dynamics, and the input and output disturbances are denoted by wk and

vk, respectively. To implement the EKF, Alg. 1 can be employed [25]. Within this estimation approach,

x̂k is the estimated state. This algorithm starts with obtaining the required initial guess for state vector as

x0 and its covariance matrix P0. Similar to the KF, it is assumed that the input and output disturbances

are Gaussian (see [25]), hence the covariance of input and output disturbances are selected as Q0 and R0,

respectively. The Kalman gain K̂ is updated at each sample time and the current estimated state x̂k will

be given by measuring the current input uk and output yk.

3.2. DKF

A double Kalman �lter is basically the cascade con�guration of two linear KFs. The �rst stage�auxiliary

KF�(AKF) utilizes the transformed globally valid LTV model in (12), and the second stage (LKF) linearizes

the nonlinear dynamics (3) about the result of AKF; see Fig. 1b. The most important drawback of AKF
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Algorithm 1 Implementation of EKF

Initialization: x̂ = x0, P̂ = P0, Q = Q0 and R = R0

Input: yk and uk

1: Update A = ∂f(x,u)
∂x x=x̂,u=uk

2: P̂ ← AP̂AT +Q

3: x̂← f(x̂, uk)

4: K̂ ← P̂CT(CP̂CT +R)−1

5: P̂ ← (I − K̂C)P̂ (I − K̂C)T + K̂RK̂T

6: x̂← x̂+ K̂(yk − Cx̂)

Output: x̂k = x̂

is, that during the model transformation described in Sect. 2, wk and vk in (13), are not considered in the

equations. Hence, the following system expresses the model that the AKF utilizes

xk+1 = Fkxk +Gkuk + ẃk, (14a)

yk = Cxk + vk, (14b)

where ẃk has di�erent properties than wk. In a nutshell, (13) and (14) give

ẃk = wk + f(xk, uk)− (Fkxk +Gkuk),

and considering the fact that Fk and Gk depend on measurements, and these values are noisy as well (see

(13b)), deriving the properties of ẃk is a formidable task. It should be also noted, that even if wk is assumed

to be Gaussian and white, ẃk will have a di�erent density function and not be white anymore. The AKF

still uses the assumption that ẃk stays Gaussian and white but with a di�erent covariance matrix Q̄0, while

the covariance matrix of wk is supposed to be Q0 as it was for EKF. Since there was no transformation

needed for the output function, the properties of vk stay the same for AKF and EKF.

The second stage of the DKF is necessary to compensate for the e�ect of the transformation of the input

disturbance (ẃk). To this end, we linearize the nonlinear system in (13) about the state estimate x̄k|k of the

�rst stage of the DKF, which gives

xk+1 = f(x̄k|k, uk) +Ak(xk − x̄k|k) +Qk + wk, (15a)

yk = Ckxk + vk, (15b)

where Ak = ∂f
∂x (x̄k|k, 0), while Qk = [Q1,k, . . . ,Qn,k]T is the higher order remainder term due to linearization

and from [26]

Qi,k = (xk − x̄k|k)T

(∫ 1

0

(1− s) ∂2fi
∂x∂xT

(sxk + (1− s)x̄k|k, uk)ds

)
(xk − x̄k|k), (16)
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for all i ∈ {1, . . . , n}, where fi is the ith element of f . We note that wk is uniformly zero if ẃk is uniformly

zero. Furthermore, from [17, 16], there exist constants εq, εr ∈ R>0 such that

‖Qk‖ ≤ εq‖xk − x̄k|k‖2, ‖Rk‖ ≤ εr‖xk − x̄k|k‖2,

for k ≥ 0. This means that the higher order terms will vanish asymptotically, if the estimates of the �rst

stage are uniformly globally asymptotically stable (xk − x̄k|k → 0).

The LKF formulation about x̄k|k as an operating point is

K̆k = P̆k|k−1C
T
k (CkP̆k|k−1C

T
k +Rk)−1, (17a)

x̆k|k = x̆k|k−1 + K̆k(yk − Ckx̆k|k−1), (17b)

P̆k|k = (I − K̆kCk)P̆k|k−1, (17c)

with initial conditions x̆0|−1 and P̆0|−1. These initial conditions and the measurement noise covariance

matrix Rk are typically the same as in the EKF and AKF, and K̆k is the Kalman gain. The propagation

for the state estimate is as follows

x̆k+1|k =f(x̄k|k, uk) +Ak(x̆k|k − x̄k|k), (18a)

P̆k+1|k =AkP̆k|kAk
T +Qk, (18b)

where the process noise covariance matrix Qk is utilized in EKF formulation. To perform this estimation in

real-time see Alg. 2, while considering cases 1 and 2 in Sect. 2.

3.3. Adaptive LQR

The linear quadratic regulator (LQR) is one of the most popular full state feedback controllers; e.g. see

[27] and [28]. This paper focuses on the estimation tasks and control is only considered as a validation

tool, thus it should be noted that estimation results can be easily utilized in any other full state feedback

controller. After the estimates have been obtained, the system dynamics is no longer nonlinear and (3) can

be simpli�ed to a LTV model as follows

xk+1 =

 1 Ts

Tsx̃
3
k (1 + Tsx̃

4
k)

xk +

 0

Tsx̃
5
k

uk := Ãkxk + B̃kuk, (19a)

where x̃ in this scenario can be replaced by either of the estimates within EKF or DKF. It should be noted,

that these parameters are time varying, hence LQR needs to be updated at each sampling time, and the

implementation details of this adaptive controller are given in Alg. 3. In this algorithm, NLQ is the �nite

time horizon that is selected for the LQR. The terms QLQ and RLQ are the stage deviation and input usage

weighting matrices in the cost term, respectively. In order to reduce the computational complexity we make

use of a �nite horizon formulation, which utilizes the solution of a discrete-time dynamic Riccati equation

11



Algorithm 2 Implementation of DKF

Initialization: x̆ = x̄ = x0, P̄ = P̆ = P0, Q̄ = Q̄0, Q̆ = Q0 and R = R0

Input: yk, . . . , yk−L and uk, . . . , uk−L

1: Update Fk and Gk from (12).

2: P̄ ← FkP̄F
T
k + Q̄

3: x̄← Fkx̄+Gkuk

4: K̄ ← P̄CT(CP̄CT +R)−1

5: P̄ ← (I − K̄C)P̄ (I − K̄C)T + K̄RK̄T

6: x̄← x̄+ K̄(yk − Cx̄) {END of AKF}

7: Update Ak = ∂f(x,u)
∂x x=x̄,u=0

8: P̆ ← AkP̆A
T
k + Q̆

9: x̆← f(x̄, uk) +Ak(x̆− x̄)

10: K̆ ← P̆CT(CP̆CT +R)−1

11: P̆ ← (I − K̆C)P̆ (I − K̆C)T + K̆RK̆T

12: x̆← x̆+ K̆(yk − Cx̆) {END of LKF}

Output: x̆k = x̆

backward in time; see [29, 30, 31] for more details on discrete-time LQR. It's worth mentioning that, even

though a in�nite horizon LQR might seems to be less computationally demanding, a code generation tool

was required for the real-time implementation. On the other hand, the �nite horizon LQR was employed

without any external tool and the resulting algorithm was less complex than in�nite horizon LQR.

Algorithm 3 Implementation of LQR

Initialization: NLQ, QLQ and RLQ

Input: x̃k

1: Update Ãk and B̃k in (19) and set PNLQ = QLQ

2: for i = NLQ, . . . , 1 do

3: P̃i−1 = ÃTP̃iÃ− ÃTP̃iB̃(B̃TP̃iB̃)−1B̃TP̃iÃ+QLQ

4: end for

5: F0 = (RLQ + B̃T
k P0B̃)−1B̃T

k P1Ãk

Output: uk = −F0x̃k

12



4. Experimental implementation

4.1. Hardware implementation

Figure 3a presents the hardware scheme of the experiment. The aim of the adaptive control was to

attenuate the transient vibration of an aluminum cantilever beam with removable tip-mass, shown on Fig.

2a. The dimensions of the beam were 550 mm×40 mm×3 mm. Two symmetrically placed MIDÉ QuickPack

16n piezoceramic transducers were used as actuators glued onto the �xed end of the cantilever beam. These

actuators were powered by a MIDÉ EL 1225 power ampli�er providing a gain of 20 V/V. A stinger mechanism

made of a linear actuator was used to introduce a repeatable initial disturbance to the system. This type of

disturbance is common to test aerospace structures, as it resembles transient vibration e�ects [32, 33, 34].

The position of the beam was measured by an optical measurement system consisting of a Keyence KL-G32

laser head and Keyence LK-3001V processing unit.

These systems were connected to a STM32F407 Discovery evaluation board, depicted on Fig. 2b, which

was used as the main processing unit of the controller. The MCU used on the board was the STM32

F407VGT6 running at the nominal voltage of 3 V. This MCU uses an ARM-Cortex M4 core clocked at 168

MHz and has 128 kB of RAM and 1024 kB of ROM. The laser sensor has been setup so, that it converts

the displacement to voltage signal in the range of 0�3 V with the conversion ratio of 10 mm/V. This was

connected to the 12bit analog-to-digital (ADC) converter of the MCU. The input signal of the system

was generated by the 12bit digital-to-analog converter (DAC) present on the MCU. This generated unipolar

voltage also in the range of 0�3 V, which was then ampli�ed and shifted to ±5 V and connected to the power

ampli�er. The stinger mechanism was connected to a general purpose input-output pin of the controller

controlling the pulse of the stinger. Programming and data-logging was performed by a PC connected to

the board using a serial link. The data-logging ran at a baud rate of 115200 which was su�cient to send 32

bytes of data in 3 ms. This way, the sampling period has been set to 15 ms which proved to be su�cient

for this application.

4.2. Software implementation

The software for this application was written in plain C. The hardware driver code was generated using

STM32F4 CubeMX V4.17.0 MCU code generation software provided by the manufacturer of the MCU. Here,

the hardware speci�c F4 Firmware Package V1.13.2 has been utilized to setup the system clock, GPIO pins,

ADC and DAC channels, serial communication and the necessary hardware timers. One hardware timer

was setup to measure the execution timing of the control and estimation with the resolution of 10−5 s. The

code was compiled using GCC for ARM V5.4.1 and then deployed to the memory of the chip using STLINK

V1.1.0.

13



5. Results

This section provides the implementation results on the active cantilever beam setup. First, an open

loop estimation task was performed to compare the e�ect of initial guess for the EKF and DKF. Next, the

online estimation results were applied to the adaptive LQR to attenuate external disturbances. Furthermore,

extra additive measurement noise has been emulated in order to investigate the behavior of DKF and EKF.

Finally, a timing analysis provides an insight on how di�erent tasks were accomplished within a sample

period.

5.1. Comparison of estimation tasks

In this experiment, the consequences of wrong initial state on the estimation tasks are investigated. In

order to do so, the con�guration in Fig. 3b is employed. The PRBS signal was generated by an external signal

generator, and it was read by the MCU as an analog input. The experiment starts with an additional weight

on the tip mass and in the middle of the experiment it was detached from the tip mass. It should be noted

that in all the following experiments, the time scale of parameter change is slower than the sampling time.

The dominant free natural frequency of this vibrating beam is about 50 [rad/sec] and this value decreases

to 20 with an extra tip-mass of 400 [g]. Therefore, an initial state guess of x0 = {0.01, 0,−500,−1, 0.01} is

considered as close to the true values and the performance of EKF and DKF are almost indistinguishable; c.f.

Fig. 4a. In Fig. 4b the choice of x0 = {0.01, 0,−50000,−10, 0.01} is shown to be a value that de-stabilizes

the EKF, while the DKF demonstrates its convergent property. For the scenario, in which the initial guess is

close to the true values, estimation covariance matrix is selected as P0 = diag{0.1, 1, 200, 200, 0.1}, while for

the other scenario it is considered as P0 = diag{0.1, 1, 2× 105, 1000, 0.1}. This di�erence is due to the larger

uncertainty in the choice of initial state and to help the estimators for a better convergence. The covariance

matrix of process noise for AKF is Q̄0 = diag{0.1, 100, 1 × 1010, 100, 100} in both cases, and this value for

EKF and LKF is selected as Q0 = diag{0.1, 100, 8× 109, 100, 10} (note the di�erence between Q0 and Q̄0 in

order to compensate the approximation in model transformation). Note that diag(·) represents the diagonal

matrix. The selection criteria for this matrix is based on the value of the state and parameters and their

variance. Typically their variance provides an insight on the starting guess, while further trial and error is

needed to obtain a tuning which provides the best estimation performance. Finally, the measurement noise

variance is assumed to be R0 = 0.001 in all cases and is selected based on the precision of the laser sensor

for measuring the displacement. It is worth mentioning, that the estimated parameters are not assumed

to be known and merely de�ne the system behavior in (1). Since estimation results are obtained from

the experimental data in an online fashion and no simulated model has been used for generating data for

estimation tasks, the knowledge about the true value of the parameters does not have a meaning for the

experimental study shown here. Based on Fig. 4b, it seems as if P0 was chosen too small for the given wrong
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Table 1: Estimation performance comparison with PRBS signal; see Fig. 4

Estimation

methods

true initial guess wrong initial guess

ωn ξ α ωn ξ α

AKF 19.65 0.026 0.0001 19.8 0.024 −0.0004

DKF 20 0.026 0.0005 19.9 0.023 −0.0005

EKF 19.8 0.027 0.0004 N/A N/A N/A

x0, however, even with a larger P0 estimation diverges and EKF estimates were not a number (N/A) after

13 seconds. For the sake of clarity, it should be pointed out that for a better initialization (speci�cally by

selecting x0(3) > −50000), similar results were obtained as it was illustrated in Fig. 4a. Furthermore, the

extremely incorrect initialization was designed to show, that there is a point where the nonlinear nature of

EKF will result in divergence, while DKF can handle even such extreme issues due to its global convergence

properties. Besides the initialization, there are other cases when sudden changes may drive EKF unstable,

such as sensor malfunction.

To this end, a numerical comparison is provided in Table. 1, where the average of estimated parameters

in steady-state during 2−15 seconds are illustrated. Furthermore, note that the input gain parameter might

become negative during some experiments depending on how the attached extra tip mass is inserted, and

since the piezoelectric patches are positioned symmetrically its sign might be di�erent. Similar as in all the

following experiments, the tuning parameters were chosen to obtain the best estimation performance.

5.2. Adaptive LQR

In this experiment, estimation and control are performed at the same time, meaning that the control

does not wait for estimation to converge, hence the transient response is in�uencing the control. In Fig. 3b

the implementation sequence of estimation and control is illustrated. At each sampling period, displacement

of the beam was measured and after estimating the parameters, a control action was calculated.

During the experiment, the beam has been excited twice using the stinger. This created an excitation

that is enough for estimation methods to converge. After the vibration has been attenuated for the �rst time

(after about 2 [s]), the tip mass was modi�ed (augmented by 21 [g]) at approximately 10 seconds and another

disturbance was injected. The estimation tuning parameters were �xed as P0 = diag{0.1, 1, 200, 100, 10},

Q̄0 = diag{0.1, 100, 6× 109, 1000, 10}, Q0 = 1, 10, 4× 109, 1000, 10 and R0 = 0.001. The controller parame-

ters as explained by Alg. 3 are NLQ = 50, QLQ = I2 and RLQ = 0.001.

In Fig. 5a, the parameter estimation results are illustrated. Even though the initial guess is not very

far from expected values, EKF can not converge to them (see the proportional damping coe�cient ξ, where

its value for EKF is negative), which mainly is because of not having su�cient excitation output; compare
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it with the results in Sect. 5.1. Figure 5b demonstrates how the controller is providing enough excitation

signal to attenuate the unknown disturbances provided by the stinger. Free oscillation is denoted by gray

line and the performance of DKF is clearly better that the one of EKF.

5.3. Disturbance attenuation

It has been explained in Sect. 3.2 that AKF is not designed optimally considering measurement and

process noises. Therefore, it is expected that the �rst stage of DKF performs weaker in the presence of

additive measurement noise. In this scenario, two types of measurement noise with variance of 0.1[mm]

have been emulated arti�cially via a signal generator; see Fig. 3b. In the design of EKF and LKF it is

expected that process and measurement noises are Gaussian and white, while in AKF this assumption does

not hold even theoretically. Therefore, as expected, the performance of AKF is quite di�erent than the

one of EKF and LKF; see Fig. 6. Since the only purpose of AKF is providing LKF with a linearization

point, its performance loss is not so e�ective on LKF and we could not arrange a scenario in which DKF

diverges beyond a relatively small bias; in order to make DKF divergent we need an additive noise with large

amplitude, which makes the experiment impractical. On the other hand, an extra measurement noise with

uniform distribution has a similar e�ect on all the estimation methods; see Fig. 7. In this situation, bias in

all the methods (including EKF) for parameter ωn is small but visible. As for the input gain parameter (α),

AKF performs worse than other methods. It should be noted, that other amplitudes of additive measurement

noise has been considered as well, but the results were not clear and we couldn't �nd a scenario, where DKF

fails beyond relatively small biases. In all the experiments in this test, the estimation error covariance

matrix was selected as P0 = diag{0.1, 1, 2 × 104, 100, 10}. The process noise covariance matrix for AKF

was chosen as Q̄0 = diag{0.1, 100, 5 × 109, 100, 1000}, while the same parameter for EKF and LKF was

Q0 = diag{1, 10, 6× 109, 1000, 10}. Considering the extra measurement noise, the covariance matrix for this

term was selected as R = 0.1.

5.4. Computational load analysis

Timing analysis on an MCU is crucial, to keep the real-time constraint satis�ed, even though the al-

gorithms are quite simple. The computational complexity and also the storage need of DKF was almost

twice of what we can see from EKF and this is considered as the main drawback of the DKF. This has been

shown by estimation execution time (EET) in Table 2. These values demonstrate the time that has been

spent on performing the estimation algorithms. Also the total execution time (TET) considers the time

that was needed to execute the estimation task, control and data logging. By reducing TET from EET, we

can calculate the time that is needed for executing the LQR plus the �xed 2.3 [ms] needed for data logging

through the serial port. It is worth mentioning that he main equation that is utilized by the DKF (in both

stages) is the discretized model (13). Therefore, the DKF is valid for any discrete time model, no matter
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what type of explicit integration scheme is used. Regarding the computational time, it should be noted

that even with a simple forward Euler integration method, the implementation of the adaptive vibration

attenuation on the chosen MCU is on the verge of being real time feasible, so considering e.g. an implicit

integration scheme would be most probably not real-time feasible.

Note that the execution time for EKF is signi�cantly lower than a two staged KF. By comparing Alg.

1 and 2, EKF has less matrix evaluations to perform, hence its lower computational complexity is justi�ed.

Please see Alg. 2 to see why a DKF demands an increased computational complexity (since it evaluates two

times of Kalman �ltering).

The discrete-time EKF is stable by design, and discretization is needed only for model propagation. Since

the model is stable, numerical instability is unlikely to happen, and the stability of the discrete-time model

is veri�ed. Furthermore, the importance of employing an implicit integration scheme for this case study

is limited since the model (1) does not have any sti� dynamics and the simple forward Euler integration

method describe the state trajectory e�ciently. More detailed discussion can be found in [35]. Finally, it

should be noted that if a more complicated estimation methods, that requires more time to be evaluated, an

implicit integration scheme will be justi�ed to provide the possibility of choosing a longer sampling time.

Table 2: Estimation execution time (EET) and total execution time (TET) in [ms]

Estimation

methods

mean mean max max

EET TET EET TET

DKF 11.67 14.32 11.56 14.42

EKF 6.92 9.67 6.98 9.75

6. Conclusion

The joint state and parameter estimation problem for vibrating structures is nonlinear, even though the

underlying dynamic model is linear. A globally valid LTV model describing the dynamics of a single DOF

vibrating system has been prosed here, that is equivalent to the original nonlinear system.

With no input and output excitation this transformation is not well de�ned, while with no input ex-

citation, but with output excitation in place, at least one of the parameters can not be estimated. These

special conditions are unlikely to happen in practical applications of vibration control, while excitation may

be monitored to turn o� the estimation part of an adaptive-system in necessary.

The proposed LTV model was then utilized in a two stage cascaded Kalman �ltering scheme known as

DKF that provides a globally convergent parameter estimation in the nominal case. The performance of

the DKF vibration state and parameter estimator has been then compared with the industry-standard EKF

estimation method in various experimental scenarios.
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The experiments presented here show, that a wrong choice of initial state and parameters; or a struc-

tural change in the underlying dynamics de-stabilizes the EKF as expected, nevertheless DKF remained

convergent. Therefore, compared to EKF, we may recommend to use the cascaded DKF applications where

sudden and dramatic structural changes are to be expected. The recommendation holds not only in case

when state observers are used alone (e.g. structural health monitoring), but also for adaptive vibration

attenuation. As our experiments demonstrate, sudden changes in structural dynamics can cause diverging

EKF results, that in turn de-stabilizes control.

Since the DKF is not optimally designed for large noise amplitudes, its performance in the presence of

additional measurement noise with di�erent density functions has been studied here as well. The destructive

e�ect of additional noise on DKF has been illustrated and compared to EKF. Even though measurement

noise with a large magnitude or other than Gaussian distribution causes DKF to diverge, we observed that

EKF also su�ers from this issue.

Although the timing analysis analysis presented here proves the practical real-time feasibility of the

proposed estimation and control on a low-cost MCU, model complexity and size is rather limited. Despite of

the fact that DKF takes twice the time to execute relative to EKF, rather unsurprisingly, the absolute TETs

are still quite high. Nonlinear estimation methods are computationally exceptionally demanding even for

the single degree-of-freedom vibrating structure assumed here, higher frequencies and more complex models

are unlikely to be real-time feasible on embedded microcontroller systems.
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(a) Cantilever beam assembly

(b) STM32F407 Discovery Evaluation Board

Figure 2: Equipment used in the experiment
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Figure 4: Parameters estimation result with large tip mass change
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Figure 5: Adaptive vibration attenuation results
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Figure 6: Estimated parameters with additive Gaussian measurement noise
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Figure 7: Estimated parameters with additive uniform measurement noise
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