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Moving Horizon Estimation of Air Data Parameters
for UAVs

Andreas Wenz and Tor Arne Johansen

Abstract—Local wind velocities, angle of attack and lift co-
efficients of a fixed-wing unmanned aerial vehicle (UAV) are
estimated by fusing kinematic, aerodynamic and stochastic wind
models with data from an inertial measurement unit, a global
navigation satellite system receiver and a pitot-static tube in a
Moving Horizon Estimator. Experimental validation with two
different UAVs and two sensor sets of different quality, show
promising results for both wind velocity and angle of attack
estimation.

Index Terms—state estimation, unmanned aircraft, moving
horizon estimation, avionics, sensor fusion

I. INTRODUCTION

The air data parameters Angle of attack (α), side slip angle
(β ) and airspeed (Va) are some of the most useful variables
to assess flight performance and safety of fixed-wing aircraft.
They are especially important when encountering abnormal
conditions, such as stall and strong and turbulent winds. In
manned aviation and on larger high-cost unmanned aircraft,
dedicated sensors are available to measuring these variables.
Devices for acquiring this data include vanes or pressure
sensors like multi-hole pitot-static tubes. Additionally, wind
tunnel and CFD data are often available for large aircraft
allowing identification of a full parametric dynamical model
of the aircraft. This model can then be used together with
inertial measurements to estimate the air data parameters and
providing model based redundancy. However, for small fixed-
wing UAVs the mentioned sensor systems are often difficult
to use since strict limitations on size, weight and cost prove to
be prohibiting. Also, wind tunnel data is often unavailable or
too expensive to obtain for specific air frames, prohibiting the
use of extensive parametric aerodynamic models for air data
estimation. Some of these aerodynamic parameters might even
change with different payload configurations (e.g. externally
mounted antennas or cameras). What makes the estimation
problem more challenging is that unlike in manned aviation
airspeeds are generally in the same order of magnitude as
the local wind velocities. In this case wind velocities have
to be accounted for in the modeling process. Since UAVs
often operate at low altitudes close to ground, the wind
gust intensity changes significantly depending on altitude and
terrain, creating a need for wind gust models that capture these
effects.

Due to these circumstances it is desirable to develop es-
timation concepts that do not rely on the availability of a
full aerodynamic model and only use sensors that are part
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of a standard sensor suite consisting of a GNSS (Global
Navigation Satellite System) receiver, an IMU (Inertial Mea-
surement Unit) and a standard single-directional pitot-static
tube. This sensor data can then be fused, using kinematic,
aerodynamic and wind models within an estimator. In order
to simultaneously estimate the aerodynamic coefficients and
the wind velocities impacting the aircraft, which allows the
computation of the air data parameters.

The availability of wind velocity and aerodynamic coeffi-
cient estimates during a flight is desirable as this provides a
basis for a variety of different use cases. One would be the
possibility to monitor the aerodynamic coefficients for changes
as they can appear in icing scenarios [17] allowing the precise
use of de-icing methods [38]. Another area of application
could be path planning were the availability of wind velocity
estimates allow on the one side more efficient flight trajectories
and on the other side less conservative flight trajectories when
flying close to mountains or buildings.

An angle of attack estimate makes it possible to limit the
angle of attack during maneuvers in order to prevent stall,
improving flight safety. Furthermore, the knowledge of the
air data parameters allows the exploitation of wind features
resulting in a more energy efficient flight and increased range
of the UAV [22] [36].

Recently several methods have been proposed to estimate
the air data parameters and aerodynamic coefficients. One
popular methods is the Extended Kalman Filter (EKF), which
has been used in [11] , [21], [24], and the Unscented Kalman
Filter (UKF) which has been applied to the problem in [33],
[12]. Tian et.al [40] compare the use of an EKF, Output
Error Minimization and a Complimentary Filter to improve
measurements of the air data parameters obtained from a
multi-hole probe. [8] uses a detailed aircraft model and a
nonlinear observer for wind estimation. In [23] kinematic
vehicle models are used together with IMU, GNSS and multi-
directional airspeed sensors to estimate the wind field. [35]
propose a method using optical flow measurements. A hy-
brid system approach using Bayesian estimation is presented
in [37] achieving promising results. An air data estimation
method using simplified aerodynamic and kinematic models
have been presented in [37], [5] and [8]. However in the
described method a detailed model of the aerodynamics is used
and the parameters for this might not always be available.

This paper builds up on several previously published papers.
In [18] wind velocities were estimated using only kinematic
relationships, resulting in a linear time varying systems in
which states can be estimates using a Kalman Filter approach.
The underlying assumption was that the wind velocity is only
slowly time varying limiting the performance of the estimator
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in turbulent wind conditions, as they are often experienced
close to ground due to boundary layer effects.

In [44] the above mentioned sensor suite was used to-
gether with aerodynamic and kinematic relationships and a
stochastic wind model to estimate time varying wind speeds.
The necessary coefficients of the aerodynamic model are
estimated together with steady and turbulent wind velocities.
An EKF was used to fuse the sensor information and models.
A general problem regarding the system properties is the lack
of observability in periods where no attitude changes occur. In
these cases the parameter estimates of the EKF tend to drift
over time and the estimated error covariances are inconsis-
tent, causing the need for compensation by periodic attitude
changes. Additionally the EKF estimates were sensitive to
input noise, due to the nonlinearity of the used estimation
models.

To overcome these issues, we proposed to use a Moving
Horizon Estimator (MHE) in [43]. A MHE uses the data
gathered form the sensor measurements in a time window
of length L until the current time together with a system
model to estimate the state trajectory in the time window.
This is done by minimizing the error between the system
output and the measurement vector forming a Nonlinear
Program (NLP). MHE has been an active research topic in
the last years [34]. [32] compares different estimation methods
including the MHE, the extended and unscented Kalman filter
as well as the particle filter. It is shown that the MHE can
capture nonlinearities better than the EKF resulting in lower
estimation error and better consistency of the filter. In [43] we
have shown results from simualted flight data which showed
promising performance and significant improvements over the
EKF approach.

The goal of the paper is to extend and validate the MHE
approach shown in [43] using experimental flight data from
two different airframes. The estimator presented in [43] has
been extended by a novel measurement model, which provides
a highly accurate airspeed and angle of attack estimate, from
the pitot-static tube and accelerometer measurements. In order
to be usable with real sensor data, outlier removal and scaling
errors of the pitot-static tube have been taken into account.

In comparison to [18] the estimator proposed in this work
is better capable of estimating time varying wind velocities
which is key to improve the performance of the angle of attack
estimation.

The MHE estimates the wind velocities, and the coefficients
of an aerodynamic model. These estimates can be used to
calculate the airspeed, the angle of attack and the angle of
sideslip. In order to avoid additional sensors this is done
only with a standard autopilot sensor suite consisting of a
global navigation satellite system (GNSS) receiver, an inertial
measurement unit (IMU), a three-axis magnetometer and a
pitot-static tube. It is assumed that an attitude and heading
reference system (AHRS) and a translational motion observer
(TMO) are already existing and are therefore only briefly
discussed in this paper. Estimation performance will be shown
for two different airframes each having two different sensor
configurations of different quality. This allows an assessment
on how the sensor quality affects estimation performance.

A disadvantage of the MHE is the increasing computational
cost with increasing window length. We therefore have used
a direct collocation method for NLP construction and an
unscented Kalman filter for arrival cost approximation. This
allows a short window length and creates a sparse NLP which
is efficient to solve [20], [7], [13], [30].

II. METHODS

A. Modeling

As a first step a model of the UAV is established. The
modeling process can be separated into four main sub-models:
A kinematic model describing the relationship between relative
velocity, wind velocity and velocity over ground, an airspeed
measurement model, an aerodynamic model describing the
UAV and a stochastic wind model used for turbulence predic-
tion. These models will be described in detail in the following
subsections.

1) Kinematic Model: In the following we indicate variables
decomposed in body coordinate frame with b and variables
decomposed in inertial coordinate frame with n. The wind
triangle [5] is given by

vvvb
r = vvvbbb−RRRb

nvvvn
w (1)

It describes the relationship between the velocity of the aircraft
relative to the surrounding airmass vvvb

r =
[
ur vr wr

]T , its
ground velocity vvvb =

[
u v w

]T , both decomposed in body
frame and the local wind velocity vvvn

w, decomposed in inertial
frame. RRRb

n is the rotation matrix from inertial to body frame.
Knowledge of the relative airspeed allows for the calculation
of the air data parameters:
• Airspeed

Va = ‖vvvb
r‖ (2)

• Angle of Attack

α = tan−1
(

wr

ur

)
(3)

• Sideslip Angle

β = sin−1
(

vr

Va

)
(4)

The following measurements are available:
• An estimate of the ground velocity ṽvvnnn in the inertial

frame given by the TMO driven by GNSS velocity
measurements.

• An estimate of the rotation matrix R̃RRbbb
nnn given by the AHRS.

• A measurement of the airspeed Ṽ m
a given by the pitot-

static tube measurement.
2) Airspeed Measurement Model: Research conducted in

[14] has shown that for small angle of attack, sideslip-angle
and misalignment angle the pitot-static tube still measures the
airspeed (i.e. the length of the relative air velocity vector). The
maximum angle to the air stream for which this assumption
is true depends on the diameter, the geometry of the probe
and the airspeed. This angle varies typically between ±10◦

and ±60◦ (see [14, pp. 41-44]). In the following we will
assume this assumption to be fulfilled, due to the regarded
flight scenario (airspeed far below the speed of sound, no
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Fig. 1: Linear approximation of the aerodynamic model

stall). A pitot-static probe measures the difference between the
dynamic pressure at the tip of the probe and the static pressure
at the side of the probe. The indicated airspeed, which we will
denote as Ṽ m

a , is a function of the differential pressure ∆P and
air density ρ .

Ṽ m
a =

√
2∆P

ρ
(5)

Air density is dependent on altitude, temperature and atmo-
spheric pressure and therefore can vary throughout a flight,
creating errors in the airspeed measurement. The airspeed
measurement is obtained from the autopilot where a calibration
can be made pre-flight, yielding an estimate of the air density
ρ̂ . However variations of air density during the flight are not
always compensated for. Additionally, the airspeed measure-
ment is effected by the positioning of the probe. These are
caused by errors in the measurement of the static pressure,
which ideally would measure the pressure of the undisturbed
airflow. However due to restrictions on mounting and length
of the used probe the static pressure measurement can be
disturbed by the fuselage and wings of the aircraft which might
also be dependent on the sideslip angle and the angle of attack.

We therefore propose the following measurement model:

Va =
Ṽ m

a −ηVa

γ
=

V m
a

γ
(6)

with γ =
√

ρ̂
ρ .

The airspeed measurement Ṽ m
a is assumed to be effected by

Gaussian white measurement noise (ηVa ), caused by sensor
noise and position errors as well as calibration errors due
to air density changes of the probe and other scale factor
errors caused by positioning and sensor errors, which are
compensated by a calibration factor γ , which will be estimated.
In the following V m

a will be used for the uncalibrated airspeed.
3) Aerodynamic Model: By analyzing (1) it is immanent

that the wind velocity vector is only fully observable, when
rotations of the aircraft are performed. For the case of
time varying wind velocity this would mean that sufficiently
frequent rotations would have to be performed to achieve
persistence of excitation. This issue has been discussed in more
detail in [18].

To overcome this issue we proposed in [44] to use a lift
force model in order to ensure observability of the angle of
attack, resulting in observability of the relative airspeed in
vertical direction in body coordinate frame. To do this we
use a simplified model of the aerodynamic force in vertical
direction:

Fz

m
= fz =−

1
2

V 2
a ρ

S
m
(CL,0 +αCL,α)+νa (7)

where m is the aircraft’s mass, fz is the specific force in vertical
direction measured by an accelerometer, ρ is air density, S
is the surface area of the airfoil, CL,0 is the constant lift
coefficient, CL,α is the linear lift coefficient and νa is the
modeling error. This model is a linearization with respect to
α of the full nonlinear model of the aerodynamic lift found
for example in [5, chap.4]. It neglects influences of the pitch
rate and the elevator deflection on the lift force which are
normally one order of magnitude smaller than the lift force
created by the airfoil. The modeling error is small for normal
flying conditions below stall angle (cf. Fig 1). In the estimator
the model (7) is reformulated to:

fz =−V 2
a

ρS
2m

(CL,0 +αCL,α) (8)

As discussed in Section II-A2 the air density might vary
during flight. Since the uncalibrated airspeed will be effected
by the inverse of this error, we can compensate for that by
reformulating (8) to:

fz =−(V m
a )2 K (CL,0 +αCL,α) (9)

with K = ρ̂S
2m .

4) Dryden Wind Model: The wind velocity is modeled
assuming frequency separation. The wind velocity vvvn

w is split
in a steady, slowly time varying part vvvn

s =
[
un

s vn
s wn

s
]T and

a turbulent part vvvn
t =

[
un

t vn
t wn

t
]T .

The steady wind velocity component is assumed to be
slowly time varying,

v̇vvnnn
s,k ≈ 0 (10)

while the turbulent wind velocity component is described
by the discrete time Dryden wind model specified in [28],

vvvn
t,k+1 = vvvn

t,k−∆TVa,k




un
t

Lu

vn
t

Lv

wn
t

Lw




∣∣∣∣∣∣∣∣∣
k

+




σu

√
2∆T Va

Lu
νut

σv

√
2∆T Va

Lv
νvt

σw

√
2∆T Va

Lw
νwt




∣∣∣∣∣∣∣∣∣
k

(11)

where ∆T is the sampling interval, k is the current time
step, νννxxx,k =

[
νut νvt νwt

]T is Gaussian white noise, and
the spatial wavelengths are given by:

Lu,k = Lv,k =
hk

(0.177+0.0027 ·hk)1.2 (12)

Lw,k = hk (13)

where hk is the altitude above ground. The noise amplitudes
are given by:

σu,k = σv,k =Vw,G
1

(0.177+0.0027 ·hk)0.4 (14)

σw = 0.1 ·Vw,G (15)
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Vw,G denotes the wind velocity measured 6 meters above
ground.

B. State Space Model
The estimation problem can be divided in a state and a

parameter estimation part. The states to be estimated are the
turbulent wind velocities in inertial frame, the parameters to
be estimated are the steady wind velocities in inertial frame,
the two lift coefficients, and a scaling factor γ governing pitot-
static tube calibration:

xxx =
[
un

t vn
t wn

t
]T (16)

ppp =
[
un

s vn
s wn

s KCL0 KCLα γ
]T (17)

Inputs to the observer are the estimates of the velocity over
ground, altitude and attitude given by a quaternion qqqb

n describ-
ing the rotation from inertial frame to body frame [10]. RRRb

n
denotes the corresponding rotation matrix. These inputs are
estimated by a translational motion observer (TMO) and an
attitude and heading reference system (AHRS), based on IMU,
GNSS and barometric pressure measurements.

ũuu =
[
vvvb qqqb

n h
]T (18)

Popular approaches for attitude and heading estimation are
the EKF and nonlinear observers with a global or semi-global
region of attraction [5], [19], [16]. These approaches provide
locally stable (in case of the EKF) or (semi-) globally stable
estimates of the attitude (in case of the nonlinear observer)
while filtering sensor noise. For tuning of the wind velocity
and parameter estimator we neglect noise on the attitude
estimation. The altitude is affected by noise on the RTK-GNSS
measurements, however this noise has a minor influence since
the altitude is only used to calculate the spatial wavelength
of the wind gusts in (12)-(13) which is insensitive to small
variations. To reduce noise levels on both the velocity over
ground and the altitude inputs a translational motion observer
(TMO) is applied (i.e. [5], [16]). The system setup with AHRS
and TMO is shown in Figure 2. In the figure f̆ff is the specific
force and ω̆ωω is the angular rate both measured by the IMU, ψ̆ψψ
is a heading reference vector and p̆ppnnn is the position and v̆vvnnn the
velocity over ground in inertial frame measured by the GNSS
receiver.

In the following we will summarize the input noise in the
vector ηuuu and define uuuk as the system input at time step k.

ũuuk =




ṽvvb

qqqb
n

h




k

=




vvvb +ηηηvb

qqqb
n

h




k

= uuuk +ηu (19)

The state transition function is given by:

fff (xxx,uuu, ppp) =−‖vvvb−RRRb
n (vvv

n
s + vvvn

t )‖




ut
Luvt
Lvwt
Lw


 (20)

The process noise input function is given by:

www(xxxk,uuuk,ηηηxxx,k, ppp) =




σu

√
2∆T Va

Lu
νut

σv

√
2∆T Va

Lv
νvt

σw

√
2∆T Va

Lw
νwt




∣∣∣∣∣∣∣∣∣uuukxxxkpppk

(21)

Wind velocity
+

Aerodynamic parameter
estimation

AHRS

IMU
Heading Reference

GNSS Pitot-static
tube

TMO

CL,0,CL,α vvvb
r vvvn

w

Ṽ m
a

p̆ppnnn, v̆vvnnn

ṽvvbbb

f̆ff
bbb
, ω̆ωωbbb, ψ̆

f̃ff
bbb qqqb

n

qqqb
n

f̆ff
bbb

Fig. 2: Estimator structure

with νννxxx,k =
[
νut νvt νwt

]T and Va defined as in (2). The
predicted state is then given by:

xxxk+1 = xxxk +∆T fff (xxxk,uuuk, pppk)+www(xxxk,uuuk,νννxxx,k, pppk) (22)

For the parameters we assume slowly time varying behavior:

pppk+1 = pppk +ννν ppp,k (23)

where ννν ppp is a Gaussian distributed white process noise vari-
able. The covariance matrix of the combined process noise
νννqqq =

[
νννxxx ννν ppp

]
is given by QQQ.

We can use the definitions given in equations (2)-(4) to
represent the relative airspeed as:

vvvb
r =Va




cosα cosβ
sinβ

sinα cosβ


 (24)

Here α can be estimated using the model of the vertical
aerodynamics described by (9). Estimation of β through an
aerodynamic model is more challenging since in the lateral
direction forces originate from a number of different sources
greatly increasing the number of coefficients to be estimated
(see [5]) making it hard to achieve persistence of excitation.
Under normal flying conditions, β can be assumed to be small
so that we can approximate cosβ ≈ 1 and sinβ ≈ 0. The
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approximation error is accounted for in the noise variable νννki
. Hence, we get together with (1)

[
ub

wb

]
=

[
1 0 0
0 0 1

]
RRRb

nvvvn
w +Va

[
cosα
sinα

]
+νννki (25)

Measurements used for correcting the predicted state vector
are the specific force in vertical direction in body frame f̃z
measured by an accelerometer, the airspeed measured by the
pitot-static tube and the longitudinal and vertical velocity over
ground in body frame ũb and w̃b.

The outputs of the system, velocity over ground, specific
force and airspeed measurements are assumed to be affected
by additive white Gaussian measurement noise.

z̃zzk =




f̃z
˜V m
a

ũb

w̃b


=




fz +η fz
V m

a +ηVa

ub +ηub

wb +ηwb


= zzzk +ηηηz (26)

Since the velocity over ground is both an input and an output
to the system, input and output noise variables are combined
in a measurement noise vector ηηηm =

[
ηηηvb ηVa η fz

]T with
a covariance matrix WWW m.

The time varying measurement function is given by:

hhh(((xxxkkk,,,uuukkk,,, ppp))) =




−K (V m
a )2 (CL0 +CLα α)

Vaγ
ddd1RRRb

n(vvv
n
s + vvvn

t )+Va cos(α)

ddd3RRRb
n(vvv

n
s + vvvn

t )+Va sin(α)


+νννy (27)

with:

ddd1 =
[
1 0 0

]

ddd3 =
[
0 0 1

]

The first measurement equation in (27) uses the z-
accelerometer together with the aerodynamic model (9) to
estimate the aerodynamic coefficients and the wind velocities
via Va and α . The second measurement equation V m

a = γVa
uses the definition of the airspeed (2) and the calibration
factor γ to relate the measured airspeed to the wind velocities.
The third and fourth measurement equations utilizes the wind
triangle (1) to relate the measurements of the velocity over
ground to the relative longitudinal velocity um

r measured by
the pitot-static tube. This is similar to the method described
in [18].

The approximation errors within the models used in the
measurement function are summarized in the noise variable
νννyyy =

[
νa νv νννki

]
which is assumed to be white Gaussian

noise with a covariance matrix RRR.
We have chosen to separate noise variables for the mea-

surement noise of input and output variables (ηηηm) and the
process noise resulting from model mismatches in the state
transition (νννq) and output functions (νννy). The main motivation
for this noise modeling is ease of tuning of the estimator since
measurement noise covariances can be chosen according to
sensor specifications, whereas the covariance matrices of the
process noise can be chosen according to the magnitude of the
errors in the aerodynamic (9) and kinematic (1) model.

As discussed in [44] and [18] the system is not uniformly
observable. Therefore, attitude changes are necessary in order
to ensure persistence of excitation.

C. Moving Horizon Estimation

The Moving Horizon Estimator (MHE) [20], [31] uses the
sensor measurements gathered in a data window containing L
samples to estimate the states xxx and parameters ppp of a system.
These measurements can be interpreted as a series of inputs
uuu j and outputs zzz j of a state space model of the system. This
system is affected by the process noise ννν jjj =

[
νννq, j νννy, j

]
as

well as input measurement noise ηηηuuu, j and output measurement
noise ηηηzzz, j, summarized in a measurement noise vector ηηηm, j.
The goal of the MHE is it to minimize the error between the
model output and the measurements while fulfilling continuity
conditions given by the state transition function. To estimate
the system states, system parameters, and noise parameters,
the following nonlinear program is solved in each time step:

min
xxxk−L,...,xxxk
ηηηk−L,...,ηηηk
νννk−L,...,νννk

θθθ k−L,0,...,θθθ k,d
pppk−L,...,pppk

(∥∥∥∥
xxxk−L− x̂xxk−L
pppk−L− p̂ppk−L

∥∥∥∥
2

P̂PP−1
k−L

+ · · ·

k

∑
j=k−L

∥∥z̃zz jjj−ηηηzzz, j−hhh(xxx j, ũuu jjj−ηηηuuu, j, ppp j)
∥∥2

VVV +
k−1

∑
j=k−L

‖ηηη j‖2
WWW

)

(28)

where ηηη j =
[
νννxxx, j ννν ppp j ηηηmmm, j

]
. This NLP is subject to equal-

ity and inequality constraints. The equality constraints are con-
tinuity constraints necessary to capture the system dynamics.
This is done using a direct collocation method which uses
parameter vectors θθθ j to subsample the states at collocation
points between the sampling instants (see Section II-C1).

Note that all norms are 2-norms that are weighted by a
matrix indicated in the subscript of the norm i.e. ‖xxx‖2

AAA = xxxT AAAxxx.
The first term in the penalty function is the so called arrival
cost which summarizes the information before the current es-
timation window in a state estimate x̂xxk−L, a parameter estimate
p̂ppk−L and a error covariance matrix P̂PPk−L. The arrival cost is
key to the stability of the MHE [20], [31] and will therefore
be discussed in more detail in section II-C2. The second term
penalizes deviations of the output of the state space model
from the measurement zzz j with a weighting matrix VVV . The last
term penalizes the noise vector in the state transition function
with a weight matrix VVV . Following Robertson et.al [34], we use
the inverse of the measurement and process noise covariance
matrices as weights and adjust for the sampling frequency.

VVV = RRR−1 (29)

WWW =

[
QQQ−1 000[9x5]
000[5x9] WWW−1

m

]
∆T−1 (30)

The rationale behind this choice, follows from the assump-
tion of Gaussian white measurement noise. By choosing the
inverses of the noise covariance matrices as weights, we
ensure that the values of xxx j and ppp j which minimize (28) are
maximum-aperiori estimates of the states and parameters at
each time step [34].

1) Direct Collocation: In order to capture the system
dynamics, continuity constraints have to be added to the
nonlinear program given in equation (28). In this paper we
chose a direct collocation formulation for the states in the
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nonlinear program, proposed for model predictive control
in [6], [41]. This formulation adds additional degrees of
freedom to the states, representing the high frequent turbulent
wind velocities, by using d additional collocation points τi
between each time step j, given by the roots of a Legendre
polynomial of order d. These roots are denoted as L1 . . .Ld .
The trajectory of the state transition and the noise transfer
functions are then approximated on the interval [t j, t j+1] by
Lagrange polynomials Γi(t) with weight vector θθθ j,i. On each
collocation point the gradient condition (31) and at the end of
an collocation interval the continuity condition (32), is added
to the equality constraints of the NLP. Additionally equality
constraints (33) - (34) ensure that the weight vector matches
the state vector at the beginning and end of the collocation
interval. The equality constraints for the parameters are only
enforced at the sampling instants, since the parameters are
assumed to be only slowly time varying.

This results in the following equality constraints:
d

∑
r=0

Γ̇ΓΓr(τi)θθθ j,r− fff (θθθ j,i,uuu j, ppp j)+
1

∆T www(θθθ j,i, ,uuu j,νννxxx j , ppp j) = 000

(31)
d

∑
i=0

ΓΓΓi(1)θθθ j,i−θθθ j+1,0 = 000 (32)

xxx j−θθθ j,0 = 000 (33)
xxx j+1−θθθ j,d = 000 (34)

ppp j+1− ppp j−−−νppp j = 000 (35)

for i = 0, . . . ,d and j = k−L, . . . ,k−1

where:

τττ =
[
0 L1 . . . Ld

]
(36)

ΓΓΓi(t) =
d

∏
r=0,r 6=i

t− τr

τi− τr
(37)

The result is a very large but also very sparse NLP, which can
be solved efficiently by dedicated NLP solvers. We chose to
use IPOPT [42] as the solver since it was readily available in
Casadi which we use for algorithmic differentiation.

One of the benefits of the MHE is the possibility to
impose constrains on the estimated states, noise variables and
parameters. We will only impose constraints on the estimated
lift coefficients and the pitot-static tube calibration factor since
bounds for these parameters can be roughly estimated, whereas
wind velocity bounds are unknown. Additionally the angle of
attack is constrained in order to force a unique solution of
the trigonometric functions used in the model, resulting in the
following inequality constraints:

pppmin ≤ ppp≤ pppmax

−−−45◦ ≤ α ≤ 45◦ (38)

2) Arrival Cost Approximation: As mentioned in section
II-C, the arrival cost term is important for the stability of the
estimator [20], [31]. Ideally one would like to use the exact
arrival cost, i.e. (28) is writen as:

min
k

∑
j=0
‖yyy j−hhh(xxx j, ppp,uuu j)‖2

VVV +
k

∑
j=0
‖ηηη j|‖2

WWW (39)

However with increasing k, the amount of data to store, and
the computation time needed to solve this problem, rises
drastically and can therefore not be implemented. To solve
this problem several approaches have been proposed. Lopez-
Negrete et.al. [25] considers different Kalman filter type of
approaches including the EKF and the Unscented Kalman
Filter (UKF), as well as the Particle Filter (PF). It was
demonstrated that filters that avoid linearizations, like the UKF
and the PF, have significant performance advantages compared
to the EKF when approximating the arrival cost, allowing the
use of shorter window lengths and thus compensating for the
higher computational cost of these filters.

In this paper the UKF approach to arrival cost approxi-
mation was used, as described in [30]. The arrival cost is
updated in the following way: We start with an augmented
state vector xxxa

v−1|v−1 which includes the optimal state estimates
at the start of the moving horizon (xxx∗v−1|v−1) and the optimal
parameter ppp∗v−1 estimates of the previous solution of the NLP
(28), with v = k−L. The augmented state vector includes also
the first moments of the process, measurement and input noise
distributions, which are, following the previous assumptions,
equal to zero.

xxxa
v−1|v−1 =

[
xxx∗v−1|v−1 ppp∗k−1 000qx 000qp 000r 000u

]T
(40)

The corresponding covariance matrix of the estimation error
is:

PPPa
v−1|v−1 =




P̂PPv−1|v−1 000[9x9] 000[9x2] 000[9x5]
000[9x9] QQQ∆T 000[9x2] 000[9x5]
000[2x9] 000[2x9] RRR 000[2x5]
000[5x9] 000[5x9] 000[5x2] WWW m∆T


 (41)

We then generate a set of sigma points:

χχχa
v−1 = XXXa

v−1|v−1 + · · ·(
000[24x1],

√
(na +κ)PPPa

v−1|v−1, −
√
(na +κ)PPPa

v−1|v−1

)

(42)

and corresponding weights:

Ωi =

{
κ

na+κ if i = 1
1

2(na+κ) otherwise (43)

where na is the size of xxxa which is in this case 24 and κ is a
tuning parameter set to −21 in accordance with [30]. XXXa

v−1|v−1
is the expanded na× (2na + 1) matrix with xxxa

v−1|v−1 as each
column. We then use the state space model for prediction:

χχχx
v = χχχx

v +∆T fff (χχχx
v−1, ũuuv−1−χχχu

v−1,χχχ
p
v−1)+ · · ·

www(χχχx
v−1, ũuuv−1−χχχu

v−1,χχχ
qx
v−1,χχχ

p
v−1) (44)

χχχ p
v = χχχ p

v−1 +χχχqp
v−1 (45)

γγγv = hhh(χχχx
v, ũuuv−χχχu

v−1,χχχ
p
k )+χr

v−1 (46)

With:

χχχa
v−1 =

[
χχχx

v−1 χχχ p
v−1 χχχqx

v−1 χχχqp
v−1 χχχr

v−1 χχχu
v−1

]T
(47)
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Afterwards we can calculate the predicted state and parameter
vectors as well as the predicted covariance matrix of the
estimation error:

xxxv|v−1 =
2na+1

∑
i=1

Ωiχχχx
i,v = x̂xxk−L (48)

pppv|v−1 =
2na+1

∑
i=1

Ωiχχχ p
i,v = p̂ppk−L (49)

ẑzzvvv =
2na+1

∑
i=1

Ωiγi,v (50)

PPPxxx
v|v−1 =

2na+1

∑
i=1

Ωi
[
χχχx

i,v− xxxv|v−1
][

χχχx
i,v− xxxv|v−1

]T (51)

PPPy,v =
2na+1

∑
i=1

Ωi
[
γγγ i,v− ŷyyv

][
γγγ i,v− ŷv

]T (52)

PPPyz,v =
2na+1

∑
i=1

Ωi
[
χχχx

i,v− xxxv|v−1
][

γγγ i,v− ŷv
]T (53)

As a final step the covariance matrix of the estimation error
is updated with the measurement uncertainty and is then used
as weight for the arrival cost.

KKKv = PPPxy,vPPP−1
y,v (54)

PPPxxx
v|v = PPPv|v−1−KKKvPPPy,vKKKT

v = P̂PPk−L (55)

3) Outlier Detection: The estimation results can be dis-
turbed by outliers, i.e. from GNSS measurements, resulting in
wrong parameter estimates and inconsistent error covariance
estimates. To detect these outliers we evaluate the estimation
result of the MHE by comparing it with the predicted state of
the arrival cost approximation. For this only the estimates of
the aerodynamic coefficients and the pitot-tube scaling factor
are used since these can be assumed to be constant, where
as the steady wind velocities are slowly time varying. If the
deviation of any of these elements of the optimal estimated
parameter vector ppp∗ from the predicted coefficient vector p̂k−L
is more than three times the estimated error standard deviation
we consider ppp∗ an outlier. Since the noise on the parameter
estimates is a assumed to be Gaussian distribution, this test
corresponds to a false detection probability of 0.1%.

‖p̂ j,k−L− p∗j,k‖> 3
√

P̂k−L, j j (56)

for j = 4 . . .6

In this case we will keep the estimate of the previous estima-
tion step.

III. EXPERIMENTAL SETUP

Flights with two different aircraft were performed, the
Skywalker X8, and the Cruiser-Mini. Both were equipped with
the same sensor payload and an autopilot. Aircraft parameters
can be found in table I

A. Experimental Sensor Payload

In order to record input data for the estimator as well as a
reference to compare the estimation results to, an experimental

TABLE I: Aircraft Parameters

Skywalker X8 Magline Cruiser-Mini

Type of Aircraft Tailless Flying-wing aircraft T-tail aircraft
Weight 4kg 8kg
Endurance 45min 1.5h
Cruise Speed 15m/s 17m/s
Wing Span 2.1m 2.6m

Fig. 3: Cruiser-Mini

Fig. 4: Skywalker X8

sensor payload was designed. This payload was used on both
airframes and consists of the following sensor set:

• GNSS receivers: 3 ublox NEO M8T GNSS receivers
were used to acquire postion data of the aircraft. Two of
these receivers were connected to antennas on each wing
1.5m apart from each other. The third receiver was placed
on the fuselage. Additionally a basestation with the same
receiver was used to allow the use of real-time kinematic
GPS (RTK-GPS) resulting in centimeter level position
accuracy. RTKLib [39] was used as an implementation
of RTK-GPS. The sampling frequency is 5Hz. This setup
allows the use of the two position measurements as a
heading reference. In addition Doppler based velocity
measurements are available.

• IMU: A Sensonor STIM 300 MEMS IMU was used,
providing 3 axis acceleration and angular velocity mea-
surements. The sampling frequency is 500Hz.

• Multi directional pitot-static tube: The Aeroprobe mi-
cro Air data system was used. This pitot-static system
calculates angle of attack, sideslip angle and airspeed
from 5 dynamic pressure and one static pressure measure-
ment. This data was used as a reference for the estimator.
The Aeroprobe provides data at a frequency of 100Hz,
accuracy of the flow angle measurements is 1◦ and 1m/s
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for the airspeed measurements.
These sensors where synchronized and timestamped on a
hardware level with high resolution. For more detail on the
hardware and software realization of the sensor timing board
we refer to [3].

B. Inertial Navigation

To estimate the attitude and translation motion of the aircraft
from the sensor measurements, we use the nonlinear and linear
observers described in detail in [9]. The Attitude and Heading
Reference System (AHRS) uses the measurements obtained by
the STIM IMU to estimate the rotation matrix between inertial
and body fixed frame using a nonlinear observer (NLO) based
on complimentary filtering on SO(3) [26]. The used NLO has
first been presented in [15], [16]. [10] shows implementation
details of the observer. The observer estimates attitude and
heading by comparing specific force vectors in inertial and
body frame for low-frequency accuracy while integrating the
angular velocities for high frequency accuracy. Simultaneously
gyro biases are estimated to compensate for sensor measuring
errors. A heading reference is obtained from the RTK position
solution of the two different GNSS receivers on the wings of
the aircraft using the following equation:

ψ̆ = atan2
(

p̆l,N− p̆r,N , p̆l,E − p̆r,E
)

(57)

where ψ̆ is the heading reference and p̆l,N is the north
component of the position measurement of the left wing.

The AHRS has three tuning factors: k1 and k2 which are
cut-off frequencies for low-frequency information from the ac-
celerometers and the heading reference vector. For frequencies
above these cut off frequencies the gyroscope information is
used. The third tuning factor kI governs gyro bias sensitivity.

As a Translational Motion Observer (TMO) we use the
loosely coupled implementation described in [10] which re-
sults in gains given by a Riccati equation similar to the
Kalman Filter. The loosely coupled TMO uses the tangent
frame representation of the strapdown equation in order to
estimate position and velocity from position, velocity and
accelerometer measurements given an attitude estimate, using
the following model:

ṗppn = vvvn (58)

v̇vvn = RRRn
b fff b +gggn (59)

Position and velocity measurements are here obtained from the
third GNSS receiver with the antenna placed on the fuselage.

Advantages of this modular observer design are low com-
putational cost and uniform semi-global exponential stability.

C. Autopilot

Additionally data from the autopilot on both aircrafts was
available. The autopilot provides another set of GNSS and
IMU data as well as measurements from a single directional
pitot-static tube and a 3 axis magnetometer. These sensors
provide data with somewhat higher noise level, less accuracy
and lower sampling frequencies compared to the experimental
sensor payload.

The Skywalker X8 was equipped with a Pixhawk autopilot
which provides the following sensor set:
• GNSS receiver: uBlox LEA-6H, sampled at 5Hz.
• IMU: ST Micro L3GD20H 16 bit gyroscopes and ST

Micro LSM303D 14 bit accelerometers, sampled at 25Hz.
• Magnetometer: HMC5983
• Pitot-static tube: Measurement Specialties 4525DO sen-

sor, sampled at 10Hz.
The Cruiser-Mini was equipped with the newer Pixhawk

2 autopilot. In comparison to the earlier version the IMUs
are temperature controlled and isolated from vibrations. The
Pixhawk 2 provides data from the following sensor package:
• GNSS receiver: uBlox NEO-M8T sampled at 5Hz.
• IMU: ST Micro L3GD20H 16 bit gyroscopes and ST

Micro LSM303D 14 bit accelerometers, sampled at 25Hz.
• Magnetometer: HMC5983
• Pitot-static tube: Measurement Specialties 4525DO sen-

sor, sampled at 10Hz.
For navigation an Extended Kalman Filter (EKF) is used to
estimate position, velocity and attitude.

D. MHE Implementation and Tuning

The data collected from the test flights was analyzed offline
in a Matlab environment. After passing through the AHRS
and TMO, wind velocities and lift coefficients were estimated
using the methods described in section II-C. Within Matlab,
Casadi [4] was used for symbolic calculations and algorithmic
differentiation. In order to speed up computation, C++ code
and precompiled .mex functions were generated from the
Matlab / Casadi code. The number of collocation points d
was set to 5 and the window length L was set to 6 samples.
Note that there is a trade-off between computation time and
the window length L. A longer window length is expected
to improve the estimation result, which might be desirable
when using low cost sensors, however at the cost of a higher
computation time. Limits for the coefficient estimates were set
to:



−0.2

0
−0.5


≤




KCL,0
KCL,α

γ


≤




0.2
2

0.5


 (60)

Since the pressure sensors of the pitot-static tube are only
sampled at 10Hz according to the Shannon-Nyquist theorem,
only frequency components up to 5Hz can be recorded.
Spectral analysis of the Aeroprobe data showed that all major
frequency components are below 5Hz. Therefore, the sampling
rate of the MHE was set to 5Hz as well. In order to further
speed up computation we use the result of the previous time-
step as a starting point for the current time-step by shifting the
result vector by one time step. This is referred to as ”warm
starting” and is explained in more detail in [20].

During initialization the window length is gradually scaled
up until L samples have been received, using the initial values
for states, parameters and covariances as the arrival cost.
Afterwards the arrival cost is approximated as described in
Section II-C2.
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Since motor vibrations induce significant oscillations on
the accelerometers, their signals were passed through a FIR
lowpass filter with a cut-off frequency of 20Hz and 60dB
dampening at 50Hz.

When tuning the estimator for a specific sensor set and
airframe different aspects have to be considered:
• Initial Conditions: For the steady and turbulent wind

velocities these can be set to zero. The corresponding
initial covariances should be set low for the turbulent
wind velocities and high for the steady wind velocities to
achieve fast convergence. The initial value for the linear
lift coefficient should be set to a non-zero value. The
choice depends on the airframe used. If the wing area,
the air density and the mass of the aircraft are known, an
initial guess can be obtained using KĈL,α = Sρ̂

m π (cf. thin-
airfoil theory [1, Chap. 4]). The inital value of the pitot-
static tube calibration factor should be set to 1 and the
corresponding covariance can be set low if the autopilot
already provides a pitot-static tube calibration routine and
higher if this is not he case.

• Input Noise Covariance Matrix: This matrix can be tuned
according to sensor datasheet values. Note that in the here
presented setup, the velocity over ground input is not the
the GNSS measurement directly but the velocity estimate
provided by the TMO. Since the TMO reduces noise
levels significantly, we assume that the cross-correlation
of the input noise is negligible and use covariance values
which are one order of magnitude lower than when using
the GNSS measurements directly. If it is desired to use the
GNSS measurements directly one would need to consider
the cross-correlated noise as well.

• Process Noise and Measurement Noise Matrix: These ma-
trices have to be tuned with regard to the used airframe. In
a less rigid airframe the covariance should be set higher,
in a stiff airframe the values of the noise matrices can be
set lower. These values are independent of the prevailing
wind conditions.

The used values for these parameters can be found in tables
II and III.

IV. RESULTS

The data from these flights was analyzed off-line on a
Laptop with a Core I7 CPU.

A. X8 Flights

1) Flight Path: We performed two different flights with the
Skywalker X8. Flight 1 consists of two parts. In the first part
we follow a race track pattern and in the second part a figure
eight pattern. These maneuvers include narrow and wide turns
with different bank angles. In the last part of the flight the
aircraft is flown manually in varying altitudes. The goal of this
flight plan is to excite the estimator and assess its performance
in favorable circumstances. The aircraft’s path and altitude are
shown in Figures 5 and 6.

In the second flight a race track pattern is flown at a higher
altitude of 90m above ground. During this flight the airspeed
was varied between 14m/s and 26m/s to vary the angle of

TABLE II: MHE Parameters: Skywalker X8

Parameter Sensor Payload

xxx0

[
0 0 0

]T

ppp0

[
0 0 0 0 0.3 1

]T

PPP0 diag

([
10−6 10−6 10−6 10−2 · · ·
10−2 10−6 10−5 10−5 10−5

])

QQQ diag

([
10−1 10−1 1 10−4 · · ·
10−4 10−6 10−15 10−30 10−15

])

RRR diag
([

1 10−4 10−2 10−2
])

WWW m diag
([

10−6 10−6 10−6 1 10−10
])

Parameter Autopilot

xxx0

[
0 0 0

]T

ppp0

[
0 0 0 0 0.3 1

]T

PPP0 diag

([
10−6 10−6 10−6 10−2 · · ·
10−2 10−6 10−5 10−5 10−5

])

QQQ diag

([
10−1 10−1 1 10−4 · · ·
10−4 10−6 10−15 10−30 10−15

])

RRR diag
([

1.4 10−4 10−2 10−2
])

WWW m diag
([

10−4 10−4 10−4 1 10−6
])

TABLE III: MHE Parameters: Cruiser-Mini

Parameter Sensor Payload

xxx0

[
0 0 0

]T

ppp0

[
0 0 0 0 0.2 1

]T

PPP0 diag

([
10−6 10−6 10−6 10−2 · · ·
10−2 10−6 10−5 10−5 10−5

])

QQQ diag

([
10−1 10−1 1 10−4 · · ·
10−4 10−6 10−15 10−30 10−15

])

RRR diag
([

1 10−4 10−2 10−2
])

WWW m diag
([

10−6 10−6 10−6 1 10−10
])

Parameter Autopilot

xxx0

[
0 0 0

]T

ppp0

[
0 0 0 0 0.2 1

]T

PPP0 diag

([
10−6 10−6 10−6 10−2 · · ·
10−2 10−6 10−5 10−5 10−5

])

QQQ diag

([
10−1 10−1 1 10−4 · · ·
10−4 10−6 10−15 10−30 10−15

])

RRR diag
([

1.4 10−4 10−2 10−2
])

WWW m diag
([

10−4 10−4 10−4 1 10−6
])
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Fig. 5: Flight path X8 Flight 1
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Fig. 6: Altitude X8 Flight 1

attack. The aircraft’s path and altitude are shown in Figures 7
and 8.
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Fig. 7: Flight path X8 Flight 2

The wind velocity during both flights was 3m/s from
a north-western direction, highest gust velocity was 4m/s
indicating little turbulence. The flights were performed at an
airfield outside Trondheim, Norway on an altitude close to sea
level.

2) Wind Velocity Estimates: In this section resulting wind
estimates in the frame are shown. The reference for these
estimates is calculated from the Aeroprobe’s measurements
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Fig. 8: Altitude X8 Flight 2

by first calculating the relative airspeed vector using (24) and
afterwards the wind velocity vector with the wind triangle (1).
As ground velocity measurements in inertial frame the RTK-
GPS solutions were used and rotated into body frame using the
solution of the observer described in section III-B. It should be
noted that the quality of the wind estimates greatly depends on
the accuracy of the velocity over ground and attitude estimates.

Figures 9 - 11 show the resulting wind velocity estimation
errors for the first flight, and Figures 12 - 14 for the second.
Estimates in longitudinal direction have a slight constant bias
of about 1m/s. This a result of the bias in the airspeed estimate
shown in Section IV-A4, which due to a low angle of attack
manifests itself in the longitudinal wind velocity estimate (cf.
(25)). While the wind velocity estimate in vertical direction
shows low estimation errors and fast convergence, the errors
are higher in lateral direction. Since no model for the lateral
direction is used, less information is available and the wind
velocity can only be observed by changing the attitude of the
aircraft. The estimation performance then mainly depends on
how turbulent the prevailing wind conditions are and how often
the roll or yaw angle changes occur. Root mean square errors
can be found in Table IV and Table V.

Between the two flights the estimation results are quite
similar and close to the accuracy limits of the reference
(1m/s). Comparing the two sensor sets the performance of the
autopilot data set is somewhat worse than the payload dataset.
This is mainly due to the fact that in the payload dataset RTK-
GNSS is used, while in the autopilot only standard GNSS is
used resulting in a lower accuracy of the speed over ground
estimates.

One could improve the performance in lateral direction by
including a model of the lateral kinetics. However, doing this
proves to be challenging since the lateral aerodynamics depend
not only on the sideslip angle but also on ailerons and rudder
movements as well as roll and yaw rates (see [5] equation
(4.18)). These dependencies greatly increase the number of
unknown coefficients and persistence of excitation conditions
are generally hard to fulfill.

3) Coefficient Estimates: Figures 15 and 16 show the linear
lift coefficient estimates for both flights. The convergence
for these coefficients is quite slow. It is noticeable for the
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Fig. 9: Wind velocity estimation error in longitudinal direction,
X8 Flight 1
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Fig. 10: Wind velocity estimation error in lateral direction, X8
Flight 1
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Fig. 11: Wind velocity estimation error in vertical direction,
X8 Flight 1

second flight at 400s and 900s the coefficient converges faster.
This is when the angle of attack is changed during the flight
which results in stepwise convergence. In the first flight, where
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Fig. 12: Wind velocity estimation error in longitudinal direc-
tion, X8 Flight 2
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Fig. 13: Wind velocity estimation error in lateral direction, X8
Flight 2
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Fig. 14: Wind velocity estimation error in vertical direction,
X8 Flight 2

the airspeed is kept constant, convergence of the linear lift
coefficient is not fully achieved by the end of the flight. This
shows that airspeed changes which result in variations of the
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angle of attack, enhance convergence of the estimator.
The lift coefficients converge to similar values in both flights

but show differences in the convergence rate between the
two different sensors sets. This might be due to different
IMU alignment inside the aircraft as well as different noise
characteristics. The slight changes over time can be explained
by nonlinearities in the lift curves which are not captured by
the model. These result from non rigid airfoils as well as air
density changes in different altitudes and temperatures.
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Fig. 15: Linear lift coefficient estimates X8, Flight 1
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Fig. 16: Linear lift coefficient estimates X8, Flight 2

Estimates of the constant lift coefficients are shown in
Figures 17 and 18. These estimates converge quickly to a
steady value and only show slight variations over time which
are mainly due to estimation errors in the linear lift coefficient
estimates. Comparing the two flights the coefficient, estimates
are similar. The slight differences could be explained as a
result of the different maneuvers in the flights.

Figures 19 and 20 show estimates of the pitot-tube scaling
factor. These estimates converge quickly but show some small
fluctuations. These variations have different causes: The pitot-
static system of the Pixhawk, used in both datasets, is of
low quality and the used pitot-static tubes are short causing
fluctuations in the flow from the wings and fuselage of the
UAV. This causes noise and biases on the measurements.
Additionally the measurements are not compensated for air
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Fig. 17: Constant lift coefficient estimates X8, Flight 1
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Fig. 18: Constant lift coefficient estimates X8, Flight 2

density changes, which are a result of temperature and altitude
changes during the flight, and positioning errors of the probe.
The air density varies by approximately 3% during the flight.

4) Angle of Attack and Airspeed Estimates: The angle of
attack estimation errors are shown in Figures 21 and 22.
Reference values for the angle of attack and the airspeed are
provided by the measurements from the multi hole probe.

The estimation errors quickly converge for both sensor sets
and flights. In general the estimation errors are larger for the
autopilot dataset than for the sensor payload dataset. This is
due to the higher quality of the sensors in the payload. RMSE
values can be found in tables IV and V, showing generally
good performance. The largest errors occur mainly during
turns when the sideslip angle is nonzero. Additionally, errors
are introduced due to non-rigid body of the Skywalker X8
which is mainly made out of Styrofoam.

The airspeed estimation errors, shown in Figures 23 and 24,
have low noise characteristics and are generally close to the
range of the accuracy of the reference measurement (1m/s),
but show a negative bias. This behavior could be explained
by the maneuvers flown in the test flights. In both flights the
majority of the path consists of turns. Since the X8 flying
wing is not equipped with a rudder it tends to sideslip in turns,
violating the assumption made in Equation (25). Due to the
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Fig. 19: Calibration factor estimates X8, Flight 1
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Fig. 20: Calibration factor estimates X8, Flight 2

TABLE IV: Results Skywalker X8 Flight 1

Variable Payload
Sensor

Autopilot
Sensors

Ardupilot
Estimate

RMSE vw,x 1.15m/s 1.13m/s 0.86m/s

RMSE vw,y 1.72m/s 1.78m/s 1.98m/s

RMSE vw,z 0.38m/s 0.56m/s 0.94m/s

RMSE Va 1.15m/s 0.95m/s 0.69m/s

RMSE α 0.58◦ 1.62◦ 3.69◦

RMSE β 6.48◦ 6.35◦ 9.4◦

Vw,G 3.5m/s 3.5m/s 3.5m/s

Runtime / Iteration 0.05s 0.07s −

constant turning the approximation error νννki has a non-zero
mean, resulting in a biased airspeed estimate.

The autopilot dataset in the first test flight show some
outliers which are caused by GNSS measurement outliers.
These do not occur in the payload dataset showing the benefits
of RTK-GNSS. Some of the remaining errors in maneuvers
with fast changes of attitude, are caused by a discrete low
pass filter within the autopilot given by:

yk = 0.7yk−1 +0.3uk (61)

where u is the input and y is the output of the filter.
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Fig. 21: Angle of Attack estimation error X8, Flight 1
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Fig. 22: Angle of Attack estimation error X8, Flight 2

TABLE V: Results Skywalker X8 Flight 2

Variable Payload
Sensor

Autopilot
Sensors

Ardupilot
Estimate

RMSE vw,x 0.88m/s 0.80m/s 0.75m/s

RMSE vw,y 1.56m/s 1.48m/s 1.85m/s

RMSE vw,z 0.39m/s 0.47m/s 0.76m/s

RMSE Va 0.86m/s 0.67m/s 0.67m/s

RMSE α 0.57◦ 1.36◦ 2.84◦

RMSE β 6.13◦ 5.77◦ 8.07◦

Vw,G 3m/s 3m/s 3m/s

Runtime / Iteration 0.05s 0.07s −

B. Cruiser-Mini Flights

1) Flight Path: Two flights were undertaken with the
Cruiser-Mini. One visual line of sight (VLOS) flight including
race track and loitering patterns (Fig. 25) and one longer range
beyond visual line of sight (BVLOS) flight (Fig. 27). The
main difference between the two flights is that the second one
includes long cruise phases (8km) where there are few attitude
changes making it possible to assess the performance of the
estimator in periods of low excitation. During the second flight
the wind speed on ground level was 6m/s and gusts were
frequent. Therefore the autopilot did not keep the commanded
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Fig. 23: Airspeed estimation error X8, Flight 1
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Fig. 24: Airspeed estimation error X8, Flight 2

altitude exactly but showed more up and down movements
(see Fig. 28) compared to the first flight (Fig. 26). The wind
velocity during the first flight was 3.5m/s from a north-western
direction with little turbulence. The first flight was done at
the same airfield as the X8 flights. The second flight was
performed at a different location than the other flights on
a take-off altitude of 700m above sea level, close to Røros,
Norway.
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Fig. 25: Flight path Cruiser Mini Flight 1
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Fig. 26: Altitude Cruiser Mini Flight 1
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Fig. 27: Flight path Cruiser Mini Flight 2
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Fig. 28: Altitude Cruiser Mini Flight 2

2) Wind Velocity Estimates: Wind velocity estimates for
the two flights are shown in Figures 29 - 31 and Figures 32
- 34. The estimation errors converge quickly after the start
of the estimation. As for the X8 flights the estimation errors
remain larger for the lateral direction than for the longitudinal
and vertical directions. The wind estimates in longitudinal
direction in the first flight are slightly biased but are still
within the accuracy range of the reference measurement and
lower than for the X8 flights. Errors are slightly higher for
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the autopilot sensor set than for the payload sensor set which
can be explained by the different sensor quality. RMSE values
can be found in Table VI and Table VII. In general estimation
errors are lower than for the flights with X8 which might be
due to the more stiff airframe used.
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Fig. 29: Wind velocity estimation error in longitudinal direc-
tion, Cruiser-Mini Flight 1
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Fig. 30: Wind velocity estimation error in lateral direction,
Cruiser-Mini Flight 1

3) Coefficient Estimates: The linear lift coefficient esti-
mates for the Cruiser-Mini flights are shown in Figures 35 and
36. In the first flight convergence of the coefficient estimates is
slow. As for the second X8 flight we see stepwise convergence
during changes of the angle of attack e.g. at t = 2000s in
Flight 1. In the second flight, the angle of attack changes
more frequently and the linear lift coefficients converges more
gradually during the flight due to more gusts and turbulent
winds. The estimated coefficient values are similar for both
data sets but vary slightly between the two flights which
might be due to different values of the estimated air density
ρ̂ within the autopilot. The results are indicating that the
estimation result is independent of the flown maneuver as long
as sufficient excitation is achieved.

Estimates of the constant lift coefficients are shown in
Figures 37 and 38. In both flights the estimate converges
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Fig. 31: Wind velocity estimation error in vertical direction,
Cruiser-Mini Flight 1
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Fig. 32: Wind velocity estimation error in longitudinal direc-
tion, Cruiser-Mini Flight 2
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Fig. 33: Wind velocity estimation error in lateral direction,
Cruiser-Mini Flight 2

quicker than the linear lift coefficient and only varies slightly
over time. The estimates from both sensor sets converge to
similar values.
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Fig. 34: Wind velocity estimation error in vertical direction,
Cruiser-Mini Flight 2

The pitot tube calibration factor estimates are shown in
Figures 39 and 40. For the first flight the scaling factor
estimate converges quickly in the beginning of the flight during
the loitering maneuver and afterwards more gradually. Small
variations can be noted which might either be due to air density
variations or uncertainties in the estimation. In the second
flight the calibration factor converges quickly during the initial
loitering. Afterwards due to the few heading changes, the
turbulent wind and the frequent altitude changes there is more
uncertainty in the calibration factor estimate, which leads to
slightly varying estimates.

4) Angle of Attack and Airspeed Estimates: The angle
of attack estimation errors of both flights (Fig. 41 and 42)
converge quickly and remain low during both flights. The
initial biases are due to the not converged coefficient estimates.
It is noticeable in the second flight that the initial errors
are reduced after excitations around t = 1000s, afterwards
the angle of attack estimation error remains low also during
regions of low excitation. As for the Skywalker X8 flights
the estimation error is lower for the payload data set than for
the autopilot dataset, due to the higher sensor quality. RMSE
values can be found in tables VI and VII. They show that
the accuracy of the angle of attack estimation is within the
accuracy of the reference used (1◦).

The airspeed estimation errors for the cruiser-mini flights
are shown in Figure 43 and 44. In the first flight, where
a circular pattern is flown, there is an initial bias on the
airspeed estimate which is slowly reduced over time. The
bias is somewhat larger than in the second test flight, but
smaller than for the X8 flights. This is due to the fact that
the Cruiser Mini is equipped with a rudder, which reduces
sideslip in turns, resulting in a lower bias on the airspeed
estimate. In flights with long straight line segments, like the
second test flight, the bias vanishes. For the Payload dataset
the estimation error remains below the stated accuracy of the
reference measurement (1m/s), but for the autopilot dataset is
higher in some instances. This might be due to misalignment
of either the reference multi-hole probe or the pitot-static tube
or this could be induced by errors in the IMU and GNSS
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Fig. 35: Linear lift coefficient estimates Cruiser-Mini,
Flight 1
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Fig. 36: Linear lift coefficient estimates Cruiser-Mini,
Flight 2

TABLE VI: Results Cruiser-Mini Flight 1

Variable Payload
Sensor

Autopilot
Sensors

Ardupilot
Estimate

RMSE vw,x 0.54m/s 0.71m/s 0.9m/s

RMSE vw,y 1.57m/s 2.27m/s 2.02m/s

RMSE vw,z 0.26m/s 0.36m/s 0.57m/s

RMSE Va 0.56m/s 0.85m/s 1.51m/s

RMSE α 0.49◦ 0.92◦ 2.06◦

RMSE β 5.90◦ 5.14◦ 5.14◦

Vw,G 3.5m/s 3.5m/s 3.5m/s

Runtime / Iteration 0.05s 0.06s −

velocity measurements of the autopilot.
Additionally, sideslip angle estimates are available, however

as discussed before there accuracy is limited due to the lack
of a lateral kinetic model. For completeness RMSE values are
included in Tables VI and VII.

C. Observability

Observability of the kinematic subsystem using only the
second measurements equation in (27) has been studied in
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Fig. 37: Constant lift coefficient estimates Cruiser-Mini,
Flight 1
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Fig. 38: Constant lift coefficient estimates Cruiser-Mini,
Flight 2

TABLE VII: Results Cruiser-Mini Flight 2

Variable Payload
Sensor

Autopilot
Sensors

Ardupilot
Estimate

RMSE vw,x 0.39m/s 0.45m/s 1.59m/s

RMSE vw,y 1.25m/s 1.82m/s 2.46m/s

RMSE vw,z 0.33m/s 0.43m/s 0.84m/s

RMSE Va 0.40m/s 0.44m/s 0.94m/s

RMSE α 0.69◦ 1.06◦ 2.59◦

RMSE β 4.42◦ 4.37◦ 6.97◦

Vw,G 6m/s 6m/s 6m/s

Runtime / Iteration 0.04s 0.05s −

[18]. Since in this case the system is linear time varying the
observability grammian can be calculated for a time window
and analytical observability conditions can be obtained. The
findings in [18] were that the linear time varying system is
observable if sufficient excitation in the rotation matrix RRRb

n
occurs.

In this paper we have extended this model using the
aerodynamic model (7) and the model for the turbulent wind
velocitiy (20). The resulting system is nonlinear and non-
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Fig. 39: Calibration factor estimates Cruiser-Mini, Flight 1
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Fig. 40: Calibration factor estimates Cruiser-Mini, Flight 2

affine. Observability conditions for discretized nonlinear sys-
tems have been studied i.e. in [27] and [2]. However since
in this case the observability depends on the input trajectories
it is challenging to achieve analytical observability conditions
which are of practical use. In [44] and [43] we have shown
through simulations that the system is observable if attitude
changes occur in a regarded time frame.

To asses observability we use the largest eigenvalue of the
estimated error covariance matrix P̂PPk−L normalized by the
initial error covariance matrix P̂PP0. High values indicate that
one of the states or one of the parameters is not observable
with the given input trajectories. An example for the results
of this observability measure can be seen in Figure 45. The
observability measure quickly converges to a region around
105. The maximum eigenvalue does remains in an interval
around 105 indicating that the eigenvalues of the covariance
matrix are bounded. This shows that the error covariance
matrix is not singular and that the system is locally observable
during both flights.

D. Influence of window length

To analyze the effect of the window length L on the
estimation performance, we vary L between 1 and 10 and
use the RMSE of the longitudinal and vertical wind velocity
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Fig. 41: AoA estimation error Cruiser-Mini, Flight 1
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Fig. 42: AoA estimation error Cruiser-Mini, Flight 2

estimates as an performance indicator. Note that in the case of
L = 1 the MHE is equivalent to an Unscented Kalman Filter
as long as none of the inequality constraints defined in (60)
are active.

Figure 46 shows the results of this analysis for the flight
data obtained from Cruiser-Mini, Flight 1 using the param-
eters given in Table III. The estimation error decreases with
increasing window length for both the payload and the autopi-
lot dataset. For the payload dataset there are no substantial
improvements for window lengths larger than L = 4, for the
autopilot dataset the estimation error continues to decrease
until L = 10. It should be noted that the estimations are the
largest for the case L = 1, clearly outlining the improvement
in estimation performance of the MHE in comparison to an
UKF.

E. Runtime

Although real time implementation was not a focus of this
paper and the code was not optimized for efficiency, the
runtime is analyzed in order to assess the feasibility of a future
on-line implementation of the method on a low power on-
board UAV computer

Tables IV - VII show that the average runtime of the algo-
rithm is in the range of 0.05s− 0.07s, which is significantly
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Fig. 43: Airspeed estimation error Cruiser-Mini, Flight 1
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Fig. 44: Airspeed estimation error Cruiser-Mini, Flight 2
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Fig. 45: Observability during X8 Fight 1

below the sampling interval of the system of 0.2s for all test
flights. This shows that the estimator is already able to run in
real time on the used hardware (Intel Core i7). It is therefore
expected, that a modified and optimized version of the code
is able to run on-line on-board an UAV.s
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Fig. 46: Wind velocity estimation performance for varying
window length

F. Comparison to the Ardupilot’s estimator

The software on board that is used on board the Pixhawk
autopilot, Ardupilot, provides estimates of the wind velocities
in north and east direction as well as estimates of the angle of
attack, sideslip angle and airspeed. The estimator is described
in [29]. It relies on a kinematic wind model assuming slowly
changing wind velocities. In the following we will compare the
performance achieved by this commonly used estimator to the
MHE based approach presented in this work. Both estimators
use the same sensor set, provided by the Pixhawk autopilot.

Tables IV - VII show the RMSE values for the different
estimated variables. The wind velocities estimates provided
by Ardupilot are reasonably accurate in longitudinal direction
if the pitot-static tube is well calibrated, which was not the
case in Cruiser-Mini flight 2. The MHE is able to compensate
for that, since it estimates the pitot-tube scaling factor. The
wind velocity estimation errors in lateral and vertical direction
are less accurate than the estimates of the MHE. Note that
the performance of the wind velocities decrease with higher
wind velocity on the ground due to the higher gust amplitudes,
violating the assumption of slowly varying wind velocities.
This illustrates the benefits of the wind turbulence model used
in this work.

The angle of attack RMSE values exceed 2◦ in all test
cases and are significantly higher than for the MHE. The main
reason for this is the use of the aerodynamic model which
utilizes the information from the z-accelerometer. The angle
of sideslip RMSE values are also increased in comparison to
the MHE results.

A comparison of runtimes was not conducted, since the two
methods run on different hardware platforms.

V. CONCLUSIONS

This paper presents a method to estimate wind velocities,
air data parameters and lift coefficients using sensor data from
an IMU, a GNSS system and pitot-static tube together with
kinematic, aerodynamic and wind models. These sensors are
typically part of a standard autopilot sensor suite, avoiding
the need for additional sensors solely designed to measure

the desired variables. The moving horizon estimator was
applied using direct collocation for the construction of the
nonlinear program and an unscented Kalman filter for arrival
cost approximation. The method was extensively tested using
experimental flight data from two different platforms and two
different sensor sets. Data from four different test flights was
presented covering a variety of different maneuvers including
long cruiser sections with low excitation.

The estimator performed very well at estimating angle of
attack, wind velocities and aerodynamic coefficients, outper-
forming the estimator used by the autopilot’s software. The
wind velocity estimation errors were within the margin of error
of the reference used. An estimate of the sideslip angle is also
available, however due to the lack of a lateral wind speed
measurement the performance is limited.
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[16] Håvard Fjær Grip, Thor I. Fossen, Tor A. Johansen, and Ali Saberi.
Nonlinear observer for GNSS-aided inertial navigation with quaternion-
based attitude estimation. In Am. Control Conf., pages 272–279, jun
2013.

[17] Richard Hann, Andreas Wenz, Kristoffer Gryte, and Tor Arne Johansen.
Impact of Atmospheric Icing on UAV Aerodynamic Performance. In
Int. Work. Res. Educ. Dev. Unmanned Aer. Syst., Linköping, Sweden,
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Hans Georg Bock. A real-time algorithm for moving horizon state and
parameter estimation. Comput. Chem. Eng., 35(1):71–83, 2011.

[21] Makoto Kumon, Ikuro Mizumoto, Zenta Iwai, and Masanobu Nagata.
Wind Estimation by Unmanned Air Vehicle with Delta Wing. In Proc.
- IEEE Int. Conf. Robot. Autom., pages 1896–1901. IEEE, 2005.

[22] Jack W. Langelaan. Long Distance / Duration Trajectory Optimization
for Small UAV’s. In AIAA Guid. Navig. Control Conf., number August,
pages 1–14, Hilton Head, South Carolina, 2007.

[23] Jack W Langelaan, Nicholas Alley, and James Neidhoefer. Wind Field
Estimation for Small Unmanned Aerial Vehicles. J. Guid. Control Dyn.,
34:1016–1030, 2011.

[24] Hao Long and Shujie Song. Method of Estimating Angle-of-Attack and
Sideslip Angel Based on Data Fusion. In 2009 Second Int. Conf. Intell.
Comput. Technol. Autom., volume 1, pages 641–644. IEEE, 2009.
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