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ABSTRACT

A digital twin is a virtual representation of a system
containing all information available on site. = This paper
presents condition monitoring of drivetrains in marine power
transmission systems through digital twin approach. A literature
review regarding current operations concerning maintenance
approaches in todays practices are covered. State-of-the-art
fault detection in drivetrains is discussed, founded in condition
monitoring, data-based schemes and model-based approaches,
and the digital twin approach is introduced. It is debated
that a model-based approach utilizing a digital twin could be
recommended for fault detection of drivetrains. By employing
a digital twin, fault detection would be extended to relatively
highly diagnostic and predictive maintenance programme, and
operation and maintenance costs could be reduced. A holistic
model system approach is considered, and methodologies of
digital twin design are covered. A physical-based model rather
than a data based model is considered, however there are no clear
answer whereas which type is beneficial. That case is mostly
answered by the amount of data available. Designing the model
introduces several pitfalls depending on the relevant system, and
the advantages, disadvantages and appropriate applications are
discussed. For a drivetrain it is found that multi-body simulation
is advised for the creation of a digital twin model. A digital twin
of a simple drivetrain test rig is made, and different modelling
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approaches were implemented to investigate levels of accuracy.
Reference values were derived empirically by attaching sensors
to the drivetrain during operation in the test rig. Modelling
with a low fidelity model showed high accuracy, however it
would lack several modules required for it to be called a digital
twin. The higher fidelity model showed that finding the stiffness
parameter proves challenging, due to high stiffness sensitivity as
the experimental modelling demonstrates.

Two industries that could have significant benefits from
implementing digital twins are discussed; the offshore wind
industry and shipping. Both have valuable assets, with reliability
sensitive systems and high costs of downtime and maintenance.
Regarding the shipping industry an industrial case study is
done. Area of extra focus is operations of Ro- Ro (roll on-
roll off) vessels. The vessels in the case study are managed
by Wilhelmsen Ship Management and a discussion of the
implementation of digital twins in this sector is comprised in this
article.

INTRODUCTION

A digital twin is a virtual representation of a system
containing all information available on site. This means that all
descriptive condition information found on site are available in a
digital model in a virtual and dynamic environment completely
matching the real life of the system [1]. There is added value
by utilizing a digital twin when the asset is of high value
and is hard-to-access. High value assets are: “technologically
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intensive, expensive and reliability critical requiring continuous
maintenance throughout their life cycle” [2].

Industries that are concerned with high value assets and
remote locations are industries that can benefit largely on digital
twins. Regarding two of these industries, offshore wind and
shipping, they both have the drivetrain, gearbox and bearings
in common. Operational and maintenance costs could be
reduced by optimizing the maintenance strategy used. Improved
maintenance strategies would contribute signicantly as these
are components that lead to costly downtime. In the regards
of creating a model-based condition based system, building
and utilizing a digital twin could be beneficial and out-staging
the data-driven condition monitoring by offering a holistic
and predictive health monitoring. This paper will therefore
consider the digital twin approach in these areas, focusing on
the drivetrain in the two industries and discussing pitfalls and
benefits and challenges, as well as exemplifying it with a digital
twin model for a test-rig drive train.

Three different data analysis approaches for condition
monitoring could be proposed; data-driven, model-driven and
physics-based model-driven.  The data-driven approach is
sufficient in many cases, but for more complex and cost-heavy
assets a model-approach have a more holistic monitoring
scheme. The model-driven one collects the data and reaching
sufficient amount of data, it is possible to run a machine learning
algorithm on the sensor data, discovering trends and correlations
without having the domain knowledge usually required for such
an analysis [3]. However, even though one can discuss the
correlation utilizing machine learning, there is a lack of causality,
losing the effect of improving the operation of the system.
Erikstad discusses these pros and cons [3]. Further in this paper
a physics-based model approach will be focused on, as well as a
proposed scheme of modelling with a test-rig drivetrain.

DIGITAL TWIN BACKGROUND

The concept of a digital twin was first introduced by
the NASA Apollo programme and has evolved as the present
technologies continues to grow. NASA started publicly using the
term digital twin by calling it: ”(..) an integrated multiphysics,
multiscale simulation of a vehicle or system that uses the best
available physical models, sensor updates, fleet history, etc.,
to mirror the life of its corresponding flying twin” [4]. Some,
however, argue that a professor at University of Michigan,
Michael Grieves, proposed the digital twin first under his
executive course Product Lifecycle Management (PLM) at the
university. There he defined it as a system comprising three
components; a physical product in real space, virtual product in
virtual space and the required interconnection between these two
[5] [6]. General Electric has created an IoT Platform; Predix IoT.
They denote digital twins as dynamic digital models of physical
assets and systems [7]. Erikstad proposes that a digital twin is

a [..Jmodel capable of rendering the state and behaviour of a
unique real asset in (close to) real time. [3]. Erikstad also suggest
that referring to it as a twin is the wrong biological reference, and
calling it a digital clone would be more correct as they are more
close to being replicas of each other, than a twin is [3].

Erikstad further defines a digital twin as “a digital model
capable of rendering state and behaviour of a unique real asset in
(close to) real time. Erikstad also comprises five characteristics
required for a digital twin; identity (making the twin as close
to one-to-one cardinality), representation (capturing the assets
data), state (get data in as close to real time as possible),
behaviour (digital twin responding identically to external factors
as the real asset, and context (describing the external factors like
wind and waves that the real assets is experiencing [3].

BENEFITS

The digital twin would virtually be experiencing the same
environment as the twin on site, and evolve identically through
out the life cycle. This physical model type could be an
answer to the issues raised with data-based systems as data
interpreting would be done by the twin. Data pre-processing
would also have to be done in this scheme, defined by the nature
of the system. The assets would be considered as a whole, all
components included and implied faults could be predicted as
the twin will have life cycle updates [8]. It is then possible
to schedule appropriate maintenance and reduce downtime and
costs. Furthermore, it would be possible to retrieve sensor data
from anywhere on the digital twin, opposed to the data from the
real twin that is restricted to the location of the sensors. There is
significant added value for a digital twin when implemented in
assets of high value in hard-to-access locations for these reasons.
As discussed, a drivetrain in an offshore wind turbine could be
such an asset. Another asset could be the drivetrain in a Ro-Ro
ship or other vessels that are sailing for longer distances.

An optimal digital twin, as described by Rosen et al., is
comprising autonomy, modularity and connectivity. Autonomy
is defined by Rosen et al. as ”Intelligent machines that execute
high-level tasks without detailed programming and without
human control” [8]. All autonomy in this matter relies on an
accurate virtual model, being the decision backdrop for actions
and skills employed. Autonomy could be achieved with remote
maintenance. This could be done by online collecting health data
and executing software based tasks and upgrades to the physical
asset.

The communication between the twins is enabled by the
continued rise in connectivity [1]. Web technology is evolving,
internet protocols and the rise of the of Internet of Things
(IoT), which is the interconnection between objects, enhances
intercommunication [9]. Rosen et al. suggest [oT in the
following way: “ubiquitous connectivity such as the Internet of
Things facilitates closing of the digitalization loop, allowing next
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cycle of product design and production execution to be optimized
for higher performance” [8]. Data could be handled on an IoT
platform, opening several opportunities for applications, making
connectivity and data handling accessible. Summarizing and
scoping the benefits found not comprised above, Fedem SAP AS
has proposed the top ten most useful applications that a digital
twin has, for high value and complex assets [10]:

1. Remaining life assessment of structure

2. Inspection/maintenance planning based on true load history

3. Relationship between loads and power production for
control system policies

4. Early damage detection for pre-emptive maintenance and
shutdown prevention

5. Hindsight to foresight access to (aggregated) time series for

design feedback

6. Virtual inspection support

7. Predict consequences of (adverse) future operating
conditions

8. Multi-asset orchestration/control and synchronization
9. Inspection/monitoring process support (cost reduction)
10. Visualization  and  inspection  of  stresses  at
inaccessible/hidden locations

CHALLENGES
Model

The digital twin of a drivetrain could be modelled and
when including data acquired online from the on-site sensors,
the condition of the drivetrain could be modelled. Where, and
at what rate, the sensors would be collecting data could be
based on what offshore wind turbine type, or what vessel, the
drivetrain is located in, guidelines from class societies and ISO
standards, and by considering the individual drivetrain hot spots
for fatigue damage. Creating a sufficiently high-fidelity model
will be a demanding issue and a general algorithm has yet to
be made for fault diagnosis in a complete wind turbine [11] [6].
Altogether, designing a digital twin is not straight forward to do.
A drivetrain both in a wind turbine or in a vessel is a complex
system, containing several subsystems, external factors and it
would require sophisticated design to be able to get an accurate
twin, or clone.

Data

Optimally the digital twin would constitute all information
about the physical system. The amount of data acquired would
be of a substantial size and containing both unstructured and
diverse information. Hence, the connectivity would cause an
architectural challenge for such big data analyses [1] [12].
Anwer et al. proposed a concept of Skin Model Shapes for
design and manufacturing phase [13]. This concept has been
further conceptualized through other research and represents a

digital and abstract model of the physical interface between an
object and its environment and how to process data retrieved [14]
[15]. However, this approach is more relevant for manufacturing
and mass production precision. For a drivetrain in an offshore
wind turbine or in a shipping vessel, the contact analysis is of
higher relevance and could be done numerically in a model-based
approach.

The digital twin could either be collecting data continuously
or by intervals. If doing so continuously it might lead to
excessive data. This could be exchanged with an assumption
of the process being stationary and time independent for certain
short time periods. Additionally, the whole drivetrain should not
have to be implemented with sensors. This would be expensive
and unpractical. A vulnerability map would aid in employing
a sufficient amount of sensors, and their independent rate of
monitoring [16]. It should also be discussed in what degree it
is important to save data. By not saving it, there is less need
for computational capital, however there could arise a need for
historical data. When building a data driven digital twin, by
performing machine learning, large amounts of data is required
to train the machine learning algorithm. However, by using a
physical-based model it is relieves the requirement for historical
data and solves this issue [3].

Roy et al. discusses the effort that would have to be
behind prognostics based on data from monitoring. The research
debates a need for three components; confidence in accurate
data, material degradation modelling and mastering the trade off
between holistic overview and detail and precision [2].

Autonomy and Remote Maintenance

Roy et al. further discusses that to achieve a remote,
autonomous operated maintenance scheme further maturing
of the technology has to be achieved, addressing current
challenges in autonomous maintenance [2]. There are significant
benefits for employing autonomous and remote maintenance in
drivetrains in offshore wind turbines, and the system would
increase its availability if this is done well [17].

Furthermore, remote maintenance could be executed by
utilizing remotely controlled robots [2]. In a vessel, wind
turbine or other complex and remote systems they could be
controlled autonomously, enabled by visualizing in a digital
twin, and perform maintenance tasks. This would be very
advantageous for offshore wind turbines due to the short weather
windows open for access, and the robots could be permanently
installed. Remotely controlled maintenance robots are already
widely used in nuclear industry [18]. In some designs the
fault diagnosis conclusion could be sent back to the system
to achieve autonomous maintenance by the robot, for routine
tasks. Looking even further, it could be possible to achieve a
maintenance technician operating in the virtual model enabled
by virtual reality technology [19].
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Connectivity

Interconnecting the twin and sensors in an intelligent system
by IoT have been researched by Xu et al., and three challenges
were discovered. Firstly, there are issues with communicating
the data from the IoT sensor network. Secondly, there will be
issues with non-stationary and non-linear fault prediction. Lastly,
there will be a vast amount of data to process [20]. IoT is
enabling efficient maintenance, however there will still be a need
for a fundamental expertise of degradation mechanisms and root
causes [2].

A dynamic linkage between the twins is challenging to
achieve accurately [20].  Sensor data being continuously
transferred from real life to the digital twin are introducing data
processing challenges. Both interconnecting well and smart
with an offshore installation or vessel are of focus to achieve
interaction, as is one of the digital twin premises [6].

Furthermore, issues raised with trusting a digitally
interconnected system are present. If unwanted sources were
able to control or even read data in a digital twin system, it is of
essence to have a high standard protection system to both avoid
this from happening and to restrict damage and being able to
reverse the situation. A significant effort for cyber securing the
data network will have to be of high priority [21].

INDUSTRIAL APPLICATIONS

To exemplify the need of digital twin two sectors will
be highlighted in this paper, the offshore wind industry and
the shipping industry. The shipping industry is represented
by Wilhelmsen, one of the largest shipping companies in the
industry today. These industries have in common their high value
assets and hard-to-access location, making them ripe for digital
twin potential.

OFFSHORE WIND INDUSTRY

Renewable energy in general, and wind energy specically, is
increasing in capacity and is projected to continue to grow. With
the expansion of wind turbines, an increased segment is found
offshore. Moving from land based to offshore wind turbines,
leads to more power extracted, less visual impact and less
land displacement. However, new challenges arise, concerning
technical issues and cost. There is an increased pressure to
reduce costs where ever possible.

The main reasons for downtime in the offshore wind
industry are drivetrain related and it would be of interest to
monitor its health in a holistic way. Concerning a drivetrain
in an offshore wind turbine, a digital twin for the drivetrain
alone could be build. This is due to the logically permitted
decoupled approach. Global forces will have to be of importance
nevertheless, however excitation to resonance is unlikely from
global forces [22]. Starting with a global model and analysis,

the loading on the drivetrain could be obtained and by the
detailed model gear loads and load response analysis will be
performed simultaneously to get instant conditions. Fedem
Technology (SAP SE), a Trondheim based software company,
has developed a digital twin and has it operating with several
systems, e.g. offshore wind turbines in the north of Norway.
Figure 1 shows how the physical system “twins” with the digital
representation through intercommunicating with online sensor
condition monitoring. An external load on the wind turbine is
represented in the digital twin through an actuator and virtual
sensors [23]. The data is collected and has to be pre-processed
before treated by the twin. After the twin has evaluated it,
some verification is in order between a physical strain gauge
and the virtual supposedly equivalent. However, the analysis in
the digital twin applied here is for large component experiencing
heavy external loads, and structural integrity is more a focal point
than in drivetrain design, it still is a sufficient way to illustrate the
digital twin premise. This shows that the approach is feasible,
and combining this with a digital twin of a drivetrain, a complete
system model of an offshore wind turbine would be available.
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FIGURE 1: Digital Twin by Fedem Technology/SAP SE [23]

Larger companies than Fedem Technology has approached
the digital twin scheme. For example, General Electric (GE) has
conceptualized digital twins in general, and specifically for the
wind energy sector. They empower it by an industrial industry
platform named “Predix”, to achieve the requires connectivity
[24]. The industrial internet is meant to be comprising intelligent
machines, advanced analytic and people at work. GE also
considered the savings available in any industry if incorporating
industrial internet combined with optimizing performance by
using digital twins [25].

The wind energy industry is showing an unprecedented
effort to developing digital twins. The motivation lies with the
benefits a digital twin provides; predictive system behaviour,
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simulations of rough environments, less downtime, less man
hours for maintenance and improved lifespan for their systems
[26]. This all leads to a decrease in expenses. Offshore wind
turbines are in areas that are harder to reach and has to be
approached in a certain weather window [27]. Additionally,
offshore wind turbine farms are growing larger, more expensive
and further away from land so the incentive for a decentralized
maintenance programme is there in a much larger aspect than for
the onshore wind turbines [28].

SHIPPING - INDUSTRIAL CASE STUDY

This section is found by an industrial case study done by the
author at Wilhelmsen Ship Management, with thanks to Ro-Ro
vessel manager Jon Helge Ulstein [29]. Ulstein is responsible
for the management, including technical on these vessels and has
substantial experience in the shipping industry, both on the yard
and on the operational side.

The maintenance schemes utilized in shipping today are
largely planned maintenance schemes (PMS), with a few
exceptions on the offshore supplier vessel side of the industry.
PMS comprises a periodical maintenance, with frequencies
based on maker’s specifications and/or by running hours of a
system. Generally, the step into condition monitoring (CM) has
yet to be taken, in spite of the vast potential savings found in
decreased off-hire and down time. The control systems onboard
the vessels are used only to monitor and provide alerts for
the day-to-day operation. However, collecting and harvesting
these datasets is not done to onshore ship managers or other
stakeholders. By advancing from PMS, CM is preferred, and in
the shipping industry this would imply meeting the requirements
for the CM class of vessels, set by the Class Societies (e.g.
DNV-GL) [30]. Ulstein’s vessels have this CM class and
by offline collecting data from 84 sensors, comparing to a
close-to-new baseline and outsourcing the data certification, a
report with operational recommendations is generated quarterly.
This meets the requirements of the CM class, and it reduce the
off-hire of these vessels. Benefits from this CM is dynamically
decreasing by time however, as sub-optimal operations are
detected.

Stepping up from this offline CM to online CM would be
cost heavy, as todays sensor connectivity is provided through
cabled systems. The sensors in questions are also cost drivers.
Large vessels, as the Ro-Ro ships, will comprise considerable
cost to cover cabling of the whole vessel. A wireless
infrastructure by implementing an IoT solution is therefore
paramount.

If these challenges were to be met and the cost and
connectivity of the sensors, a potential for digital twin is
enabled. The main reasons for down time is main engine,
including the drive train, and ramp dysfunction for the Ro-Ro
vessels. Additionally, Ulstein refers to the main driver for these

dysfunctions; excessive vibration at unacceptable frequencies,
that drives resonance. The drivetrain is sensitive in that matter.

The motivation for implementing a digital twin is
significant, as the schedules of the vessels tightens continuously
and the port calls are shortening. Unexpected off-hire or
service work is a large cost driver and implementing CM in first
instant and digital twin further on, would make maintenance an
enabler, instead of a segment that control the business operation.
Furthermore, by implementing a digital twin it allows the vessel
manager to get quicker overview of their vessels, by simple
color coding and intuitive visualizations. This creates room for
better time management. Hence, this opens up the possibility
for a vessel manager to manage additional vessels, making the
business increasingly efficient and allowing the vessel managers
to spend their time on the most urgent matters. Moreover, spare
parts are a capital cost when considering the traditional PMS
system, a vessel needs to have spare parts available at all times,
in case of unexpected failures. A digital twin, or even the simpler
CM system, would diminish the need of this “dead capital”.
By being able to predict failure, it would then be possible to
predict which port and what service personnel and spare parts are
required. Accordingly it would then be possible to reduce crew
number and to sail the ship at minimum crew. Ulstein refers to
a simple example of a cruise vessel with high amounts of HVAC
units, which each has a small engine; say you have a 1000 units,
and use 1 hour for planned maintenance on these periodically -
by predicting failure it is then possible to save 1000 man hours.
Needless to say, this cost reduction is attractive for ship owners
and managers.

Ulstein proposes a use of the ship yard’s already existing
model of all systems as the digital twin model, a physical based
model as such. Both CM, predictive maintenance and behavior
analysis could then be performed. The behavior analysis could
be both based on changes in internal and external conditions.
Exemplified; if the sea temperature changes with 3°C it could
then be possible to map the sensitivity of the HVAC and
cooling systems on the vessel. It is then possible to forecast
operations. When connectivity and cost challenges are solved,
Ulstein explains that there should be no other significant reasons
to not implement a digital twin solution, and that the digital
twin will be the future of ship operations, leading the way for
autonomous vessels.

DIGITAL TWIN FOR CONDITION MONITORING OF
DRIVETRAINS

A drivetrain is a complex multi-body system containing
several rotating components. By a system-identification
approach, an overall diagnosis of fault detection and data
acquiring could be done [31]. To model a digital twin of the
drivetrain properly, both the dynamic aspect, contact analysis
and power transferring through gear teeth contact should be

Copyright © 2019 ASME

6102 J9qWIBAON Z| UO Jasn jaxajolialg siensIaAlun NNLN Aq Jpd-zG156-6102oBWO-€L0BE0I0LOA/LOLYY9/ELOVE0.L0L0A/6688S/610ZAVINO/APA-sBuipasdoid/3yNO/B10 awse uonos|0delBipawse sBulpaaooid/:sdyy woly papeojumoq



considered. Contact analysis can generally by done numerically
by either finite element method (FEM) or by multi-body
simulation (MBS) [32] [33]. Other approaches has been
researched such as the study of Nejad et al. [34]. This method
is a base for ultimate limit state (ULS) design, and does not
include internal dynamics which would have to be accounted for
independently.

FEM is suitable for high accuracy and detailed numerical
modelling, whilst MBS is significantly less time consuming [32].
MBS contain rigid and flexible bodies that are connected with
force elements [35]. The flexible bodies could be modelled in
FEM and imported into a MBS program [36] [37]. However,
this increase in detail level and additional information about
internal dynamics makes the computation more complex and
time consuming.

Condition Monitoring

Drivetrain failure, and specifically gearbox and
bearing-failure, leads to more downtime than other components
and are of high significance as fault detection goes in the
offshore wind industry [38, 39]. This section will therefore
describe the state-of-the-art drivetrain condition monitoring
tools, focusing on vibration analysis. This type of analysis is of
most significance regarding analyzing these most sensitive parts
in a drivetrain [39].

Vibration Analysis For rotating machinery, vibration
analysis is the most used monitoring strategy. This strategy is
employed both at gearbox, rotor and blades, but also at bearings
and tower [40]. The tower and the bearings absorbs energy
supporting axial and radial forces, and will receive a certain
vibration planted from e.g. the gearbox or the rotor. Gearbox
failure often start at the bearing as they have high probability
of fatigue damage [16]. For wind turbines the monitoring is
performed by evaluating the vibration at the wheels and bearings
of the gearbox and generator. Especially the main bearing is
considered, as it significantly influences the health of the other
bearings [41].

Depending on the component analyzed, different frequency
ranges should be used. For low frequencies a position transducer
is applied, medium frequencies employ velocity sensors and
high frequencies require accelerometers [42]. When selecting
a sensor it is important to evaluate both dynamic range and
sensitivity of the sensor. This is especially important for low
frequencies where the amplitude from acceleration can be small.
In the interest of deciding sensor type, ISO 13373-1 provides
typically used transducers [43]. Furthermore, ISO 10816-21
provides standardized measurements, assists in evaluation of
them and makes it possible to compare evaluations the vibration
measurements in wind turbines. For this evaluation, specific
zones are laid up with corresponding boundary conditions,

however acceptance values needs to be confirmed with the
manufacturer [44]. To to evaluate the vibration severity one can
compare to zone boundary layers. This comparison is done with
the root mean square values of the mm/s velocities of the real
time series data of the vibration, and the zones are found in ISO
Standard ISO10816-1 and described as [45]:

Zone A: The vibration of newly commissioned machines
normally falls within this zone

Zone B: Machines with vibration within this zone are
normally considered acceptable for unrestricted long-term
operation

Zone C: Machines with vibration within this zone
are normally considered unsatisfactory for long-term
continuous operation.  Generally the machine may be
operated for a limited period in this condition until a
suitable opportunity arises for remedial action

Zone D: Vibration values within this zone are normally
considered to be of sufficient severity to damage the machine

The table that shows the boundary ranges for vibration
velocity is shown in Figure 2.

Range of typical zone boundary values for non-rotating parts
r.m.s. vibration velocity
mm/s
0,28 0,28
0,45 0,45
0,71 0,71
1,12 112
Zone boundary A/B
il 071045 o
2,8 2,8
Zone boundary B/C
- 181093 i
71 71
Zone boundary C/D
o2 4510147 i
11,2 11,2
14,7 14,7
18 18
28 28
45 45
NOTE 1 This table only applies to machines for which specific International Standards have not been developed and for
which there is no suitable experience available.
NOTE2 Small machines (e.g. electric motors with power up to 15 kW) tend to lie at the lower end of the range and large
machines (e.g. prime movers with flexible supports in the direction of measurement) tend to lie at the upper end of the range.

FIGURE 2: Range of typical values for zone boundaries [45]

Also, various bearings require a different specific number of
sensors at different locations within the drivetrain. Frequency
ranges relevant for wind turbines, and direction of measurement
are procured in certification provided by DNV-GL [39]. These
values shows what a data-based condition monitoring scheme
will use as boundaries and benchmarks for operation. However,
further interpretation of the data is needed to be able to improve
operations.

Several distinctive ways of doing vibration analysis are
analyzed in current literature on vibration analysis of drivetrains.
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Liu et al. propose fault diagnosis based on local mean
decomposition technology, applied to the gear mesh frequency
signal [46]. Feng et al. consider a diagnosis method based
on amplitude and frequency demodulation [47]. Miao et
al. considers a zoom interpolated discrete Fourier transform,
found from multiple modulations [48]. Jayaswal et al. shows
different vibration analysis techniques on bearings, and sees
that bearing fault is found at an earlier stage by using vibration
analysis. By employing FFT and studying the spectrum bearing
condition is accessed [49]. Abdussiam et al. discuss the use of
Time Encoded Signal Processing and Recognition (TESPAR) in
vibration analysis [50]. Dalvand et al. proposes an instantaneous
frequency based method with envelope analysis of vibration
signal [51].

Regarding fault detection- using vibration data and
transforming it from the time domain to the frequency domain
opens up possibilities to see patterns in output that could be used
not only to predict faults. Not only at the selected spot, but whilst
using a model based approach by digital twin, it is also possible
to predict faults elsewhere in the system, as it is interconnected.

As discussed, there are mainly three approaches to analyze
data generated from drivetrains; data-driven, data-modelled or
physical-based. The data-driven approach has an benchmark of
sub optimal performance and related alerts are then triggered.
This approach is collecting data points and comparing it to
standards, recommendations from manufacturer and from class
societies.

The data model based approach is collecting data and
considering correlations with certain faults. By utilizing this
approach it is necessary to have a large amount of data and higher
level of competence in data science. This approach is a machine
learning approach and could also detect issues and fault driving
parameters that outside the known research in the field.

A physical based model driven by data input, but utilizing
the equation of motion to predict behavior, is a good aim of a
digital twin and is possible to have benefits from even without
large amounts of data sets available. This paper will focus on
the physical based model driven by data input digital twin. It
is more intense regarding domain knowledge and computational
time, however this approach has a model with universal validity
and the benefits from collecting sensor data from anywhere of
the twin is then achieved [3].

WHAT STEPS TO MAKE

Considering the steps to make when building a digital
twin there are a few common denominators that have to be
implemented. Starting with the sensor data collecting, going
forward to a model that comprises the actual digital twin and
lastly you have an output of remaining useful life (RUL) and
fault prediction. To achieve a sufficient data collection one needs
to have the correct sensor technology in place to get what data

needed at the frequency required. Additionally, knowing where
to place your sensors is essential. An efficient placement of
sensors is reliant on a sensitivity analysis performed [16].

When the data is collected a data quality analysis should be
performed added with a sufficient connectivity. When looking at
the offshore wind turbine industry and the shipping industry, the
connectivity is definitely of a higher lever for the offshore wind
turbines than the shipping vessels, as they are stationary versus
the every changing position of a vessel. When the data is arriving
at the model, the data has to be analyzed. This is where the
different approaches are found; data-driven, data model approach
and physical based model approach. Considering the physical
model this is where the equation of motion (EOM) is put and
this is where fault modelling algorithms are comprised. There are
several challenges when doing so, some of which are discussed in
this paper, but the advantages here have been mentioned earlier.
Lastly, the output from the model has to be analyzed for RUL
and fault prediction schemes. This approach is simplified in the
figure below.

« Sensor Technology Implemented

« Data Sampling Frequency

* Sensor Placement — Sensitivity Analysis
 Sensor Lifetime and Chance of Sensor Failure

Sensor

« Data Driven — Standards
 Data Based Model- Machine Learning
« Physical Based Model — Digital Twin

Model

* Data
Connectivity
+ Data Cleaning

RUL and + Data Interpretation
* Visualisation
* Recommendations

Fault
Prediction

« Data Quality Analysis
« Automated Output
Generation

FIGURE 3: Digital Twin Methodology

RESULTS

For method verification reasons this paper will consider a
simple drivetrain test rig in a lab environment, equipped with
optical sensors for vibration analyses that detects displacements.
The drivetrain is shown in Figure 4.

The sensors are placed to detect displacements in horizontal
(X) and vertical (Y) direction. By utilizing this simple
drivetrain instead of a gearbox, it is easier to detect flaws in the
methodology approach. Further use of the method could then
be employed and this method could be utilized for other and
more intricate and complex models. Additionally, NTNU has
a simple drivetrain available in real life for testing in lab. The
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FIGURE 4: The drivetrain test rig at MD Lab, NTNU [52]

lab is the Marine Drivetrain Research Lab (MD Lab) at NTNU
Department of Marine Technology [52]. This model is simplified
and several modelling approaches of this simple drivetrain were
tested. The modelled drivetrain is shown in Figure 5. More
details and results from this test can be found in Johansen S. [53].

£

LA 2 | ¢ —

FIGURE 5: The drive train test rig modelled as a Digital Twin

For the modelled digital twin of the drivetrain test rig a few
concluding remarks are evident. For the one degree of freedom
(DOF) modelling approach the results are satisfying, whilst for
the five DOF modelling approach the increased fidelity lead to
less accurate simulations. Thus, the increased fidelity leads to
decrease in accuracy in this case. For the five DOF models,
the modelling approach that was utilizing a flexible shaft model,
rather than a rigid shaft model, led to the least errors. The
stiffness values for bearings that led to the best results were the
ones from a tuning approach. It could be argued that coupled
effects are a part of the reason for this result. More information
on the related angular displacement is required. Still, the five
DOF model with flexible shaft is close to measured values,
especially in Y-direction. Errors in X-direction consequently
for all models applied is argued to be related to an error in the
modal analysis underestimation of stiffness, coupled effects or
resonance, or a combination of these. Two of these results are
shown in Figures 6 and 7. Fault modelling in the MBS can also
be done with stiffness change in the bearings or by a force vector
input in the bearings [54].

CONCLUSION

A digital twin is definitively relevant when considering
assets that are of high value and that has a hard-to-access
location. Then the benefits from a holistic health monitoring

Sensor 1- X direction

35
Timels]

FIGURE 6: Test rig drivetrain modelled as 5 DOF with flexible
shaft at sensor 1 in X-direction (horizontal)

Y [m]

MRS

35
Timels]

FIGURE 7: Test rig drivetrain modelled as 5 DOF with flexible
shaft at sensor 1 in Y-direction (vertical)

will aid in decreasing maintenance costs and down time, saving
asset owners capital. For offshore wind industry and the shipping
industry both high value assets and hard-to-access locations
are relevant. Increasing connectivity and IoT solutions over
both fleets leads to a higher probability of implementation.
Considering one of the largest contributor to down-time, the
drivetrain, a physical based digital twin model was build, by
different approaches. The results shows that higher fidelity had
more inaccuracies, while the lower fidelity model was more
accurate. However, a lower fidelity model does not meet the
requirements for a digital twin. A data model driven digital twin
would be harder to build, as this requires the use of Big Data
which is not currently available. A data driven model is however
often used, though it has a drawback that the digital twin could
fill; the predictive and holistic health monitoring.
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