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ABSTRACT

In the detection of web attacks, it is necessary that Web Application Firewalls (WAFs) are effective, at the same time than
efficient. In this paper, we propose a new methodology for web attack detection that enhances these two aspects of WAFs.
It involves both feature construction and feature selection. For the feature construction phase, many professionals rely on
their expert knowledge to define a set of important features, what normally leads to high and reliable attack detection rates.
Nevertheless, it is a manual process and not quickly adaptive to the changing network environments. Alternatively, automatic
feature construction methods (such as n-grams) overcome this drawback, but they provide unreliable results. Therefore, in this
paper, we propose to combine expert knowledge with n-gram feature construction method for reliable and efficient web attack
detection. However, the number of n-grams grows exponentially with n, which usually leads to high dimensionality problems.
Hence, we propose to apply feature selection to reduce the number of redundant and irrelevant features. In particular, we study
the recently proposed Generic Feature Selection (GeFS) measure, which has been successfully tested in intrusion detection
systems. Additionally, we use several decision tree algorithms as classifiers of WAFs. The experiments are conducted on
the publicly available ECML/PKDD 2007 dataset. The results show that the combination of expert knowledge and n-grams
outperforms each separate technique and that the GeFS measure can greatly reduce the number of features, thus enhancing
both the effectiveness and efficiency of WAFs. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Web applications are becoming increasingly popular as
part of our daily life. They include for example online
shopping, bank operations, people communication, embed-
ded devices configuration, and so on. As a consequence,
web applications are very attractive for attackers, and they
are exposed to a wide range of attacks, such as Cross-Site
Scripting (XSS), SQL injection, or web defacement, which
might have dramatic consequences such as impersonation,
revelation of private data stored in the database, or modifi-
cations in the web page. Furthermore, new threats appear
every day, hence, it is necessary to adopt adequate security
mechanisms to protect web applications.

Unfortunately, conventional firewalls, that operate at
network and transport layers, are usually not enough to
detect web-specific attacks. To be effective, the detection
has to take place at the application layer. Web application
firewalls (WAFs) [1] are systems that work at the applica-
tion layer and can help to detect web attacks. In fact, these
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systems analyze the HTTP traffic in order to detect mali-
cious actions and behavior that might compromise the se-
curity of web applications. When designing WAFs, it is
important to consider both effectiveness (the capacity of
detecting attacks while not raising false alarms) and effi-
ciency (capacity of consuming low resources and achiev-
ing low computational complexity). Efficiency is critical,
for WAFs operating in real-time environments for instance
or in scenarios with resource constraints.

In the aim of web attack detection, it is usual to
define a set of features considered important to distin-
guish between web attacks and normal traffic. This
can be carried out using different techniques. On the
one hand, many professionals rely on their expert
knowledge to define this set of features. This approach
often leads to high and reliable attack detection rates;
however, it is a manual process and not quickly adap-
tive to the changing network environments. On the
other hand, automatic methods, such as n-grams, over-
come this drawback, nevertheless they provide
Copyright © 2012 John Wiley & Sons, Ltd.
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unreliable results. Therefore, in this paper, we propose
to combine expert knowledge with n-gram feature con-
struction method for reliable and efficient web attack
detection. Our hypothesis is that the combination would
improve the results of expert knowledge and n-grams
separately. Because n-grams are subsequences of n items
from a given sequence [2,3], the number of n-grams
increases exponentially with the value of n, which usually
leads to the so called “curse of dimensionality” and com-
putational complexity problem. In order to solve this
problem, we propose to apply feature selection, which
reduces the number of redundant and irrelevant features
while not negatively affecting the detection accuracy. In
particular, we use the recently proposed generic feature
selection (GeFS) measure [4], which has been success-
fully tested in network intrusion detection system [4,5]
and WAFs [6,7].

For the classification phase, several decision tree algo-
rithms are used as classifiers of WAFs. This family of algo-
rithms is one of the most popular [8] and experimentally
successful in machine learning. Additionally, decision trees
are widely used in intrusion detection; in fact, the winner of
the famous DARPA intrusion detection contest [9] was an al-
gorithm based on decision trees [10]. Due to these reasons, de-
cision trees are chosen in this paper for the classification phase.

The experiments are conducted on the publicly avail-
able ECML/PKDD 2007 dataset [11], that contains labeled
HTTP traffic.

The experimental results show that indeed, the combi-
nation provides better results than expert knowledge and
n-grams separately, then confirming the hypothesis. Addi-
tionally, it is also shown that the GeFS measure can greatly
reduce the number of features. Therefore, our methodology
can enhance both the effectiveness and the efficiency of
WAFs.

In summary, the paper presents the following
contributions:

• We propose a methodology for the detection for web
attacks designed to improve both the effectiveness
and the efficiency of WAFs. For the construction of
features, we propose to combine expert knowledge
with n-gram feature construction method. And for
the dimensionality problems, we propose to apply fea-
ture selection, in particular the GeFS measure.

• We apply the methodology to the ECML/PKDD 2007
dataset. The experimental results confirm our hypoth-
esis and the success of our methodology.

The paper is organized as follows. Section 2 introduces
the background concepts of the different techniques and
methods used in this paper. Section 3 explains in detail
all the phases of the methodology proposed. Then, Section 4
describes the particularities of the ECML/PKDD 2007
dataset, used to conduct the testing experiments of our
methodology. The experimental settings are provided in
Section 5, and the results are shown in Section 6. Finally,
Section 7 presents the conclusions of this work.
Security Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd
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2. BACKGROUND

2.1. Expert knowledge feature construction

The main goal of feature construction is to obtain the
appropriate features that represent the regularities of the
original dataset [12]. Choosing representative features of
a dataset is crucial for the success of the classification
algorithms [13].

In web attack detection, many authors apply their expert
knowledge to determine the important features that will
help in the detection of web attacks. For example, this is
the case of the multi-model system of Kruegel et al. [14]
that detects web attacks in HTTP queries that contain para-
meters. In this work, the features considered relevant for
detecting malicious activity are the following: attribute
length, attribute character distribution, structure of the
parameters (regularity of the non-printable characters),
detection of anomalous values for an attribute (different
values for a fixed-value attribute), attribute presence or
absence, attribute order, access frequency, inter-request
time delay, and invocation order of the component pro-
grams of the web-based application. To evaluate the
previous features, the system creates different models that
are firstly trained to learn the normal values. Then, based
on the model outputs, the test queries are reported as either
a potential attack or as normal.

Other WAFs proposed by Torrano et al. [15,16] also
apply expert knowledge for web attack detection. Like the
system by Kruegel et al., these WAFs follow the anomaly-
approach, i.e. the normal behavior of the web applica-
tion is defined and any action that deviates from that is
tagged as intrusive. These WAFs divide the HTTP
requests into tokens, therefore they work at token level
and not at request level. These systems utilize two kinds
of features to differentiate normal and anomalous traffic:
features related to the length of the tokens and features
related to the structure of the tokens of the HTTP request.
The features concerning the structure count the number of
letters, digits, and the rest of printable ASCII characters
present in the tokens of the requests. The normal values
of the features are learnt from the training web traffic
and, then, the incoming requests are classified according
to the models and the correct values learnt.
2.2. N-gram feature construction

N-gram-based automatic methods have been successfully
used in intrusion detection for feature construction
[17–19]. Models based on n-grams originate from the
fields of information retrieval and natural language proces-
sing. An n-gram is a “language-independent” statistical
model [17]. In the case of intrusion detection, if a payload
is considered a string, then an n-gram is a substring of n
characters. When working with byte sequences, the space S
of all possible n-grams (n≥ 1) has the size of 28n (considering
8-bit representation for each character):
2751.
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S ¼ n� gramsi i ¼ 1; . . . ; 28n
�� ��

Therefore, the number of n-grams increases exponentially
with n. For example, for n=2, the number of features is
already 65536. The lower the number of features, the more
efficient the detection system is; thus, it is necessary to look
for solutions to deal with the “curse of dimensionality” and
computational complexity problem. In fact, in the following,
we review some of the most significant web attack detection
systems and the different solutions that they apply in order
to address this problem.

McPAD [20] is a system working with high-order
(n> 1) n-grams. It consists of an ensemble of multiple
one-class support vector machine classifiers. After combin-
ing the results from the multiple models, the payload is
classified as normal if the probability of the payload being
normal exceeds a given threshold. The experiments are
conducted on network traffic, including HTTP traffic. In
order to reduce the dimensionality of the feature space
for payload anomaly detection, a feature clustering algo-
rithm is applied. Then, the dimensionality is reduced to k,
being k the number of desired clusters.

Spectrogram [21] is a system that focuses on web
traffic. It uses a mixture of multiple Markov chains to ob-
tain the final likelihood score of the request being normal.
The inference model tracks the n-gram level transitions
within a string, where the likelihood of an n-gram is the
likelihood of xn (where xi denotes the ith character within
a string) and it is conditioned on the n� 1 preceding char-
acters. It reduces the problem from exponential to linear
complexity and takes advantages of the overlapping nature
of the n-grams within an input string.

Rieck and Laskov [19] propose to use words (n-grams of
variable length) instead of using fixed-length n-grams. They
propose to analyze network protocols as a language: with
words (of variable length) and boundary symbols. In the pa-
per, they analyze different protocols that include HTTP, FTP,
and SMTP traffic. The work presents a novel trie representa-
tion of n-grams, which is applied to transform the normal and
malicious connection payloads. Then, they propose a com-
parison method that is applied to classify the connections.

Naiman [22] addresses the problem of intrusion detec-
tion by modeling sequences of system calls using n-grams.
The system analyzes contiguous sequences of n system
calls of the processes generated by an HTTP daemon. The
motivation is that occurrences of sufficiently many new
n-grams in some localized time frame constitute evidence
of innovative behavior and thus of an anomaly. The detec-
tion rules are inferred by analyzing a tree of system calls.

The previous systems use the following types of datasets
for their experiments:

• Its own dataset.
• The DARPA dataset.
• Unlabeled datasets.

The problem of the first option is that these datasets are
normally not publicly available. The DARPA dataset is not
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enough for testing current WAFs (as will be carefully
explained in Section 4) and unlabeled datasets are not
useful for training and testing supervised learning WAFs.
Because of these, it is not possible to compare other WAFs
(like ours) with these systems. A difference of our system
with the previously mentioned ones is that our solution
applies feature selection to reduce the number of features
and to deal with the high dimensionality problem of
n-grams.

2.3. Feature selection

A feature selection method finds the smallest number of fea-
tures that maximize the performance of the classification algo-
rithm. By reducing the number of features without negative
effect on detection accuracy, feature selection greatly
increases the available processing time and reduces the re-
quired system resources, improving the efficiency of WAFs.

Typically, in machine learning, the feature selection
methods are classified into three categories, depending on
how they interact with the classifier: wrapper, filter, and
hybrid models [23,24]. The wrapper model uses the perfor-
mance of learning algorithms in assessing and selecting
features [23,24]. The filter model considers statistical char-
acteristics of a dataset directly without involving any
learning algorithm [23,24]. When the number of features
becomes very large, the filter model is more appropriate,
given that it requires less computational resources; hence,
it is the approach selected in the present paper.

A major challenge in the feature selection process is to
choose appropriate measures that can precisely determine
the relevance and the relationship between features of a given
dataset. Because the relevance and the relationship are usually
characterized in terms of correlation or mutual information
[23,24], in this paper, we use the GeFS measure for intrusion
detection [4]. This measure has been successfully tested for
network [4,5] and web traffic [6,7]. An overview of the GeFS
measure is explained next, and the details of the two instances
used in this paper can be found in APPENDIX.

Definition 1. A generic feature selection measure used in
the filter model is a function GeFS(x), which has the
following form with x= (x1, . . ., xn):

GeFS xð Þ ¼ a0 þ
Pn

i¼1Ai xð Þxi
b0 þ

Pn
i¼1Bi xð Þxi ; x 2 0; 1f gn (1)

In this definition, binary values of the variable xi indicate
the appearance (xi = 1) or the absence (xi = 0) of the feature
fi; a0 and b0 are constants; Ai(x), Bi(x) are linear functions
of variables x1, . . ., xn; n is number of features.

Definition 2. The feature selection problem is to find x
{0, 1}n that maximizes the function GeFS(x).

max
x2 0;1f gn

GeFS xð Þ ¼ a0 þ
Pn

i¼1Ai xð Þxi
b0 þ

Pn
i¼1Bi xð Þxi (2)
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This generic feature selection contains several feature
selection measures, such as the correlation feature selection
(CFS) and the minimal redundancy maximal relevance
(mRMR). The detail of these two measures can be found
in the Appendix.
2.4. Decision trees

Classification algorithms from machine learning can help
when massive volume of data has to be analyzed, reduc-
ing efficiently the amount of time and effort that would
be required by manual analysis. Decision tree algorithms
are predictive models that can be used as classifiers. This
family of algorithms is one of the most popular [8] and
experimentally successful machine learning algorithms.
Additionally, this kind of algorithms are extensively used
in intrusion detection; in fact, the winner of the famous
DARPA intrusion detection contest [9] was an algorithm
based on decision trees [10]. Because of these reasons,
in this paper, we choose decision trees as classification
algorithms. Because there is no standard classification
algorithm for WAFs, we use four decision tree algorithms
in this work: C4.5, Classification And Regression Tree
(CART), Random Forest and Random Tree. In particular,
the implementation versions of the algorithms used are
the ones provided by the WEKA software (University of
Waikato, Hamilton, New Zealand) [25]. Following, a
brief explanation of each of the algorithms is presented.
Further details about the algorithms can be found in
[26,8].

• C4.5 was introduced by Ross Quinlan [27]. C4.5 is an
algorithm used to generate decision trees that are
built from a set of training data using the concept of
information entropy.
At each node of the tree, C4.5 chooses one attribute of
the data that most effectively splits its set of samples
into subsets enriched in one class or another. Its crite-
rion is choosing the attribute with the highest normal-
ized information gain (difference in entropy) that
results from choosing an attribute for splitting the data.
The C4.5 algorithm then recurs on the smaller sublists.
The initial tree is then pruned, to avoid overfitting,
with a single-pass algorithm derived from binomial
confidence limits.

• CART is a recursive partitioning method that builds
classification and regression trees for predicting
continuous dependent variables (regression) and cate-
gorical predictor variables (classification). The clas-
sic CART algorithm was popularized by Breiman
et al. [28].
CART is a non-parametric algorithm. It generates a
binary decision tree that is constructed by splitting
the node that best differentiate the target variable into
two child nodes repeatedly, beginning with the root
node that contains the whole learning sample. Decid-
ing when the tree is complete and assigning a class to
Security Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
each terminal node are other of the key elements in
the CART methodology.

• Random forest is an ensemble classifier that consists
of many decision trees, and its output class is the
mode of the class’s output by individual trees. The
algorithm for inducing a random forest was developed
by Leo Breiman [29] and Adele Cutler. The method
combines Breiman’s “bagging” idea and the random
selection of features.

• Random trees include the idea of the random selection
of features. This idea was introduced independently
by Ho [30,31] and Amit and Geman [32] in order to
construct a collection of decision trees with controlled
variation. In Ho’s formulation, it is a way to imple-
ment stochastic discrimination [33]. This algorithm
does not perform pruning to reduce the size of the de-
cision tree. Some versions also provide backfitting so
that unbiased probability estimates can be obtained by
a hold-out set. The backfitting algorithm was intro-
duced in 1985 by Leo Breiman and Jerome Friedman
[34], and it is an iterative procedure used to fit a
generalized regression additive model.
3. METHODOLOGY

In this section, our methodology for web attack detection is
presented. Figure 1 shows the steps of the methodology
proposed. The first step is feature construction, using the
combination of expert knowledge and n-grams. Then, the
GeFS measure is applied for dealing with the dimensional-
ity problem. Finally, the classification phase, by means of
decision trees, takes place. In this section, the details of
each phase are carefully explained.

3.1. Feature construction

The web detection methodology proposed in this paper
includes a new approach for feature construction that
involves the combination of expert knowledge and n-grams.
Our hypothesis is that the combination of expert knowledge
features and n-grams would obtain better results than the
basic alternatives separately and thus would enhance the
effectiveness of WAFs.

The combination of the expert knowledge and n-grams
features can be carried out in different manners. In this paper,
we consider the following three alternatives for the combina-
tion approach:

• Combine–select. This alternative firstly merges all
features extracted by expert knowledge and n-grams.
As the number of n-grams leads to dimensionality
problems, afterwards, feature selection is applied in
order to reduce the number of features and thus to
optimize the efficiency of the WAF (feature selection
is explained in detail in the next section).

• Select–combine. Differently to the previous option,
this alternative merges the expert features that are
2753



Figure 1. Steps of the methodology proposed.

Figure 2. Scheme of the structure of the three combination
alternatives.
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already selected, that is, feature selection is per-
formed firstly and the resulting features are merged
subsequently.

• Select-n-gram-combine. This alternative follows the
idea of the second alternative; however, it only takes
the selected values of n-grams. The expert knowledge
features are not selected, as they come from the
knowledge of experts in the field. Therefore, this sub-
set is composed of the expert knowledge features and
those n-gram features selected by the GeFS measure.
Similarly to the second alternative, feature selection
is applied before the combination.

Figure 2 shows the scheme of these three alternatives.
Each alternative generates different subsets of features as
will be explained in Sec. 5.3.1.

3.2. Feature selection

The next step in our methodology is feature selection,
which reduces the dimensionality of the features con-
structed in the previous step and thus enhances the
efficiency of WAFs. In order to do that, in this paper we
apply the GeFS measure. The search strategy for obtaining
relevant features with GeFS is shown in APPENDIX.
According to the first Step of this algorithm, we analyze
the statistical properties of the different subsets of features
in order to check whether there are linear or non-linear
relations between features. The result of this analysis is
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used to select the appropriate instance of the GeFS measure
(GeFSCFS is recommended in the case that linear relations
exist, and the GeFSmRMR otherwise).

We follow two steps to analyze the statistical properties
of each alternative:

• First, the corresponding subset of features is visual-
ized in the two-dimensional space to get a plot matrix.
In the matrix, each element represents the distribution
of the data points depending on, either the values of a
feature and the class label, or the values of two features.

• With the aim of verifying our observations from the
graphics, the next step is to calculate the correlation
coefficients between the features.

With the analysis earlier, the appropriate instance of the
GeFS measure is chosen. We then apply the optimization
algorithm mentioned in APPENDIX to find globally
optimal feature subsets by means of the GeFS instance
selected for each case. Moreover, the non-selected instance
is also applied to the ECML/PKDD 2007 dataset to see how
the wrong choice of the GeFS instance would negatively
affect the results.
3.3. Classification algorithm

Finally, the classification algorithms are run in order to
classify the requests (as normal or anomalous) and test
the detection results.

The experiments are conducted with both the basic
cases (expert knowledge and n-grams) and with the
combination subsets in order to test our hypothesis: that
ity Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd.
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the combination would obtain better results than the basic
alternatives individually.

In the classification phase, four different decision trees
are applied in this paper in order to evaluate the perfor-
mance of the system, namely C4.5, CART, Random For-
est, and Random Tree [26].
4. DATASET DESCRIPTION

Using a good dataset is critical for testing a system. Unfor-
tunately, in the area of web intrusion detection, the task of
obtaining appropriate datasets is not easy, and it usually
faces several problems, such as datasets not publicly avail-
able, datasets not labeled, or datasets not-realistic (a good
analysis of this problem can be found in [35]). Because,
in this paper, we focus on web attack detection, a dataset
containing HTTP traffic is needed. In intrusion detection,
the DARPA dataset [9,36] presented in 1998 and 1999
by the Massachusetts Institute of Technology (MIT), has
been widely used for testing systems. This dataset contains
network traffic, including HTTP samples. However, the
DARPA dataset has been criticized by the intrusion detec-
tion system community [37]. Moreover, its HTTP traffic is
not appropriate for web attack detection given that it is out
of date and it does not include many of the actual attacks
(note how much web applications and web attacks have
changed during the last decade). Therefore, this dataset
cannot be used to test our methodology.

Due to these reasons, we choose the ECML/PKDD
2007 dataset [11] for the experiments, a labeled dataset that
is publicly available. Additionally, the dataset contains
only HTTP traffic; therefore, it is ideal for testing WAFs.
This dataset was generated for the ECML/PKDD 2007
Discovery Challenge [11], and it is divided into two parts:
the training dataset and the test one. In particular, in this
paper, the training dataset is used, which is composed of
50 000 samples, where 20% are attacks and the rest are
normal requests. The requests of this dataset are indepen-
dent from each other, and it includes different types of
modern attacks. Concretely, the classes of attacks included
are the following: XSS, SQL Injection, LDAP Injection,
XPATH Injection, Path Traversal, Command Execution,
and Server-Side Include attacks. Each request is labeled
with specifications of normal traffic or the corresponding
class of attack.
5. EXPERIMENTAL SETTINGS

In this section, the feature-construction and feature selection
settings are explained for the basic cases (expert knowledge
and n-grams) and for the three combination cases.

5.1. Expert knowledge

This section contains the settings of the feature construction
and feature selection phases for the expert knowledge case.
Security Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd
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5.1.1. Feature construction.
Using our expert knowledge, we construct 30 features

that are considered relevant for the detection of web
attacks. These features are shown in Table I. Some of the
features refer to the length of different parts of the request
because length is an important element to be considered in
the detection of attacks such as buffer overflow. From our
knowledge about web attacks, we have observed that the
non-alphanumeric characters are present in many injection
attacks; therefore, we consider four kinds of characters:

• Letters.
• Digits.
• Non-alphanumeric characters that have special
meaning in a set of programming languages (referred
in Table I as “special” chars).

• Other characters (non-alphanumeric characters that
are not included in the third category).

Several features in the list refer to the number of appear-
ances of these four types of characters in both the path and
the argument’s values. Another feature is built studying the
entropy of the bytes composing the requests. Additionally,
we have collected the keywords of several programming
languages that are often used in the injection attacks, and
other features are built by counting their appearances in
different parts of the request.
5.1.2. Feature selection.
As explained in Sec. 3.2, we follow two steps to choose

the appropriate instance of the GeFS measure. In this
section, we show how to do this for the case of expert
knowledge. Firstly, the data points are visualized in the
two-dimensional space, getting a plot matrix where each
element represents the distribution of data points depend-
ing on, either the values of a feature and the class label,
or the values of two features. The distribution of all the
possibilities (representation of two features and representa-
tion of every feature versus the class label) are studied;
however, for brevity, here, only two significant examples
are shown (Figures 3 and 4). These figures are examples
of the datapoint distribution of the expert knowledge sub-
set. In the first example, the length of the path is plotted
versus the length of the arguments and, in the second ex-
ample, the length of the path versus the number of letters
in the arguments. Black asterisks represent the normal
requests, and magenta circles represent the anomalous
ones. As can be observed in the figures, there is non-linear
relationship between the features extracted bymeans of ex-
pert knowledge.

The next step is to calculate the correlation coefficients
between the features in order to verify the observations
from the graphics. The calculation reveals that the non-
linear relations between features are more representative.
Indeed, more than the 83% of the correlation coefficients
are lower than 0.09. Therefore, in this case, the GeFSmRMR

measure is chosen for feature selection.
2755.



Figure 3. Sample distribution of the expert knowledge datapoints.

Figure 4. Sample distribution of the expert knowledge datapoints.

Table I. Names of 30 features that are considered relevant for the detection of web attacks.

Feature name Feature name

Length of the request Length of the path
Length of the arguments ? Length of the header “Accept” †

Length of the header “Accept-Encoding” Length of the header “Accept-Charset”
Length of the header “Accept-Language” Length of the header “Cookie”
Length of the header “Content-Length” Length of the header “Content-Type”
Length of the Host Length of the header “Referer”
Length of the header “User-Agent” Method identifier
Number of arguments Number of letters in the arguments
Number of digits in the arguments Number of “special” char in the arguments • ?

Number of other char in the arguments • ? Number of letters char in the path
Number of digits in the path Number of “special” char in the path
Number of other char in path Number of cookies
Minimum byte value in the request Maximum byte value in the request
Number of distinct bytes † ? Entropy
Number of keywords in the path ? Number of keywords in the arguments

The symbol • refers to features selected by the GeFSCFS for the expert knowledge subset, to features selected by theGeFSmRMR for the expert knowledge sub-

set, † to the characters selected by GeFSCFS for the combine–select subset, and ? to the characters selected by GeFSmRMR for the combine–select subset.

Combining expert knowledge with automatic feature extraction for reliable web attack detection C. Torrano-Gimenez et al.
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In Figure 5, the reduction in the number of features after
applying feature selection can be observed. The figure
represents the number of features of the full subset (before
feature selection) and the number of features after applying
the GeFSCFS and GeFSmRMR instances. In this case, the
measure selected (GeFSmRMR) reduces significantly
(80%) the number of features, but it is not the one that gets
the highest reduction. However, apart from reducing the
number of features, in a WAF, it is also important to
consider the detection accuracy. Section 6 takes care of this
aspect. The features selected by each instance of the GeFS
measure can be found in Table I. The symbol is used to
point out the expert knowledge features that are selected
by the GeFSCFS measure and the ones selected by the
GeFSmRMR measure.
Figure 5. Number of features for the expert knowledge subset.

ity Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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5.2. N-grams

In this section the processes of feature construction and
feature selection for the n-gram case are described.

5.2.1. Feature construction.
In this paper, we set n= 1, thus the number of 1-gram is

256. We have chosen n= 1 because it is the simplest case.
Cases with n> 1 require high cost in time and computa-
tional complexity, what is not appropriate for WAFs oper-
ating in real environments or scenarios with resource
constraints. Furthermore, it would be expected that the
results would improve as n increases; however, other
papers using n-grams in HTTP traffic [21,20] show that it
is not necessary the case. Therefore, we have not consid-
ered the case n> 1 in this paper.

With the assumption that payloads of normal traffic are
different from payloads of attack traffic, we use the follow-
ing automatic feature construction method, which is based
on n-grams extraction.

Given an HTTP request p, a feature vector of p is
constructed as follows:

xp ¼ x1; x2; . . . ; x
8n
2

� �
;

where xi is the number of appearances of n - grami in p.
Therefore, in our case, the vector constructed for every
request represents the number of appearances of each
character (1-gram) in the HTTP request.

In contrast to Spectrogram [21], which examines only a
small part of the HTTP request for feature construction (the
parameter names and their respective values), our system
considers the whole HTTP request for feature construction.
In our previous work [7], we also used some parts of the
request; however, from the security point of view, we
consider that it is more appropriate to analyze the whole
request because it allows detecting attacks embedded in
any part of the request, such as cookie tampering attacks,
which are included in the HTTP headers.
Table II. Ninety-six characters appearing in the

Features

k ? 5 g LF •

_ : ” ? I
z x $ • Q
R 4 Y .
p e r L
@ C Space • s ?

c F v 1
M j 8 n
* K / G
S o N J
O X % • ) •

< • > [• ! •

The symbol • refers to the 15 characters selected by theGeFSCFSmeasure for n-gra

† to the characters selected by GeFSCFS for the combine–select alternative, and ?
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The result of the 1-gram extraction was that only 96
features (37.5% of the 256) appear (at least once) in the
ECML/PKDD 2007 dataset. These 96 features are listed
in Table II.

5.2.2. Feature selection.
In this subsection, we show how to choose the appropri-

ate instance of the GeFS measure to select important fea-
tures extracted by using n-grams. Firstly, the data points
of this subset are visualized in the two-dimensional space.
In Figures 6 and 7, two sample distributions of the n-gram
subset are represented. Figure 6 shows the number of
appearances of the character “a” versus the class label,
and Figure 7 shows the number of appearances of the char-
acter “a” versus the number of appearances of the character
“>”. As can be observed when looking at the figures, there
are linear relations between the n-gram features extracted
from the ECML/PKDD dataset.

Regarding the correlation coefficients of the n-gram
subset, they show that the subset has many features that
are linearly correlated to each other. In fact, more than
52% of the correlation coefficients are greater than 0.1.
Hence, the selected measure for the n-gram subset is
GeFSCFS.

Figure 8 shows the number of features of the full-set
and the number of features after feature selection, for
the two instances of the GeFS measure. The GeFS
instances dismiss many of the features of the full set that
are considered irrelevant or redundant for detecting web
attacks. The GeFS instances dismiss many of the features
of the full-set that are considered irrelevant or redundant
for detecting web attacks. In this case, GeFSmRMR pro-
vides the smallest number of selected features. However,
it is also important to consider the detection accuracy as
will be seen in Section 6. The n-grams selected by
both instances can be seen in Table II, which contains
the symbol to refer the n-gram features that are selected
by GeFSCFS and for the features selected by the
GeFSmRMR measure. It is remarkable that indeed, some
of the 1-grams selected are critical for the detection of
ECML/PKDD 2007 dataset at least once.

a ? 3 = ;
9 0 D h
W f H E
7 , 6 q
i b & m
2 Z A u
y LF ? l
d - • t † P
V U w T
+ • B ’ • ]
| ? (• \ • ? ~
# • { ‘• † }

ms,◊ to the five characters selected by theGeFSmRMRmeasure for n-grams,

to the characters selected by GeFSmRMR for the combine–select alternative.
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Figure 6. Sample distribution of the n-gram datapoints.

Figure 7. Sample distribution of the n-gram datapoints.

Figure 8. Number of features for the n-gram subset.
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web attacks: for instance, the quotation mark (’) is in-
cluded in many SQL injection attacks, and the character
“<” is typically appearing in scripts such as the ones used
in XSS attacks.
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5.3. Combination
This subsection explains the settings for the combination

of expert knowledge with n-grams.
5.3.1. Feature construction.
In the combination case, the three alternatives described

in Section 3.1 are used for feature construction. Each alterna-
tive generates different subsets of features, explained as
follows:

• Combine-select. With this alternative, the resulting
subset of features is composed of 126 features in total,
corresponding to the combination of the 30 features
from expert knowledge and the 96 features from
n-grams. Then, feature selection is applied.

• Select–combine. In this case, there are four options for
generating the subsets of features, corresponding to
the two instances of the GeFS measure for selecting
features from expert knowledge and n-grams. How-
ever, what makes sense is to choose the subset com-
posed of the features selected by the appropriate
instances of the GeFS measure (GeFSmRMR in the
case of expert knowledge and GeFSCFS for n-grams).
That is, the subset composed of 15 n-gram features
selected by GeFSCFS and six features selected by
GeFSmRMR from expert knowledge, which is denoted
by mRMR+CFS. Even though, we also show another
subset with features selected by different GeFS
instances, to see how the wrong choice of feature selec-
tion methods would negatively affect the detection per-
formance. As an example, we create a second subset
combining six features selected by mMRM from expert
knowledge (as in the previous select–combine subset),
and in this case, five features selected by GeFSmRMR

from n-grams (the opposite selection than in the previ-
ous select–combine subset). This last subset is called
mRMR+mRMR. Because the features that compose
these two subsets are already selected, it is not necessary
to apply feature selection again.

• Select–n-gram–combine. As only n-grams are
selected with this alternative, two subsets can be
considered, corresponding to the different instances
of the GeFS measure. The subset that should be used
in this case is the one using the GeFSCFS instance for
n-grams; however, the other subset is also included to
show the importance of the right selection of the
GeFS instance.

Table III summarizes the structure of the subsets
corresponding to each combination alternative.

All these subsets, together with the expert knowledge
and n-gram subsets, are used in the experiments and will
be explained in Section 6.
5.3.2. Feature selection.
In this work, feature selection is utilized to deal with the

high dimensionality problem and thus to guarantee the
ity Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Table III. Description of the subsets corresponding to each combination alternative.

Alternative Total Number of Features Expert Knowledge Features N-gram Features Subset Name

Combine–select 126 30 96 Combine–select
Select–combine 21 6 (GeFSmRMR) 15 (GeFSCFS) mRMR+CFS

11 6 (GeFSmRMR) 5 (GeFSmRMR) mRMR+mRMR
Select–n-gram–combine 45 30 15 (GeFSCFS) Expert +CFS

35 30 5 (GeFSmRMR) Expert +mRMR
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effectiveness of the WAF. In the case of the combination, it
is especially useful as the number of features is higher. In
this section, the steps for the selection of the proper GeFS
instance are performed for the three alternatives of the
combination case. Regarding the combine-select subset,
Figure 9 is a sample of its data point distribution that plots
the length of the header “Accept-Charset” versus the
number of digits in the path. And the sample in Figure 10
represents the length of the header “Accept-Charset”
versus the length of the header “Accept-Language”.
Figure 9. Sample distribution of the combine–select datapoints.

Figure 10. Sample distribution of the combine–select datapoints.
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In the case of the select-combine and select-n-gram-
combine alternatives, it is not necessary to study their statis-
tical properties as the features in these subsets are already
selected.

Regarding the correlation coefficients, when analyzing
the calculation corresponding to the combine-select subset,
we observed that more than 76% of the coefficients are less
than 0.09, which means that there are non-linear relations
between the features of this subset, and therefore, the
GeFSmRMR measure is the proper one for this case. It is
not necessary to calculate the correlation coefficients for
the select-combine and select-n-gram-combine subsets
because the features are already selected.

For the case of the combine-select subset, Figure 11
shows the number of features of the full subset and for
the subsets after feature selection. The reduction is large:
91.27% for the GeFSmRMR instance, which is the selected
one but not the one that gets the bigger reduction (see
Section 6 for details of the performance).

The features selected from the combine-select subset,
are represented in Tables I and II with y for GeFSCFS and
for GeFSmRMR. Note that many features selected by the
GeFSCFS and GeFSmRMR measures are the same in the case
of n-grams, expert knowledge as well as in the selection-
combination case, which indicates that they are important
features for detecting web attacks.

The number of features of the select-combine and
select-n-gram-combine subsets can be seen in Figure 12.
In summary, Table IV shows the GeFS instances chosen
for every subset of the ECML/PKDD 2007 dataset.
Figure 11. Number of features for the combine–select subset.
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Table IV. GeFS instance chosen for every subset of the ECML/
PKDD 2007 dataset.

Subset GeFS instance

Expert knowledge GeFSmRMR

n-gram GeFSCFS

Combine–select GeFSmRMR

Select–combine Nothing
Select–n-gram–combine Nothing

Figure 12. Number of features of the select–combine and
select–n-gram–combine subsets.
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5.4. Classification algorithm

The experiments are conducted with all the previously
mentioned subsets of features, corresponding to the basic
and the three combination cases, in order to compare their
results and conclude which is the best alternative.

For the classification phase, four decision tree algo-
rithms are applied to evaluate the performance of the
WAF: C4.5, CART, Random Forest and Random Tree
[26]. Concretely, we have used the implemented versions
of these decision trees provided by the WEKA software
[25]. For the C4.5 algorithm, the WEKA tool uses the
J48 implementation. Regarding Random Tree, new ver-
sions of the WEKA tool also provide an option to perform
backfitting allowing that unbiased probability estimates
can be obtained by a hold-out set.
Table V. Accuracy and false positive rate of four decisio

Classifiers

Accuracy

Full-set GeFSCFS GeFS

C4.5 95.42 89.07 92.
CART 95.51 89.12 92.
Random Forest 95.80 89.10 91.
Random Tree 92.43 89.11 88.

Average 94.79 89.10 91.

Bold letters are used to highlight the subset selected, corresponding to the cor
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The experiments are conducted with 10-fold cross
validation, and the rest of the setting values are the ones
set by default in the WEKA software.

The next section shows and analyzes the results
obtained from the experiments.
6. EXPERIMENTAL RESULTS

Effectiveness and efficiency are important aspects to
evaluate WAFs. Therefore, in this section, the results are
analyzed considering not only the number of features
shown before but also the detection performance. This
section shows, firstly, the accuracy results obtained with
decision trees and, then, a discussion examining and ana-
lyzing the results.

The detection performance of the WAF is measured in
terms of detection rate and false positive rate. The detec-
tion performance of a WAF is better as the detection rate
(attacks detected) is higher and the false positive rate (false
alarms) is lower.

The experiments of the basic subsets of features (expert
knowledge and n-grams) and of all the combination sub-
sets are compared in order to test our hypothesis: that the
combination would obtain better results than the basic
alternatives individually.
6.1. Basic cases

As mentioned before, the experiments are conducted with
four decision trees from machine learning. In this section,
the accuracy results for the basic cases (expert knowledge
and n-grams) are presented.

Table V shows the performance of the decision trees (in
terms of accuracy and false positive rate) on the expert
knowledge subset. The column full-set shows the results
before feature selection, and the GeFSCFS and GeFSmRMR

columns correspond to the results after feature selection.
In the table, our selection of the GeFS instance is high-
lighted with bold numbers (GeFSmRMR in the case of ex-
pert knowledge). As can be observed, the results are
better for the GeFSmRMR instance than for GeFSCFS, what
confirms our selection of the GeFS instance.
n trees performed on the expert knowledge subset.

False Positive Rate

mRMR Full-set GeFSCFS GeFSmRMR

30 7.8 23.2 15.1
23 7.9 23.1 14.7
53 8.1 23.2 15.1
81 10.6 23.2 16.3

22 8.6 23.18 15.3

rect GeFS instance.

ity Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd.
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When looking at the number of features (Figure 5)
and the detection results of expert knowledge in
Table V, it is noticeable that the GeFS measure greatly
reduces the number of features (from 30 to 2) while
keeping almost the same detection results. GeFSCFS
selects less features; however, its detection accuracy is also
lower, and its false detection rate is much higher than the
GeFSmRMR one.

Regarding n-grams, Table VI summarizes the perfor-
mance of the four decision trees over this subset. The
results show that our selection of the GeFS instance is cor-
rect (the GeFSCFS column is highlighted in bold numbers
in the table). It can be observed that when the instance is
chosen wrongly, the results are negatively affected, what
shows the importance of the good selection of the GeFS
instance. By observing the number of features in Figure 8
as well as the performance results in Table VI, it can be
observed that the GeFSCFS measure greatly reduces the
number of features (from 96 to 15) while not only keeping,
but even improving the detection results (from 92.99 to
93.47). This implies that the application of the GeFSCFS
Table VI. Accuracy and false positive rate of four d

Classifiers

Accuracy

Full-set GeFSCFS GeFS

C4.5 94.12 94.12 89.
CART 94.92 94.16 90.
Random Forest 94.41 93.70 89.
Random Tree 88.55 91.90 88.

Average 92.99 93.47 89.

Table VII. Accuracy and false positive rate of four decis

Classifiers

Accuracy

Full-set GeFSCFS GeFS

C4.5 97.34 76.06 92.
CART 97.41 76.10 92.
Random Forest 96.98 72.32 92.
Random Tree 92.78 72.52 88.

Average 96.13 74.25 91.

Table VIII. Accuracy and false positive rate of four decis

Classifiers

Accuracy

mRMR+CFS mRMR+m

C4.5 97.09 94.52
CART 96.94 94.55
Random Forest 97.56 94.34
Random Tree 95.81 91.45

Average 96.88 93.71
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measure improves at the same time the effectiveness and
efficiency of the WAF.

6.2. Combination cases

In this section, the results corresponding to the three
combination alternatives are shown.

Table VII shows the accuracy and false positive rate
obtained by the decision trees for the combine–select subset.

Once again, the results confirm our selection (highlighted
with bold numbers) of the appropriate GeFS instance, which
is GeFSmRMR in this case. Note that when choosing the
wrong instance, the results become worse.

The GeFSmRMR measure reduces highly the number of
features while the detection results are only slightly altered,
as it can be perceived when looking at both the Figure 11
and Table VII.

Regarding the select–combine alternative, Table VIII
indicates the detection performance results for both the
mRMR+CFS and mRMR+mRMR subsets. Remember
that the mRMR+CFS subset (with bold numbers in
ecision trees performed on the n-gram subset.

False Positive Rate

mRMR Full-set GeFSCFS GeFSmRMR

95 9.2 10.4 18.7
03 8.7 10.2 18.3
12 11 10.7 20.7
73 15.7 11.9 22

45 11.15 10.8 19.9

ion trees performed on the combine-select subset.

False Positive Rate

mRMR Full-set GeFSCFS GeFSmRMR

42 4 46.4 14.2
52 4.2 46.2 14.3
41 5.6 47.3 14.5
18 10 48.9 15.9

38 5.95 47.2 14.72

ion trees performed on the select-combine subsets.

False Positive Rate

RMR mRMR+CFS mRMR+mRMR

4.8 10.2
4.9 10.1
4.4 10.3
5.8 11.6

4.98 10.55
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Figure 13. Accuracy in average for the expert knowledge,
n-gram, combine–select, select–combine and, select–n-gram–

combine subsets.

Figure 14. False positive rate in average for the expert knowledge,
n-gram, combine–select, select–combine, and select–n-gram–

combine subsets.
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the table) is created with the features selected by the
appropriate instances of the GeFS measure and that the
mRMR+mRMR subset is created in the aim of comparison,
choosing wrongly the GeFS instances to see how this fact
would affect the results. As expected, Table VIII shows
that the results are better when choosing the appropriate
instances of the feature selection measure. In the next
section, the results are carefully discussed.

Finally, Table IX presents the detection results for the
select-n-gram-combine case. The results of the expert +
CFS subset are presented in bold numbers. The perfor-
mance of the expert + mRMR subset is also shown to com-
pare the results when not choosing the correct instance of
the GeFS measure. In fact, the results in the table confirm
that the good selection of the GeFS instance leads to better
results. The next section discusses accurately the results,
considering the accuracy and the number of features for
the evaluation of each alternative.

6.3. Discussion

In this section, the results shown before are discussed.
Firstly, the combination alternatives are compared with
the basic cases, to see if the hypothesis is confirmed and
indeed the combination outperforms the basic cases sepa-
rately. Then, the combination alternatives are compared
with each other, to conclude which of them is the most
appropriate in each case.

In this discussion, the number of features and detection
performance criteria are considered to evaluate each
alternative. In order to simplify the comparison, in the
following, we show several figures. Figure 13 shows a
summary of the number of features for all the subsets.
Also, Figures 14 and 15 represent graphically a summary
of the average values of the accuracy and false positive rate
shown in the previous tables (however, the comparison can
also be done looking at the values in the tables). For
simplicity, in some comparisons, only the detection rate
values are cited, but the same comments apply also to the
false positive rate.

The starting point is the comparison of the combine–
select alternative with the basic cases. Looking at the
detection results of Figures 13 and 14 corresponding to
the combine–select, expert knowledge, and n-grams
subsets, it can be seen that for the full subset, the results
of the combine–select alternative are better than the results
Table IX. Accuracy and false positive rate of four decision t

Classifiers

Accuracy

Expert+CFS Expert+m

C4.5 97.63 96.69
CART 97.58 96.82
Random Forest 97.84 97.16
Random Tree 95.69 94.74

Average 97.18 96.35
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obtained by both expert knowledge and n-grams separately
(96.13 vs 94.79 and 92.99). In this case, also the number of
features of the combination is higher than the number of
features of the basic cases (126 features vs 30 and 96).
Nevertheless, the combination does not obtain the best
rees performed on the select-n-gram-combine subsets.

False positive rate

RMR Expert+CFS Expert+mRMR

3.8 5.3
4 5
3.8 4.8
5.9 7.4

4.38 5.63

ity Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd.
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Figure 15. Number of features of the expert knowledge, n-gram,
combine-select, select-combine and select-n-gram-combine sub-
sets. In the legend, C-S denotes the combine-select alternative,
S-C means select-combine and S-N-C represents the select-n-

gram-combine case.

Figure 16. Accuracy and number of features of the three
combination alternatives.

Figure 17. Accuracy and false positive rate for all the subsets of
the ECML/PKDD2007 dataset. The size of the symbols represents

the number of features.
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results after feature selection. The n-gram subset gets
better results; however, it also uses more features (15 vs 11).
The combination performs better than expert knowledge
(91.38 vs 91.22) using five features more.

Next, the results of the mRMR+CFS subset are con-
trasted with the results obtained by n-grams and expert
knowledge. Comparing the corresponding columns in
Figure 13 and Figure 14, it can be observed that the
select–combine alternative notably improves the results of
the two basic cases separately, both before feature selec-
tion (96.88 vs 94.79 and 92.99) and after (96.88 vs 91.22
and 93.47). Meanwhile, the number of features of the
mRMR+CFS subset is lower in the full-set case (21 vs
30 and 96) but not than after feature selection (21 vs 6
and 15). Therefore, this combination alternative obtains
better results (higher detection accuracy and lower false
positive rate) than the expert knowledge and n-grams
cases, thus enhancing the effectiveness of WAFs and con-
firming our hypothesis. Additionally, it reduces the number
of features before feature selection (not after).

Now, the results of the select–n-gram–combine alterna-
tive are analyzed. When comparing the results of the
Expert +CFS subset with the expert knowledge and
n-gram ones, it can be seen that this combination gets
higher detection accuracy (Figure 13) and lower false
positive rate (Figure 14) than the two basic alternatives
separately, both before (97.18 vs 94.79 and 92.99) and
after (97.18 vs 91.22 and 93.47) feature selection, which
confirms our hypothesis. This combination alternative uses
more features (45) than the other alternatives (30, 6, 15)
except for the full-set of n-grams (96). Similar to the previ-
ous combination alternative, this combination improves the
performance of both expert knowledge and n-grams before
and after feature selection; meanwhile, it only reduces the
number of features for the full-set of n-grams.

Now, the results of all combination alternatives are
analyzed with the aim of comparison.
Security Comm. Networks 2015; 8:2750–2767 © 2012 John Wiley & Sons, Ltd
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Looking at Figures 13 and 14, it is noticeable that the
best detection results are the ones corresponding the
select–n-gram–combine alternative (higher detection rate
and lower false positive). However, it is also the alternative
using a higher number of features. Figure 15 plots the
number of features vs the detection accuracy of the three
combination alternatives. In the figure, it can be seen that
for the combination alternatives, the higher the number of
features, the best the accuracy results.

Finally, a summary graph is shown in the aim of
comparison. Figure 17 represents the accuracy and false
positive rate of all the subsets of the ECML/PKDD 2007
dataset. In the figure, the size of the circles is used to
represent the number of features, being the coordinates of the
alternative the point in the center of the circles. Figure 17
shows in detail the left-upper area of Figure 16, showing the
results with a bigger size to facilitate the observation of the
results. In the figures, colors are used to distinguish between
the alternatives: red circles refer to expert knowledge subset,
violet to n-grams, blue to combine-select, black to select-
combine and finally green to select-n-gram-combine.
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Figure 18. Detail of the accuracy and false positive rate for
the subsets.
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As can be seen in Figures 17 and 18, the best results are
reached by the three combination alternatives, which are
closer to the (0,1) point, and some of them do not use a
high number of features.
7. CONCLUSIONS

In this paper, we propose a new methodology for web
attack detection, which is designed to enhance both the
effectiveness and efficiency of WAFs. Typically, on the
design of WAFs, professionals define a set of important
features that aid in the differentiation between normal traf-
fic and attacks. On the one hand, using expert knowledge
for defining these features leads to reliable results, yet it
has to be performed manually. On the other hand, the n-
gram feature construction method is automatic, but their
results are unreliable. Therefore, in this paper, we propose
to combine both approaches for the feature construction
phase. Our hypothesis is that the combination would im-
prove the results of expert knowledge and n-grams
separately. However, the number of n-grams increases
exponentially with n, which leads to dimensionality
problems. To deal with this problem, we propose to use
feature selection, in particular the GeFS measure. In our
methodology, we propose three alternatives for the combi-
nation of n-grams and expert knowledge:

• The first alternative, called combine–select, merges all
the features extracted by n-grams and expert knowl-
edge and applies feature selection afterwards.

• In contrast, the second alternative (select–combine)
merges the features already selected from expert
knowledge and n-grams.

• Meanwhile, the third alternative, called select-n-gram-
combine, is a variation of the second one and it merges
the expert knowledge features (not selected) with the
selected ones from n-grams.
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Then, four decision tree algorithms from machine learn-
ing are used as classifiers of WAFs. This methodology is
tested experimentally on the publicly available ECML/
PKDD 2007 dataset, which is publicly available and
contains labeled HTTP traffic. The results show that GeFS
can reduce the number of redundant and irrelevant
features, while keeping the accuracy results (or even
improving them as in the n-grams case), thus enhancing
the efficiency of WAFs. Additionally, the results obtained
also confirm that indeed the combination alternatives
improve the detection accuracy of n-gram and expert
knowledge separately, which enhances the effectiveness
of WAFs and verifies our hypothesis. More concretely,
the first alternative improves the results of the two separate
techniques in some cases, but not in all of them. Mean-
while, the second and third alternatives improve the
detection accuracy in all the cases. Regarding the number
of features, the combine-select alternative reduces the
number of features in almost all the cases. From the three
combination alternatives, select-n-gram-combine is the
one that obtains the higher detection accuracy; however,
it is also the one that uses a higher number of features.
The combine-select alternative obtains worse results;
nevertheless, it is the combination that uses the lower
number of features. And finally, select-combine is in the
middle of the other two alternatives concerning the number
of features used and the detection results obtained. There-
fore, for each specific system to be protected, the selection
of the best alternative varies depending on the characteris-
tics of the target scenario and the importance of the detec-
tion accuracy and number of features in each case. When
the number of features is important, the combine-select
alternative is recommended; however, when the important
factor is accuracy (or false positive rate), it is recom-
mended to apply the select-n-gram-combine one. In any
case, it is shown that the methodology can enhance both
the effectiveness and efficiency of WAFs, to a greater or
lesser extent depending on the alternative chosen and
the target scenario. For future work, higher order n-gram
(n > 1) will be studied.
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APPENDIX. INSTANCES OF THE
GeFS MEASURE

In this section, two instances of the GeFSmeasure are presented:
the CFS measure and the mRMRmeasure. These measures can
be represented by the form (2) shown in Section 2.3.
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The mRMR feature selection measure

In 2005, Peng et al. [38] proposed a feature selection
method, which is based on mutual information. In this
method, relevant features and redundant features are con-
sidered simultaneously. In terms of mutual information,
the relevance of a feature set S for the class c is defined
by the average value of all mutual information values be-
tween the individual feature fi and the class c as follows:
D S; cð Þ ¼ 1

Sj j
P

fi2S I fi; cð Þ. The redundancy of all features

in the set S is the average value of all mutual information
values between the feature fi and the feature fj: R Sð Þ ¼
1
jSj2

P
fi ;fj2S Iðfi; fjÞ . The mRMR criterion is a combination

of two measures given earlier and is defined as follows:

max
S
½ 1jSj

X
fi2S

Iðfi; cÞ � 1

jSj2
X
fi ;fj2S

Iðfi; fjÞ� (A1)

Suppose that there are n full-set features. The binary
values of the variable xi are used in order to indicate the
appearance (xi = 1) or the absence (xi= 0) of the feature fi
in the globally optimal feature set. The mutual information
values, I(fi ; c) and I(fi ; fj), are denoted by constants ci and
aij, respectively. Therefore, the problem (3) can be de-
scribed as an optimization problem as follows:

max
x2 0;1f gn

Pn
i¼1cixiPn
i¼1xi

�
Pn

i;j¼1aijxixjPn
i¼1xi

� �2
" #

(A2)

It is obvious that the mRMR measure is an instance of
the GeFS measure presented in Section 2.3. This measure
is denoted by GeFSmRMR.

Correlation-feature selection measure

The CFS measure evaluates subsets of features on the basis
of the following hypothesis: “Good feature subsets contain
features highly correlated with the classification, yet uncor-
related to each other” [39]. The following equation gives
the merit of a feature subset S consisting of k features:

MeritSk ¼
k �rcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k þ k k � 1ð Þ �rff
p

Here, �rcf is the average value of all feature classification
correlations, and �rff is the average value of all feature–
feature correlations. The CFS criterion is defined as follows:

max
Sk

rcf1 þ rcf2 þ⋯þ rcfkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 2 rf1f2 þ⋯þ rfifj þ⋯þ rfk f1

� �q
2
64

3
75 (A3)

By using binary values of the variable xi as in the case of
the mRMR measure to indicate the appearance or the
absence of the feature fi, the problem (A3) can be rewritten
as an optimization problem as follows:
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max
x2 0;1f gn

Pn
i¼1aixi

� �2Pn
i¼1xi þ

P
i6¼j2bijxixj

" #
(A4)

It is obvious that the CFS measure is an instance of the
GeFS measure shown in Section 2.3. This measure is
denoted by GeFSCFS.

The methodology for determining appropriate instances
of the GeFS measure is described next, as well as a new
search strategy for obtaining subsets of relevant features
by means of this measure:

• Step 1: Analyze the statistical properties of the given
dataset in order to choose the appropriate feature se-
lection instance (GeFSCFS or GeFSmRMR) from the
generic feature selection measure GeFS. We choose
the GeFSCFS measure if the dataset has many features
that are linearly correlated to the class label and to
each other. Otherwise, the GeFSmRMR measure is
selected.

• Step 2: According to the choice from Step 1, construct
the optimization problem (2) for the GeFSCFS measure
or for the GeFSmRMR measure. In this step, we can use
expert knowledge by assigning the value 1 to the vari-
able if the feature is relevant and the value 0 otherwise.

• Step 3: Transform the optimization problem of the
GeFS measure to a mixed 0–1 linear programming
(M01LP) problem, which is to be solved by means
of the branch-and-bound algorithm. A non-zero
integer value of xi from the optimal solution x indi-
cates the relevance of the feature fi regarding the
GeFS measure.
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