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Secrecy Performance of Correlatedα-µ Fading Channels
Aashish Mathur,Member, IEEE, Yun Ai, Member, IEEE, Michael Cheffena,

and Georges Kaddoum,Member IEEE

Abstract—This paper investigates the secrecy performance of
the classical Wyner’s wiretap model, where the main channel
and eavesdropper channel experience correlatedα-µ fading.
Novel and exact expressions for the average secrecy capacity and
secrecy outage probability are derived for the considered realistic
scenario. The effect of correlation has been studied on the secrecy
performance. Useful insights into the system performance are
obtained through the asymptotic analysis.
Index Terms—Fading correlation, α-µ fading, physical layer
security, average secrecy capacity, secrecy outage probability.

I. I NTRODUCTION

PHYSICAL LAYER SECURITY (PLS) has been widely
considered as a complementary technique to the con-

ventional upper layer cryptography to enhance the commu-
nication secrecy against eavesdropping in the fifth genera-
tion (5G) mobile networks [1]. In real radio environments,
correlations between channels are frequently observed due
to antenna deployments, proximity of the legitimate receiver
and eavesdropper, and scatterers around them [2], [3]. For
example, antenna deployments at high altitude in rural or
suburban area generate dominant line-of-sight paths, which
results in high correlation between the received signals at
two receivers. Intuitively, correlated channel conditions will
lead to some level of degradation of secrecy performance,
therefore it is also possible that the eavesdropper intentionally
places itself close to the legitimate receiver (especiallywhen
the eavesdropper has no information on the whereabouts of
the transmitter) to induce the correlation of the corresponding
channels. Therefore, it is important to quantify rigorously the
effects of correlation in real-life practical scenarios. Due to
the frequent occurrences of correlated fading scenarios inreal-
life scenarios, the investigations on secrecy performanceover
correlated fading channels has recently attracted attention of
the researchers [3], [4].

The recently proposedα-µ fading model is a general and
flexible instrument for channel characterization and perfor-
mance evaluation of communication systems. Theα-µ model
encompasses some important distributions such as exponential,
Nakagami-m, Gamma, Weibull, Rayleigh, log-normal and
Generalized-K (used in free space optical communication)
fading, [5]–[7]; and the characterization of PLS overα-µ
wiretap fading channels is decisively important. Revisiting
all existing work on secrecy analysis ofα-µ fading channels
[6], [7], the correlation between theα-µ fading links has
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never been considered to the best of the authors’ knowledge.
Motivated by the latest advances in PLS analysis onα-µ fading
channels [6], [7] and the importance of conducting secrecy
analysis under realistic correlated fading scenarios, we study
the secrecy performance of the Wyner’s model over correlated
α-µ fading channels in this paper. The main contributions of
this letter are summarized as follows:

1) A novel and exact expression for the average secrecy
capacity (ASC) is derived in terms of the extended
generalized bivariate Fox H-function (EGBFHF) for the
classical Wyner’s model under the realistic correlatedα-
µ fading scenario contrary to [7], where the effect of
correlation was ignored.

2) Exact expression for the secure outage probability (SOP)
is obtained taking into account the correlation between
the main wiretap channels contrary to [6], where only
bounds on SOP were provided and correlation was ig-
nored.

3) We obtain useful insights into the impact of correlation
on the secrecy performance through asymptotic analysis
of the ASC and SOP.

4) The asymptotic SOP results are instrumental in investi-
gating the impact of physical channel phenomena such as
channel nonlinearity and multipath clustering on secrecy
diversity.

5) The effect of correlation dependent power penalty is also
studied in this letter.

Notations: [x]+ = max(x, 0). E(·) denotes the expectation
operator,Lnm(·) is the Laguerre polynomial [8, Eq. (8.970.1)],
Γ(·) is the Gamma function [8, Eq. (8.310)],Υ(·, ·) is
the lower incomplete Gamma function [8, Eq. (8.350.1)],
∆(k, a) = a

k ,
a+1
k , ..., a+k−1

k , Hm,n:r,s:v,u
p,q:t,u:w,x (·) denotes the

EGBFHF [7], Gm,n
p,q

(

x
∣

∣

a1,...,ap
b1,...,bq

)

is the Meijer G-function
[8, Eq. (9.343)], and(·)k is the Pochhammer’s symbol [9,
Eq. (6.1.22)].

II. CHANNEL AND SYSTEM MODELS
Considering the classic Wyner’s wiretap model [10], the

legitimate sourceS transmits confidential information signal
to the legitimate destination nodeD over the main channel.
The eavesdropperE attempts to intercept the information by
decoding its received signal from the eavesdropper channel.
It is assumed that the main and eavesdropper channels ex-
perience correlatedα-µ fading due to antenna deployments,
proximity or similarity of scatterers around them [2], [3].The
channel coefficients are assumed to remain constant during a
block period.

The received signal at nodeX, X ∈ { D, E}, is expressed as

yX = hXx+ w, (1)

wherex is the transmitted signal with energyEs, hX denotes
the channel between nodeS andX, w represents the additive
white Gaussian noise (AWGN) with power spectral density
N0, which, without loss of generality, is assumed to be the
same for both channel links.
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From (1), the instantaneous signal-to-noise ratio (SNR),γX ,
received at nodeX, X ∈ {D,E}, can be expressed as

γX =
|hX |2Es
N0

. (2)

The joint α-µ probability density function (PDF) of the
correlated SNR can be written using [11, Eq. (28)] withL = 2
andC12 = ρ2 [11, Eq. (6) and Eq. (10)]:

fγD,γE (γD, γE) =
αDαEψ
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D
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In (3), ρ ∈ (0, 1] is the correlation coefficient between
the SNRsγD and γE ; αX is the nonlinearity parameter
due to the propagation of clusters of multipath waves in a
nonhomogeneous environment andµX denotes the number
of multipath clusters [5]. The parameterγ̄X = E(|hX |2)·Es

N0

denotes the average SNR of the corresponding link and

ψ′
X =

(Γ(µX+2/αX )
Γ(µX )

)

αX
2 .

Remark 1: When ρ = 0, the PDF in (3) reduces to the
product of marginal PDFs ofD andE using [11, Eq. (33)] as
g(β1, β2) = 1 [11, Eq. (6)] andCij = 0 [11, Eq. (10)]. The
ASC and SOP results of [6], [7] will apply.

III. AVERAGE SECRECYCAPACITY ANALYSIS

Under active eavesdropping, the nodeS has full channel
state information (CSI) of both the main and eavesdropper
channels, from whichS can adapt the achievable secrecy
rate accordingly [12]. In this case, the instantaneous secrecy
capacity of the considered system is defined asCs(γD, γE) =
[ln(1 + γD)− ln(1 + γE), 0]

+ [13]. The ASC,Cs, over the
correlatedα-µ fading channels can be evaluated as [4]

Cs =

∫ ∞

0

∫ ∞

0

Cs(γD, γE) · fγD,γE (γD, γE) dγDdγE

=
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=C1 − C2. (4)

On substituting (3) in the expression forC1, utilizing the se-
ries expansion for the Laguerre polynomial [8, Eq. (8.970.1)],
and then applying the transformationγαE/2

E = t, C1 can be
re-written using [8, Eq. (3.381.1)] as
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Now, utilizing [8, Eq. (8.970.1)] and the Meijer G represen-
tation of ln(·), exp(·), and Υ(·, ·) from [14, Eqs. (8.4.6.4),
(8.4.3.1), and (8.4.16.1)], respectively, the integral in(5) is
converted to the following form using [15, Eq. (6.2.8)]:
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The integral in (6) can be simplified with the aid of [16,
Eq. (2.3)] and is given by (7) at the top of the page. The
closed-form expression forC2 can be obtained in a similar
manner and is given by (8) at the top of the page. The ASC
can, thus, be evaluated by substituting (7) and (8) in (4). The
EGBFHF in (7) and (8) can be efficiently implemented in
Mathematica [7] and MATLAB [17].

IV. SECRECY OUTAGE PROBABILITY ANALYSIS
The SOP is a useful secrecy performance metric for the

passive eavesdropping scenario, where nodeS does not have
CSI on the eavesdropper’s channel. The SOP is defined as the
probability that the instantaneous secrecy capacity is below a
predefined secrecy rateRs [12], i.e.,
Po =Pr [Cs(γD, γE) ≤ Rs] = Pr [γD ≤ ΘγE +Θ− 1]

=

∫ ∞

0

∫ (1+γE)Θ−1

0

fγD,γE (γD, γE) dγDdγE , (9)
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whereΘ = exp(Rs) ≥ 1. In order to solve (9), we substitute
the joint PDF ofγD andγE from (3) into (9). Further, using
[8, Eq. (8.970.1)] and applying the transformationγ(αD/2)

D =
u, the inner integral in (9) is solved with the aid of [8,
Eq. (3.381.1)] to yield
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Now, using [8, Eq. (8.354.1)] and [8, Eq. (8.970.1)], (10)
can be written after some manipulations as
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Depending on the value ofαD(µD + n + r)/2, Eq. (11) is
solved in the following two ways:

1) αD(µD + n + r)/2 is not an integer: For this case,
utilizing [18, Eq. (10)] and substitutingγαE/2

E = u, the integral
in (11) is converted to a form similar to [14, Eq. (2.24.1.1)].
Hence, the closed-form expression for the SOP is written as
(12) at the top of the page.

2) αD(µD + n + r)/2 is an integer: In this case, we
expand(1+ΘγE/(Θ− 1))αD(µD+n+r)/2 using the Binomial
Theorem [9, Eq. (3.1.1)] and then apply the transformation
γ
αE/2
E = v to get a form similar to [8, Eq. (3.381.4)]. After

some simplifications,Po is given by (13) at the top of the
page.

V. A SYMPTOTIC SECRECYPERFORMANCEANALYSIS

A. Asymptotic ASC Analysis

For the asymptotic ASC analysis, let us assume thatγ̄D =
γ̄E = γ̄ → ∞. Using [7, Eq. (6)] and applying the trans-
formation γD = xγ̄ and γE = yγ̄, the asymptotic ASC is
approximated after some simplifications as
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the Gauss Laguerre integration [9, Eq. (25.4.45], respectively,
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Similarly, I2 can be solved utilizing [8, Eqs. (8.970.1) and
(3.381.3)] to get

I2 =
4ψ′

D
−µD

αDαEψ′
E

2
αE

k
∑

i=0

(−1)i

i!

(

k + µD − 1
k − i

) N
∑

j=1

wjf2(tj),

(16)

wheref2(t) = tµE−1 ln
(

t
ψ′

E

)
2

αE LµE−1
k (t)Γ(µD + i,

ψ′

Dt
αD
αE

ψ′

E

2
αE

).

On substituting (15) and (16) into (14), the asymptotic ASC
is obtained.

Remark 2: The asymptotic ASC depends on the correlation
coefficient,ρ, but is independent of the average SNR,γ̄.

B. Asymptotic SOP Analysis
For the asymptotic analysis, let us observe (12) and (13) at

high values of̄γD for a constant̄γE . It is noted that for high
γ̄D, the dominant term in the expression forPo corresponds
to the smallest power of̄γD. This occurs forn = r = 0. As a
result, the asymptotic slope of the SOP curves isαDµD

2 , which
indicates that the secrecy diversity order of the considered
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Fig. 1. Comparison of simulated, analytical (4), and asymptotic (14) ASC
versus average SNR for different values ofρ.
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Fig. 2. Comparison of asymptotic ASC performance penalty versusρ for
different values ofα andµ.
system depends only on the non-linearity and the multipath
clusters of the main channel for a givenγ̄E .

Remark 3: The asymptotic SOP performance will improve
for a channel with less severe nonlinearity and more scattering
clusters (i.e., greater values ofα andµ). Using the asymptotic
SOP analysis, it is possible to obtain the exact value of
the correlation dependent horizontal shift or SNR penalty to
achieve a givenPo which is elaborated in the description of
Fig. 3.

VI. N UMERICAL RESULTS AND DISCUSSIONS
In this section, we plot the derived analytical results as-

suming thatαD = αE = α and µD = µE = µ. Although
the derived exact expressions for ASC and SOP are expressed
in terms of infinite series, these infinite summations converge
quickly for finitely small values ofk and r. To numerically
evaluate the infinite series in (7), (8), (12), and (13), we
have truncated the series in each expression to the same finite
number of terms N = 10, which results in a sufficiently small
truncation error. and the simulation results match with the
analytical results upto fourth significant digit. The convergence
of the infinite series can also be proved analytically using
Cauchy Ratio test [19].

Fig. 1 shows a comparison of ASC for different values ofρ
with α = 2 andµ = 1. It is seen from the figure that the ASC
is better for lowerρ compared to the ASC for higherρ. This
is because a larger value ofρ represents a stronger correlation
between the main and eavesdropper channels indicating that
the eavesdropper is very close to the legitimate receiver. We
also note from Fig. 1 that at high SNR, the ASC saturates
and there is no further improvement in ASC, which is also
corroborated by the asymptotic ASC analysis presented in
Section V-A.

0 10 20 30 40 50

10-2

10-1

100

Fig. 3. Comparison of simulated, analytical (12), and asymptotic SOP versus
γ̄D for different values ofρ and γ̄E=10 dB.

The asymptotic ASC performance penalty due to correlation
shown in 2 can be quantified by computing the difference be-
tween the asymptotic ASC using (14) and the asymptotic ASC
using [7, Eq. (7)] for the uncorrelated main and eavesdropper
channels. As seen from the figure, the ASC performance
penalty increases withρ. Moreover, the ASC performance
penalty is lesser for higher values ofα andµ which indicate
better channel conditions.

A comparison of SOP for different values ofρ as a function
of γ̄D for γ̄E=10 dB with fixedRs=1 is shown in Fig. 3. It is
observed that as the value ofρ increases, the SOP performance
improves for moderate to high̄γD while the converse is true
for lower values ofγ̄D. This observation is in line with the
results obtained in [20]. Further, we observe that forρ=0.5,
the SOP is0.03273 and 0.00977 at 40 dB and 50 dB SNR,
respectively. Thus, the slope of the curve islog10(0.03273)−
log10(0.00977) = 0.525051 ≈ 0.525 = αDµD/2, which
is also justified by the asymptotic SOP analysis in Section
V-B. Fig. 3 also highlights that the effect of correlation is
to introduce some sort of horizontal shift or SNR penalty
for a given SOP. For instance, forPo = 10−2, the required
γ̄D ≈ 46 dB for ρ = 1 while γ̄D ≈ 50 dB for ρ = 0.5. This
indicates an SNR penalty of around 4 dB. Moreover, this SNR
penalty significantly depends on the correlation between the
two channels because the penalty is low asρ increases from
0.1 to 0.5 and and is higher whenρ increases from 0.5 to 1.
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