
IEEE Copyright Notice

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

Accepted to be Published in: The 13th IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO 2019), June 16 – 20, 2019, Umeå,
Sweden

ar
X

iv
:1

90
5.

04
18

1v
1

 [
cs

.L
G

]
 1

0
M

ay
 2

01
9

Autonomous Management of Energy-Harvesting
IoT Nodes Using Deep Reinforcement Learning

Abdulmajid Murad1*, Frank Alexander Kraemer1, Kerstin Bach2, Gavin Taylor3

1Department of Information Security and Communication Technology
2Department of Computer Science

Norwegian University of Science and Technology, Trondheim, Norway
3Department of Computer Science, United States Naval Academy, Annapolis, USA

*Corresponding author: abdulmajid.a.murad@ntnu.no

Abstract—Reinforcement learning (RL) is capable of managing
wireless, energy-harvesting IoT nodes by solving the problem of
autonomous management in non-stationary, resource-constrained
settings. We show that the state-of-the-art policy-gradient ap-
proaches to RL are appropriate for the IoT domain and that
they outperform previous approaches. Due to the ability to model
continuous observation and action spaces, as well as improved
function approximation capability, the new approaches are able
to solve harder problems, permitting reward functions that are
better aligned with the actual application goals. We show such
a reward function and use policy-gradient approaches to learn
capable policies, leading to behavior more appropriate for IoT
nodes with less manual design effort, increasing the level of
autonomy in IoT.

Index Terms—reinforcement learning, IoT, power management

I. INTRODUCTION

Digitizing domains like smart cities, precision agriculture,
manufacturing, and healthcare requires the instrumentation
of the physical world with wireless IoT nodes to sense
environmental variables. The actual logic of an IoT device
can be rather simple, as they usually make measurements,
prepare the data and send it into a central fusion center for
aggregation. However, challenges arise from the limited energy
resources of the wireless and miniaturized nodes. Therefore,
the choice of parameters like duty cycle (percentage of time
a node is active) and sampling frequency is crucial since
they have a dominant effect on the energy consumption and
performance of the node. Currently, such parameters are often
assigned manually to an entire family of IoT devices, and stay
constant during deployment, or are determined by manually
fine-tuned algorithms. However, IoT in its full scale presents a
setting where nodes are placed in dynamic and non-stationary
environments, so that a one-fits-all approach and manual
design efforts are impossible. Future solutions should instead
be based on autonomous nodes that optimize their behavior
by learning within their specific environment.

Our vision for a more autonomous and hence scalable
IoT is inspired by recent developments in deep reinforcement
learning (RL), and its success in building capable autonomous

agents with little manual design effort in complex domains.
Instead of manually adapting IoT nodes, we want engineers
to only formulate the goal in the form of a reward function
for the IoT nodes as close to the actual application goal as
possible.

Reinforcement learning has indeed been used to control IoT
nodes by various works, especially for power management [1]–
[3]. However, these approaches use older RL techniques like
SARSA and are constrained by coarsely discretized action and
observation spaces, and tackle only simpler problems. Many
approaches [4]–[6] thus formulate reward functions in terms of
indirect indicators like energy budget. Those are often easier
to learn, but are imperfectly correlated with actual goals. This
not only adds manual design effort, but also doesn’t live up
to the potential of RL. Instead, RL should be used to sort out
the complicated and node-specific technicalities on its own
through learning.

In this paper, we explore deep RL as an end-to-end approach
to enable autonomy within IoT nodes. For the training, we
use a policy gradient method, namely Proximal Policy Op-
timization (PPO, [7]). We use neural networks as function
approximators to learn state abstractions and effective policies
directly from continuous input data. We also develop a reward
function that closely reflects application goals. We automated
the search for the best reward signal by defining it as hy-
perparameters from the application perspective. Additionally,
we conduct a series of simulations to explore the influence of
reward function design on a node’s behavior.

To manage the computational complexity, we propose train-
ing the agent on a server as a part of device management [8]
and update the node regularly based on a static or dynamic
update interval [1]. To this end, we built a sensor simulator,
called Sensor Gym (based on OpenAI Gym [9]), as a toolkit
for training and comparing various RL algorithms in an IoT
context.

The results in this paper show that modern and more
successful deep RL techniques outperform the older ones,
and that they make it possible to use more sensible reward
functions that are based on IoT application goals. This leads
to tractable learning, less manual design efforts, and hence
scalable autonomy for IoT systems.©2019 IEEE

The rest of this paper is organized as follows: Sect. II
provides a brief overview of deep reinforcement learning, and
Sect. III presents related work that adopted RL to optimize
energy-harvesting sensor nodes. In Sect. IV, we describe the
proposed system setup, and in Sect. V we present a baseline
for performance and suitability of PPO in an IoT by comparing
it to an older RL technique and study the performance with a
reward function based on energy neutrality. We then introduce
a reward function closer to the application goals in Sect. VI,
and present the results in Sect. VII.

II. DEEP REINFORCEMENT LEARNING

In reinforcement learning an agent learns to better per-
form a task by learning from its experiences in interacting
with that task. Mathematically, the task is expressed with a
Markov Decision Process (MDP). An MDP is a tuple M =
(S,A,P, R, γ), where S is the set of all states the problem
might be in; A is the set of all actions the agent might take in
response; P is a transition kernel describing the probabilities
of transitioning between two states when performing an action
(p(s′|s, a) ∀s, s′ ∈ S, a ∈ A); R : S → < is a reward function
(for example, positive numbers in states where the agent has
achieved its goal, and negative numbers in states where the
agent has harmed itself); and γ ∈ (0, 1) is a discount factor,
which is used to describe how much the agent prefers rewards
in the short term to rewards in the long term. The behavior of
the agent is expressed as a policy π : S → A.

The quality of a policy can be measured using the value
function of a state V π(s), or, the Q-value of a state-action
pair Qπ(s, a):

V π(s) =R(s) +

∫
S
p(s′|s, π(s))V π(s′)ds′ (1)

Qπ(s, a) =R(s) +

∫
S
p(s′|s, a)Qπ(s′, π(s′))ds′ (2)

The goal of the agent is to learn a policy which produces
high value for all states by collecting trajectory samples of
the form (st, at, rt, st+1), where t denotes the timestep, and
st, st+1 ∈ S, at ∈ A, rt = R(st).

A variety of learning algorithms for RL exist. One tradi-
tional approach is to begin by learning Q-functions as accu-
rately as possible using function approximation techniques;
some are used in previous work applying RL to IoT, and will
be introduced here.

Samples are themselves collected using a policy πsamp,
where at = πsamp(st). The Q-functions of this sampling
policy can be learned using an algorithm called SARSA;
this is known as on-policy learning. Alternatively, the Q-
functions of an improved policy may be learned using an
algorithm known as Q-learning; this is known as off-policy
learning. In either case, given Q-function approximations, a
new and likely-improved policy π∗ is implied by π∗(s) =
arg maxa∈AQ

π(s, a). With sufficient sampling, alterations to
allow for exploration of the full state space, and (in the on-
policy case) alternation between sampling, Q-function approx-
imation and policy improvement steps, these approaches are

proven to converge to excellent policies. This is a convenient
guarantee, but requires the state and action spaces to be
finite and small enough to be easily tabulated. More complex
approaches to value learning exist which allow state and action
spaces to be continuous, but this results in a loss of these guar-
antees, and potentially much less capable policies. In recent
years, these approaches have been further improved upon by
approximating functions with deep neural networks [10], but
they remain fundamentally difficult to apply successfully to
continuous and complex domains.

In contrast with value-based methods, policy-search meth-
ods directly search for a parameterized policy πθ. The result is
a stochastic policy that learns a direct mapping from states to
a probability distribution over actions, where preferred actions
have a higher probability of being sampled. This output of a
distribution makes it suitable for continuous domain tasks.

Policy gradient methods are the most prominent of policy-
search methods. They optimize a policy by maximizing the
value of sampled states V πθ (st) by performing gradient ascent
over the parameters θ. Various approximations to this basic
approach exist, with advantages in training time and sample
efficiency. In this paper, we use Proximal Policy Optimization
(PPO), one of the most successful of these approaches [7].
PPO is a trust region method, which seeks to iteratively maxi-
mize performance of πθ compared to its previous iteration,
without changing it too much. This allows for continuous,
stable improvement, even in continuous and complex domains
such as robotic running and difficult Atari games. This success
in demanding domains make RL ready for application to real-
world problems such as IoT.

III. RELATED WORK

Several works have already adopted RL within various
contexts of IoT. An example is a dynamic power manager for
energy-harvesting wireless sensor networks [11]. Here Hsu et
al. used the Q-learning algorithm to train an agent to choose
an action from four levels of duty cycles. Their environment
state space is based on the distance from energy neutrality
(i.e., the difference between harvested and consumed energy),
the harvested energy, and the current battery level, while
the reward function is based on the distance from energy
neutrality and the current energy storage level. They extended
this work in [12] to include quality of service (QoS), both
in the state space and the reward function. Additionally, in
[3], they included meeting a requested throughput along with
the energy level in the reward function and added penalizing
terms for overcharging, deep-discharge, and depletion of the
energy storage. Furthermore, in [4] and [5], they used fuzzy
decision processes to model an energy harvesting node as a
fuzzy environment and used a modified Q-learning with fuzzy
reward to train an RL agent.

Since the reward function formalizes the goal of an RL
setup, Rioual et al. [13] discussed the choice of the reward
function in the management of energy-harvesting IoT nodes
but covered a limited range of design choices. To avoid
intractable learning in old RL approaches when using an

application-level reward, most of the previous work used
reward shaping, which is an alternative method to guide the
learning process by rewarding the agent for achieving subgoals
or developing an approximation to the desired behaviors.
Unless the reward shaping function is based on a state-
dependent potential, it may lead to learning suboptimal or
locally-optimal policies [14]. Almost all previous work of
using RL in IoT uses manually-designed shaped functions that
produce arguably acceptable results without justifying how
well the reward frames the application goal.

RL has also been used for power allocation in energy-
harvesting communication systems. Ortiz et al. [15] used
the SARSA algorithm with linear function approximation to
learn a power allocation policy in two-hop communication.
The objective of their policy is to maximize throughput of a
communication system, but they designed a reward function
based on the total power assigned to transmissions, which
they claimed was correlated. They simulated a communication
environment and approximated the state space with discrete
features that indicate battery level and its constraints, harvested
energy over an hour, characteristics of the communication link,
data arrival process, and the data buffers at the communicating
nodes. Similarly, Aoudia et al. [6], used an actor-critic method
with linear function approximation to learn approximation
for both policy and value function. They used a Gaussian
policy to generate continuous values of bounded packet rates
and summarized the state space by continuous values of
the current residual energy. The objective is to maximize
transmitted packet rate while sustaining perpetual operation;
hence they designed a reward function to be a multiplication
of normalized residual energy and the packet rate.

Shresthamali et al. [2] used a SARSA(λ) RL algorithm
to develop adaptive power management for a solar-energy
harvesting sensor node. To simulate a sensor node, they used
a scaled-up version of a real sensor powered by a battery and
a solar panel, and used solar radiation data to calculate hourly
harvested energy. They designed a reward function based
the distance from energy neutrality, defined as the difference
between the current level of energy and the optimum battery
level, which they calculated to be 60 % of the battery’s
maximum level. They trained an agent in episodes of 24 hours
and rewarded it at the end of a training episode. The state space
consisted of discretized information about the battery level, the
distance from energy neutrality, the harvested energy, and the
weather forecast, which they approximate by calculating the
total amount of energy harvested in a particular day.

Fraternali et al. [1] focused on the configuration of the sam-
pling rate of indoor energy harvesting sensors. The objective
of their agent is to maximize the number of samples while
avoiding power failure, by designing a reward function that
depends on the sampling rate and a penalty for power failure.
They used Q-learning with a state space that included light
intensity, the voltage level of the energy storage, and the cur-
rent sampling rate. Another example of using RL for adaptive
sampling can be found in [16]. Here Dias et al. proposed
using Q-learning for adaptive sampling rate adaption to avoid

st
<latexit sha1_base64="d8nC40Exxxj2zwT3PnvKGAC+psg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9PHfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9S6r7n2tUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzpvDjvzseiteDkM8fwB87nD2pIjeA=</latexit>

rt
<latexit sha1_base64="54tIZQls6Ho7ty/gq69KlGKIU6E=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB93HfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9S6r7n2tUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzpvDjvzseiteDkM8fwB87nD2jCjd8=</latexit>

at
<latexit sha1_base64="/ryZ6AUAZgYN0e5MfVTmOWP82ys=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirlEB1gZVGtu3Z2DrBKvIDUo0BxUv/rDiCWKa2SSWtvz3Bj9lBoUTPJZpZ9YHlM2oSPey6imils/nd86I2eZMiRhZLLSSObq74mUKmunKsg6FcWxXfZy8T+vl2B446dCxwlyzRaLwkQSjEj+OBkKwxnKaUYoMyK7lbAxNZRhFk8egrf88ippX9S9y7r7cFVr3BZxlOEETuEcPLiGBtxDE1rAYAzP8ApvjnJenHfnY9FacoqZY/gD5/MHhCCN4g==</latexit>

Deployment
(Policy Update)

Data
Collection

IoT Node

Device Management

⇡✓
<latexit sha1_base64="fIEFXv0E8MoHTCCRbtnfOk9B/8I=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gOaUDbbTbt0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74Tju5nfeeLaiEQ94iTlQUyHSkSCUbSS76ein/s44kin/WrNrbtzkFXiFaQGBZr96pc/SFgWc4VMUmN6nptikFONgkk+rfiZ4SllYzrkPUsVjbkJ8vnNU3JmlQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7n9TKMboJcqDRDrthiUZRJggmZBUAGQnOGcmIJZVrYWwkbUU0Z2pgqNgRv+eVV0r6oe5d19+Gq1rgt4ijDCZzCOXhwDQ24hya0gEEKz/AKb07mvDjvzseiteQUM8fwB87nD3OakfI=</latexit>

Sensor Gym

…
…

Fig. 1. System setup of agent-environment interaction

oversampling, while not missing environmental changes. They
introduced a variable that describes the quality of measurement
as the difference between two consecutive measurements and,
depending on a specific application, this difference should be
less than a threshold value. The action space is a range of
possible sampling intervals, while the reward function is based
on the transmission avoided and the quality of measurements.

IV. SYSTEM SETUP

In this paper, we propose and apply deep RL solutions
for training RL agents to control IoT nodes autonomously.
We use PPO as a policy gradient method for optimizing the
agent’s policy, using neural networks as function approxima-
tors. Executing the agent’s policy corresponds to inference
in a neural network which has become feasible even for
computationally- and energy-constrained IoT nodes [17]. We
propose to integrate the much more computation-intensive
training phase on a server, as a part of the IoT device-
management [8], illustrated in Fig. 1. The deployed agents
can be updated regularly based on a static or dynamic update
interval [1].

To train the agent, we built a simulator of a general
sensor node with an energy-harvesting solar panel, an ideal
energy buffer, and a load with variable duty-cycles. We base
the simulator on the OpenAI Gym, which is a toolkit for
developing and comparing RL algorithms [9]. We base our
sensor specification on a realistic energy-harvesting IoT node.
The simulated sensor has an energy buffer with a maximum
capacity of Bmax = 40 W and has a load that consumes
energy during a time step according to its duty cycle. The
maximum consumed energy in an hour is Ecmax = 0.5 W h,
which corresponds to a duty cycle of Dmax = 100 % during
that hour. We simulate the harvested energy by calculating the
energy generated by a 6 W solar panel using solar radiation
data. At time step t, we represent the level of the energy buffer
as Bt, the harvested energy as Eht , the consumed energy as

Ect, and the duty cycle, which is determined by the node’s
policy, as Dt. The consumed energy is calculated according
to:

Ect =

{
5Dt if Bt > 5Dt

0 if Bt ≤ 5Dt
(3)

The next level of the energy buffer is calculated according to:

Bt+1 = min(Bt + Eht − Ect, Bmax). (4)

To handle a continuous action space A = [0, Dmax], the
policy resulting from PPO is defined as a Gaussian distribution
with mean µ(st) and standard deviation σ(st), both of which
are approximated by a neural network with parameters θ:

πθ(at |st) =
1

σ(st)
√

2π
exp

(
− (at − µ(st))

2

2σ(st)
2

)
(5)

Thus, the actions are real numbers, chosen from the normal
distribution in 5. Our neural network architecture has an output
layer with two neurons which are the approximation of the
mean and standard deviation of the Gaussian policy.

In Section V, we demonstrate that PPO outperforms older
RL approaches on previously-proposed reward functions.
Then, in Section VI, we demonstrate that PPO can develop
good policies for reward functions that make the domain more
difficult, but better capture desired behavior. We also illustrate
that older RL approaches cannot produce similarly competent
policies.

V. REWARD FUNCTION BASED ON ENERGY NEUTRALITY

To get a baseline for the performance and suitability, we first
apply PPO in the same setting as Shresthamali et al. [2], who
used the SARSA(λ) algorithm and designed a reward function
based on the distance from energy neutrality. The concept
of energy-neutrality was introduced by Kansal et al. [18],
which states that a node is in energy-neutral operation if the
consumed energy is less than or equal to the harvested energy.
Accordingly, the distance from energy neutrality is redefined
as the difference between the current level of the energy buffer
Bt and the optimum buffer level B0 to account for the variance
in the harvested energy over a period:

Edistt = |Bt −B0|. (6)

In [2], the reward function is formulated in terms of this
distance to energy neutrality:

RE(st) =

500 if Edistt = 0 W h

500− Edistt
10 if 0 W h < Edistt ≤ 1 W h

10− Edistt
100 if 1 W h < Edistt ≤ 5 W h

−500 if 5 W h < Edistt
(7)

The action space is defined as discrete values of five duty
cycles, which are

at ∈ A = {20 %, 40 %, 60 %, 80 %, 100 %} (8)

5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50
Annual mean of RMS Edistday (over 2011)

0

1

2

3

4

5

6

7

8

N
um

be
r o

f A
ge

nt
s

SARSA Policy
SARSA Mean

PPO Policy
PPO Mean

Fig. 2. Performance comparison of 20 agents trained with PPO and
SARSA(λ)

The observation space contains vectors with four observa-
tions:

st = [Bt,Edistt ,Eht ,Wfday], (9)

where Wfday represents the weather forecast of the day. In
[2], actual harvested energy data in a day are calculated before
the training and used to give information about the expected
weather. The agents can leverage this information to plan their
energy expenditure accordingly.

While the state space requires discretization for SARSA
with a hand-designed mapping, policy approximation has the
advantage of handling continuous state spaces by generaliza-
tion, hence eliminating another step of manual mapping an
IoT problem to RL.

To compare the capabilities of SARSA and PPO, we trained
20 agents with PPO and 20 with SARSA with data of Tokyo
2010 and evaluated their policies on data of Tokyo 2011,
using the same settings and data as [2]. Figure 2 represents
a histogram for performance results of both policies. Here,
the root mean square (RMS) of Edistday values are used to
measure the deviation from energy-neutrality after a one-day
window and the mean of daily deviation over the whole year
to compare policies. We observe that the average PPO agent
is considerably better than the best SARSA policy and that
almost all PPO agents are better than the average SARSA
agent. These excellent results support our motivation to use
PPO for IoT agents.

We also take a more detailed look at the behavior of the
agents by comparing their results over a one-week window.
Figure 3 shows the performance results of PPO, SARSA
policies, and linear programming when running them over one
week of Tokyo weather data in February of 2011. The linear

0

20

40
H

ar
ve

st
ed

 E
ne

rg
y(

%
)

25

50

75

100

D
ut

y
C

yc
le

 (%
)

Linear Programming Optimization Method
 RMS Edistweek = 4.17%

25

50

75

100

D
ut

y
C

yc
le

 (%
)

Agent Trained with PPO Algorithm
 RMS Edistweek = 5.43%

2011-02-01 2011-02-02 2011-02-03 2011-02-04 2011-02-05 2011-02-06 2011-02-07 2011-02-08
Time (Days)

25

50

75

100

D
ut

y
C

yc
le

 (%
)

Agent Trained with SARSA() Algortihm
 RMS Edistweek = 5.59%

Fig. 3. Comparison of PPO policy to SARSA(λ) and offline policy for a week of Tokyo 2011

programming policies are presented in [18], and use linear
programming and acausal data (i.e., the exact future energy
intake, hence not practical) to determine the optimal duty cycle
given the energy neutrality constraint; this represents the upper
limit of performance. The three policies started the week off
with an energy level of Bt = 60 % of Bmax and try to maintain
them at this level. RMS Edistday values are used to measure
the deviation from energy-neutrality over the whole week, and
we observe that the SARSA-trained policies have the highest
deviation of (5.59 %), PPO-trained policies have (5.43 %) and
the optimal policy based on linear programming has (4.17 %).

Figure 3 illustrates a problem with the reward function based
on distance from energy neutrality (7): The duty cycles of
both RL policies are subject to high variance, often oscillating
between highest and lowest duty cycle, instead of choosing
a smoother course with more mid-range values. From an
RL point-of-view, this maximizes the reward, but it is not
a behavior appropriate for IoT nodes. Typically, we want to
cover a phenomenon as continuously as possible, and spread
out measurements over time, which corresponds to a smoother
duty cycle.

Because PPO is so capable on this easier problem, in the
next section we design a new, more difficult reward function,

which no longer rewards the intermediate goal of energy
neutrality, but more clearly expresses the goals for the agent.

VI. REWARD FUNCTION BASED ON APPLICATION GOALS

Our objective in this section is to create a reward function
that is closer to the actual application goals of an IoT system in
order to encourage more desirable behavior. In particular, we
want to depart from the inclusion of energy terms in the reward
function, since energy is only a resource to be managed, but
not a goal to be optimized. Instead, we want the agent to
maximize the sum of the duty cycle over time Γ:

GD =

Γ∑
t=0

Dt. (10)

At the same time, IoT nodes must not empty their energy
buffer completely. Not only would this prevent the node from
taking any measurements until enough energy is harvested
again, but it could also lead to the loss of data or leave the
node in an undefined state. Since the sensor gym simulates

a failure when the idealized buffer is emptied, we want to
minimize the occurrence of failures over time Γ

Gz =

Γ∑
t=0

{
1 if Bt = 0
0 if Bt > 0

(11)

To ensure a smooth course of the duty cycle, corresponding to
a continuous stream of measurements, we want to minimize
the variance of the selected duty cycles, and so minimize

GVar =

Γ∑
t=0

Vart , (12)

where the variance in the duty cycle is defined in an epoch t
as the absolute difference to the previous duty cycle

Var t = |Dt −Dt−1|. (13)

We combine the conflicting objectives (10), (11), (12) into
one reward function RA:

RA(st) =

{
Dt − ζ[Vart]

2 if Bt > 0
−z if Bt = 0

(14)

The agent receives its reward by maximizing the duty cycles
Dt. To punish variance, we reduce the reward with the squared
variance, scaled by a damping factor ζ. In the case of a failure,
the reward is negative, using the punishment term z. The
actual values of z and ζ are hyperparameters of the reward
function, and we will have a detailed look at them in the next
section.

We generalized the reward function in (14) to accommodate
other RL techniques of sparse reward assignments. In these
techniques, the agent gets a reward at the end of a training
episode E. An episode consists of a set of epochs (time steps)
that range from t = 1 to t = T , thus E = {1, 2, ..., t, ..., T}

RA(sT) =

T∑
t=1

{
Dt − ζ[Vart]

2 if Bt > 0
−z if Bt = 0

(15)

If the reward is assigned at every epoch, T = 1 and (15)
reduces to (14).

We considered the relevant attributes of the environment in
the definition of state space. These attributes are observations
of the current level in the energy buffer, current harvested
energy, and the weather forecast of the whole episode. To
simulate the harvested energy, we use solar radiation data to
calculate the harvested energy in every hour. The weather
forecast information is included to enhance performance by
giving an estimate of the expected solar energy for that par-
ticular episode. This weather information can be acquired from
external sources or real prediction algorithms with sufficient
accuracy as the one presented in [19]. For our case study, we
simulate weather information by calculating the total harvested
energy in a particular day and introduce a 20 % error to
mimic inaccuracies in the weather forecast. We also include
the previous duty cycle Dt−1 in the state space, so the
agent makes an informed decision to avoid high variability

in the duty cycle. The agent takes the observation as input
summarized in a vector of four continuous values

st = [Bt,Eht ,Wft , Dt−1]. (16)

PPO allows us to use a continuous action space correspond-
ing to setting the operational duty cycle of a node. This enables
more accurate control of the consumed energy, and therefore
the utility of a node. Therefore, the action space is

at ∈ A = [Dmin , Dmax]. (17)

Depending on IoT application requirements, the minimum
value of the duty cycle can be set accordingly. For our case,
we set it to Dmin = 0.

VII. RESULTS AND DISCUSSION

We conducted a series of simulations to systematically
explore the influence of the designed reward function RA
and training hyperparameters on the agent behavior. In total,
we trained more than 300 agents on data of the year 2010
and tested their performance on data of the year 2011, using
different values for the damping factor (ζ) for the reward
function. For the PPO algorithm, we also trained with different
values for the hyperparameters, namely the learning rate (α),
batch size (number of state transitions used to calculate policy
gradient),

discount factor (γ) and trace decay parameter (λ) of the
advantage function [7]. In the following, we discuss the
learning rate α and damping factor ζ in more detail.

The learning rate (α) has a significant impact on the learning
process as shown in Fig. 4. The x-axis corresponds to the
learning rate, which we chose to tune in the range of 10−5

to 10−1. The y-axis in the upper plot corresponds to the
yearly utilized energy (normalized by the maximum possible
utilization), the y-axis in the lower plot corresponds to the
mean-variance in duty cycle over the whole year. Each dot in
the figure represents a single agent, and its color indicates the
number of times the agent has emptied the energy buffer, i.e.,
failed. Training with low learning rates (α < 10−3) results
in agents that learn poorly or not at all. These agents pick
constant and low duty cycles, which results in low variance
and few power failures, thus fulfilling application goals (11)
and (12), but failing to achieve the goal of maximizing utilized
energy in (10).

The choice of damping factor ζ in the reward function also
has a significant impact on the resulting behavior. Figure 5
shows the results of all trained agents running over the whole
year of 2011 for different damping factors ζ on the x-axis. We
observe that agents trained with values of ζ in the approximate
range (10−2 < ζ < 10−1) display the desired behavior of less
variability and better energy utilization, which translates to
an appropriate, continuous measurement coverage of the IoT
node. We also observe that training with ζ in the approximate
range (ζ ≥ 10−1) leads to overdamped agents, which have
less variance and fewer power failures, but also less energy
utilization. Contrarily, most agents trained with values of ζ in
the approximate range (ζ ≥ 0.1) are underdamped, with few

0

20

40

60

80

100

U
til

iz
ed

 E
ne

rg
y

(Y
ea

r %
)

1

10

100

1000

Power
Failures (Year)

10
5

10
4

10
3

10
2

10
1

Learning rate ()

0

5

10

15

20

25

30

35

V
ar

ia
nc

e
M

ea
n

(Y
ea

r)

1

10

100

1000

Fig. 4. Influence of the learning rate (α) on agent’s learning process in terms
of variance in duty cycle and utilized energy.

exceptions as outliers. These underdamped agents have high
utilized energy, but also higher variability in the duty cycle
and more frequent power failures.

Depending on the choice of damping factor ζ and failure
penalty z in the reward function RA, agents try to maximize
rewards by prioritizing among the conflicting objective (10),
(11), (12). Accordingly, agents learn various policies that
achieve different performance on each objective, as shown
in Fig. 6. This enables choosing between different trade-off
agents based on the context of individual IoT applications.

In comparison, using the same reward function RA for
SARSA-trained agents, achieves mediocre results at best, as
shown in Fig. 6. The SARSA agents (shown as crosses) score
poorly in terms of energy utilization and have a high variance.
We attribute their relatively low failure rate to low utilization.
This is as expected since the discretization necessary for
SARSA does not offer the granularity needed for effective
learning.

We also take a more detailed look at the behavior over a
one-week window. Figure 7 shows the performance of four
selected agents trained with different damping factors ζ. The
first day yields much solar power, so all agents utilize this
energy by setting their duty cycles to high values. Since the

0

20

40

60

80

100

U
til

iz
ed

 E
ne

rg
y

(Y
ea

r %
)

1

10

100

1000

Power
Failures (Year)

10
3

10
2

10
1

10
0

Damping Factor ()

0

5

10

15

20

25

30

35

V
ar

ia
nc

e
M

ea
n

(Y
ea

r)

1

10

100

1000

Fig. 5. Influence of the damping factor (ζ) in RA(t) on an IoT node’s
behavior in terms of utilized energy and variance in duty cycle.

0 5 10 15 20 25 30
Variance Mean (Year)

0

20

40

60

80

100

U
til

iz
ed

 E
ne

rg
y

(Y
ea

r %
)

PPO Agents
SARSA() Agents

1

10

100

1000

Power
Failures (Year)

Fig. 6. Performance comparison of SARSA(λ) agents with PPO agents using
the reward function RA

weather forecast for the next day indicates less energy, all
agents reduce their duty cycles. However, the pattern of the
decrease differs according to the damping factor. Efficiently
damped agents show the desired gradual decrease, while
underdamped agents increase sharply and oscillate between

0

20

40
H

ar
ve

st
ed

 E
ne

rg
y(

%
)

0

25

50

75

100

D
ut

y
C

yc
le

 (%
)

Agent trained with
 RA(st) of (=0.1)

Agent trained with
 RA(st) of (=0.05)

Agent trained with
 RA(st) of (=0.01)

Agent trained with
RA(st) of (=0.001)

2011-02-01 2011-02-02 2011-02-03 2011-02-04 2011-02-05 2011-02-06 2011-02-07 2011-02-08
Time (Days)

0

20

40

60

V
ar

ia
nc

e
(M

ov
in

g
A

ve
ra

ge
)

Fig. 7. Performance results over one week (Tokyo 2011) of four selected agents trained with different damping factors (ζ) in their reward function RA(t)

TABLE I
SUMMARY OF PERFORMANCE RESULTS OVER A YEAR OF FOUR SELECTED

AGENTS TRAINED WITH DIFFERENT DAMPING FACTORS (ζ)

ζ Utilized Energy Variance Mean Power Failures

0.1 77% 2.5 11
0.05 94% 9.7 14
0.01 95% 12 17

0.001 98% 25.6 23

maximum and minimum duty cycles. When more energy is
available again, we see analogous behavior when the duty
cycles increase. The overdamped agents appear unaffected by
the variance in energy supply, but they exhibit an overall low
energy utilization. For example, the agent trained with ζ = 0.1
avoids a high variance penalty by setting its duty cycle to a
constant value, which leaves energy unutilized in times when
much solar energy is available. Table I summarizes the overall
performance of the agents in Fig. 7 over the whole year.

To investigate the effect of the neural network architecture
of the policy approximation on performance, we trained with a
different number of hidden layers and units. Our results show
that shallower networks perform as well as deeper networks.
We ended up using an architecture layout with two hidden
layers of 64 units and a tanh activation function. The output
layer has two units computing the mean and standard deviation
of the Gaussian policy (5). Therefore, we substantiate that an

agent’s policy can be approximated with a neural network that
requires low computational effort and memory footprint, which
makes it feasible for deployment also in resource-constrained
sensor nodes.

VIII. CONCLUSION

Using reinforcement learning (RL) to manage constrained
IoT nodes provides a path to learn optimal behavior without
careful human attention. To the best of our knowledge, this
is the first application of a policy-gradient method to this
problem. We have shown that state-of-the-art policy-gradient
RL methods such as PPO which use neural networks as
function approximators are suitable for the use in IoT, that they
outperform older RL approaches, and that they can solve more
difficult problems which better describe and encourage desired
behavior. Additionally, their suitability for continuous prob-
lems removes another manual design step of discretization.
We also investigated the influence of hyperparameters on the
resulting policies. While we have focused on the maximization
of duty cycle with minimal variance, we believe there is
potential to solve much more complex problems. The work
presented hence leads to more autonomy in IoT systems, in
which RL takes care of technicalities so that engineers can
focus on the real application goals. This will allow a broader
application of IoT in complex domains.

ACKNOWLEDGMENTS

This research was supported by the Office of Naval Re-
search (N0001418WX01582) and the Department of Defense
High Performance Computing Modernization Program.

REFERENCES

[1] F. Fraternali, B. Balaji, and R. Gupta, “Scaling configuration of energy
harvesting sensors with reinforcement learning,” in Proceedings of the
6th International Workshop on Energy Harvesting & Energy-Neutral
Sensing Systems. ACM, 2018, pp. 7–13.

[2] S. Shresthamali, M. Kondo, and H. Nakamura, “Adaptive Power Man-
agement in Solar Energy Harvesting Sensor Node Using Reinforcement
Learning,” vol. 16, no. 5s, pp. 1–21, 2017.

[3] R. C. Hsu, C. T. Liu, and H. L. Wang, “A reinforcement learning-
based ToD provisioning dynamic power management for sustainable
operation of energy harvesting wireless sensor node,” IEEE Transactions
on Emerging Topics in Computing, vol. 2, no. 2, pp. 181–191, 2014.

[4] C. T. Liu and R. C. Hsu, “Dynamic power management utilizing
reinforcement learning with fuzzy reward for energy harvesting wireless
sensor nodes,” IECON Proceedings (Industrial Electronics Conference),
pp. 2365–2369, 2011.

[5] R. C. Hsu, T. H. Lin, S. M. Chen, and C. T. Liu, “Dynamic energy
management of energy harvesting wireless sensor nodes using fuzzy
inference system with reinforcement learning,” Proceeding - 2015 IEEE
International Conference on Industrial Informatics, INDIN 2015, pp.
116–120, 2015.

[6] F. A. Aoudia, M. Gautier, and O. Berder, “RLMan: an Energy Manager
Based on Reinforcement Learning for Energy Harvesting Wireless
Sensor Networks,” IEEE Transactions on Green Communications and
Networking, vol. 2, no. 2, pp. 1–1, 2018.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proxi-
mal Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347,
pp. 1–12, 2017.

[8] A. E. Braten and F. A. Kraemer, “Towards Cognitive IoT: Autonomous
Prediction Model Selection for Solar-Powered Nodes,” in 2018 IEEE
International Congress on Internet of Things (ICIOT). Seattle, USA:
IEEE, 2018, pp. 118–125.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, pp. 1–4, 2016.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[11] R. Chaoming Hsu, C. T. Liu, and W. M. Lee, “Reinforcement learning-
based dynamic power management for energy harvesting wireless sensor
network,” in International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, vol. 5579 LNAI.
Springer, 2009.

[12] R. C. Hsu, C.-T. Liu, K.-C. Wang, and W.-M. Lee, “Qos-aware power
management for energy harvesting wireless sensor network utilizing
reinforcement learning,” in 2009 International Conference on Compu-
tational Science and Engineering, vol. 2. IEEE, 2009, pp. 537–542.

[13] Y. Rioual, Y. L. Moullec, J. Laurent, M. I. Khan, and J.-p. Diguet,
“Reward Function Evaluation in a Reinforcement Learning Approach
for Energy Management,” in 2018 16th Biennial Baltic Electronics
Conference (BEC). IEEE, 2018, pp. 1–4.

[14] A. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML,
1999, vol. 99, pp. 278 —-287.

[15] A. Ortiz, H. Al-Shatri, X. Li, T. Weber, and A. Klein, “Reinforce-
ment Learning for Energy Harvesting Decode-and-Forward Two-Hop
Communications,” IEEE Transactions on Green Communications and
Networking, vol. 1, no. 3, pp. 309–319, 2017.

[16] G. M. Dias, M. Nurchis, and B. Bellalta, “Adapting sampling interval
of sensor networks using on-line reinforcement learning,” in 2016 IEEE
3rd World Forum on Internet of Things (WF-IoT). IEEE, 2016, pp.
460–465.

[17] “uTensor project,” https://github.com/utensor, accessed: 2019-02-28.
[18] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management

in energy harvesting sensor networks,” ACM Transactions on Embedded
Computing Systems, vol. 6, no. 4, pp. 32–es, 2007.

[19] F. A. Kraemer, D. Ammar, A. E. Braten, N. Tamkittikhun, and D. Palma,
“Solar energy prediction for constrained IoT nodes based on public
weather forecasts,” in the Seventh International Conference. New York,
New York, USA: ACM Press, 2017, pp. 1–8.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1606.01540
https://github.com/utensor

	I Introduction
	II Deep Reinforcement Learning
	III Related Work
	IV System Setup
	V Reward Function Based on Energy Neutrality
	VI Reward Function Based on Application Goals
	VII Results and Discussion
	VIII Conclusion
	References

