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Abstract 

The potential for mining hydrothermal mineral deposits on the seafloor, such as seafloor massive sulfides (SMS), has 

become technically possible and some companies (currently not many) are considering their exploration and 

development. Yet, no present methodology has been designed to quantify the ore potential and assess the risks 

relative to prospectivity at prospect and regional scales. Multi-scale exploration techniques, similar to those of the 

play analysis that are used in the oil and gas industry, can help to fulfill this task by identifying the characteristics of 

geologic environments indicative of ore-forming processes. Such characteristics can represent a combination of e.g., 
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heat source, pathway, trap and reservoir that all dictate how and where ore components are mobilized from source to 

deposition. In this study, the understanding of these key elements is developed as a mineral system, which serves as a 

guide for mapping the risk of the presence or absence of ore-forming processes within the region of interest (the 

permissive tract). The risk analysis is carried out using geoscience data, and it is paired with quantitative resource 

estimation analysis to estimate the in-place mineral potential. Resource estimates are simulated stochastically with 

the help of available data (bathymetric features in this study), conventional grade-tonnage models and Monte-Carlo 

simulation techniques. In this paper, the workflow for a multi-scale quantitative risk analysis, from the definition to 

the evaluation of a permissive tract and related prospect(s), is described with the help of multi-beam data of a known 

hydrothermal vent site.  

 

1. Introduction 

The discovery of hydrothermal vent fields along mid-ocean ridges (MORs) (Beaulieu et al. 2013) has led to the 

emergence of ocean exploration and development companies who are working to exploit deeply seated minerals 

(Miller et al. 2018) such as seafloor massive sulfides (SMS). Such interests have led to exploring deep ocean floors 

(most SMS deposits are within 2 to 3 km-depth range; Hannington et al. 2010) and poorly understood marine 

environments (20% of MORs investigated; Baker and German 2004). At present, known SMS provide important 

clues about their likely distribution, size and grade (Hannington et al. 2010, 2011), but the lack of direct information 

from drilling, which is crucial to estimate the characteristics of undiscovered mineral deposits (e.g., grade and 

tonnage), does not permit the realization of proper assessments of these resources. Yet, the exploration for seabed 

minerals may become, just as for petroleum exploration activities (billions of US dollars yearly; e.g., Norwegian 

Petroleum Directorate 2017), a business that requires significant investment for diverse offshore operations including 

expensive exploration drilling. Mineral exploration, by definition, necessarily involves risk, i.e. the chance of project 

failure or financial loss, that can be addressed within a geological, technical and economic context (e.g., Otis and 

Schneidermann 1997; Jones and Hillis 2003; Schiozer et al. 2004; Suslick et al. 2009). This paper focuses on the 

definition and the management of these risks. From a geologic perspective, the risk originates from the possibility 

that e.g., resource evaluations do not accurately estimate what is actually present or the resource sought does not 

exist in the region of interest. In onshore mineral exploration, these concerns can be better understood with the help 

of assessment methodologies, such as the three-part assessment form (Singer and Menzie 2010), which undertakes 
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quantitative and qualitative evaluation of mineral resources (i.e., number of undiscovered deposits and related grade 

and tonnage variations) based upon conventional deposit models (e.g., Cox and Singer 1986). The deposit model is a 

concept of what is significant in terms of ore occurrence in geological, geophysical and, or, geochemical data. 

However, as data may be of variable quality or simply missing, information about metal-bearing minerals possibly 

concealed beneath the seafloor can be unclear and lead to failed assessments. In such circumstances, the prospect risk 

is amplified, and it is thus necessary for a preliminary explorative study to engage efforts in evaluating and reducing 

these risks within areas identified to likely contain potential ore accumulations. 

 

Up to now, multi-scale exploration techniques, such as the play analysis methods for petroleum exploration (see 

White, 1988, 1993), have helped to advance the analysis and interpretation of data and build crucial information that 

mitigate the risk of exploration (e.g., Gautier et al. 1995; Dutton et al. 2003; Attanasi and Freeman 2009). The play-

based approach aims at evaluating the prospectivity of groups of oil fields based on geological processes, such as 

trap formation and oil generation, migration and accumulation (Allen and Allen 2013). Combined, these processes 

adjust the resource prospectivity within a delineated region where favorable grounds can be separated into a mosaic 

of risked areas (Grant et al. 1996). In mineral exploration, we can delineate this region where the geology is 

permissive for the existence of deposits of one or more types, i.e. the permissive tract (Singer 1993), and where 

numbers of potential mineral deposits (prospects) may occur. For preliminary exploration of both the permissive 

tracts and prospects, a conceptual targeting strategy can be developed by using the mineral system concept (Wyborn 

et al. 1994), which uses analogous principles to investigate the mobilization, accumulation and preservation of ore 

components within the mineral system of interest. These principles serve as a basis to find where to look for 

undiscovered ore accumulations and to determine the risks related to exploration. In the context of seabed mineral 

exploration, a risk analysis can be made by using all available seafloor data (e.g., video, multi-beam and geophysical 

data; Lipton 2012) which, combined with the assessment of the potential endowment of a deposit within the mineral 

system, drives decisions related to pursuing exploration activities. The exploration risk depends on the probability 

that certain geological factors of the mineral system (i.e., heat source, pathway, reservoir and trap) represent 

adequate conditions for triggering ore genesis. The attribution of probabilities to the adequacy of such factors derives 

from the interpretation of geoscience data. The metal endowment quantification, on the other hand, can be processed 

in multiple ways, either with the help of pre-established grade-tonnage models (e.g., Singer 2008; Mosier et al. 2009) 
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and, or, directly from drilling (e.g., Hannington et al. 1998) and high-resolution bathymetry (e.g., Jamieson et al. 

2014). The most likely abundances of ore metals can be calculated stochastically using conventional Monte-Carlo 

techniques and expressed in the form of probability distributions that capture the full range of uncertainty in the 

evaluated resource occurrence at different prediction levels (e.g., 10th, 50th and 90th percentiles). 

 

In this paper, an example of multi-scale quantitative risk analysis for SMS deposits will be applied to the Loki’s 

Castle vent field area (73°34’N; Pedersen et al. 2010) located at the northern part of the Mohns Ridge (71-73°N). 

The aim of this paper is to use mineral system, permissive tract-prospect hierarchy and related risk mapping 

concepts, and the quantification of risk and ore volumes, to identify and evaluate geologic environments favorable 

for ore genesis within the study area. 

 

2. Multi-scale exploration: permissive tract, camp and prospect 

2.1. Definitions and overview 

Play-based exploration (see White, 1988, 1993) is the basis and inspiration for developing quantitative evaluation 

methods of seabed minerals in this study. It is intended to build and leverage the understanding of a geological 

system in which a range of exploration activities might be conducted for undiscovered resources (e.g., Gautier et al. 

1995; Dutton et al. 2003; Attanasi and Freeman 2009). In its application, geological factors, that are critical for the 

generation of natural resources are documented and mapped in exploration areas. In the context of SMS genesis, 

factors can include host rocks in which metals accumulate or regional heat sources driving the circulation of metal-

rich fluids within the oceanic crust. These factors can be described in the form of a mineral system (see section 2.2; 

Hronsky and Groves 2008; McCuaig and Hronsky 2014; Hagemann et al. 2016) where multi-scale geological 

processes and corresponding footprints are described and mapped to provide a source-transport-trap analysis that can 

be used to assess undiscovered mineral deposits (Hagemann et al. 2016). The mapped geological evidence allows the 

delineation of the most prospective regions (permissive tracts; Singer, 1993), which are then used to map mineral 

exploration targets at a regional scale (e.g., among the neo-volcanic zones of a MOR; Juliani and Ellefmo, 2018). 

 

As conceived by Singer (1993) for prospecting mineral deposits, a permissive tract represents extended frontiers of 

terrains for which geologic environments permit a deposit type to form. Beyond those frontiers, the probability of 
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occurrence for new findings is negligible for the deposit type considered. Inside a tract, however, potential mineral 

deposits (prospects) can be individually assessed on the basis of early geophysical, geological and, or, geochemical 

survey results. Neighboring prospects can be grouped into a “camp”. A camp may include one or more mineral 

prospects representing a single deposit type, and it shares common geological factors for the presence of potential 

mineral resources with other camps in a specific permissive tract. The delineation of a camp derives from the 

decisions made by prospectors about the way prospects are grouped for the resource assessment, while permissive 

tract and prospects represent geological subdivisions. For that matter, it will be up to prospectors to decide (1) a 

maximum distance between prospects considered for clustering, and (2) whether or not to group prospects that are 

genetically and, or temporally unrelated, i.e. prospects in close proximity that are not necessarily coeval nor 

controlled by the same seafloor structure such as a fault. The objectives of this hierarchical analysis are (1) to narrow 

down areas with specific combinations of geological factors controlling undiscovered resources in a region, and (2) 

to make geologically proper assessments of these resources in the areas of interest. Furthermore, this multi-scale 

analysis would facilitate offshore mineral exploration by cataloguing exploration projects (permissive tracts and 

camps) and associated mineral occurrences (prospects). Up to now, SMS deposits investigated at MORs are 

essentially inferred at seafloor, even though some buried deposits may be studied, just like oil and gas volumes, at 

depth intervals below the seafloor. A simplified organizing scheme of the permissive tract-camp-prospect concept is 

presented on Fig.1 given that target areas are thought to contain mineral deposits at seafloor and not deep in the 

crust. Sophisticated technology may help to detect and determine the extent of these deposits and, or, features of the 

sub-surface geology using exploration geophysics. The surveyed areas that are prospective for ore minerals may be 

distinguished into camps and prospects. Both target features can be given priority e.g., for drilling given the 

inferences made on their mineral potential, or for mining given the type of resource evaluated and the mining system 

applied by the investigating company. 

 

2.2. Mineral system 

The mineral system concept is used, just as the play analysis, to interrogate the unknown and, in addition, it presents 

known information on the genesis of ore within wide-scaled geological processes (Hronsky and Groves 2008; 

McCuaig and Hronsky 2014; Hagemann et al. 2016). Studying a mineral system helps geoscientists understand (1) 

the nature of the ore-forming processes being responsible for the formation of metal accumulation(s) within a limited 
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spatial and time frame, and (2) the genetic relation existing between the produced ore and the critical processes 

operating within a region that may be considered for a multi-scale analysis. Key elements of the system are 

commonly defined as source of fluids and metals, heat source(s), migration pathway, trap and outflow zone (Wyborn 

et al. 1994; Knox-Robinson and Wyborn 1997). By adopting this concept, an exploration geologist can interrogate 

available data and map geological features associated with migration, entrapment and the genesis of metals. For the 

purpose of this study, we propose a mineral system that is assumed to correspond to mineralization processes active 

within the axial neo-volcanic terrains of the Mohns Ridge (Table 1): 

(1) Heat source: the energy driving hydrothermal cells during seafloor spreading, i.e. the heat from an 

underlying magma source. 

(2) Pathways: crustal heterogeneities, such as faults and fractures, providing fluid migration paths for 

hydrothermal circulation and focused outflows (McCaig et al. 2007).  

(3) Trap: physical and, or, chemical reaction mechanisms (e.g., low-permeability barriers, fluid mixing and 

redox reactions) leading to in-situ metal precipitations. 

(4) Reservoir: the discharge of a hydrothermal system, where precipitated metals are preserved from oxidizing 

conditions and dissolution. The reservoir rock can be constructional (e.g., the massive sulfide mound itself) 

and, or, be from the hydrothermal replacement of the host rock by sulfide mineralization and alteration 

products (e.g., the mineralized stockwork). Both, the reservoir rock and the trap can provide required 

structural architecture for depositional and sealing mechanisms that limit the dispersion and dilution of 

hydrothermal fluids.  

Because the underlying geology (heat source and pathway), combined with the depositional environment (reservoir 

and trap), generally demonstrates diverse and complex sets of multi-scale processes, evaluating the resource potential 

of an area will depend, among others, on the scale of the study area. Smaller scale study areas will comprise finer 

details and make the understanding of a permissive tract (province-scale) geologically more accurate if data 

acquisition is carried out at the camp-prospect levels (district to deposit scale, as described by Hronsky and Groves 

2008). The current understanding of the trap mechanism for SMS is generally limited to small-scale processes, such 

as the transport, entrainment and deposition of sedimentary debris (Clague and Stead, 2012), which offer better 

potential for mineralization preservation (e.g., Koski et al. 1994). Similarly, conductive cooling and hydrothermal 

fluids mixing with seawater can induce in-situ thermodynamic trapping (e.g., at the TAG vent field; Tivey et al., 
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1995,1998; Mills et al., 1998; Mills and Tivey, 1999). Although ambient seawater can be considered as an extensive 

controlling factor for mineralization, it does not critically help refining the permissive tract evaluation. In 

comparison, the heat source can be mapped from major features below or at the seafloor, as shown by e.g., the 

extended geophysical signature of axial magma chamber roofs (Sinha et al. 1998; Carbotte et al. 2000; Singh et al. 

2006) and the hundred-meters to kilometers-wide morphologic footprints of eruptive structures (e.g., Smith and Cann 

1999; Smith et al. 1995). Smaller features, such as flat-topped volcanoes (e.g., 1-2 km across; Clague et al., 2000), 

can be reliable indicators for a heat source. However, current understanding of the coupled interaction between these 

features and ore-forming vent sites at MORs is not as developed as for large-scale geological systems. For example, 

the cycles of magmatic construction and tectonic destruction affecting neo-volcanic zones at MORs (Parson et al. 

1993; Wilcock and Delaney 1996) induce temporal and spatial variations in the hydrothermal heat flux. These cycles 

could be further considered to evaluate permissive tracts. 

 

2.3. Exploration risk 

In mineral deposit targeting the chance of finding new discoveries is referred to as the probability of geologic 

success (𝑃𝑔) (Otis and Schneidermann 1997). Geological processes that lead to the formation of mineral resources 

can be assigned a probability value relative to their absence or presence (from 0 to 1 respectively), given the heat 

source (P1), fluid pathways (P2), trap site (P3) and reservoir unit (P4). The product of the attributed probabilities gives 

𝑃𝑔 (Otis and Schneidermann 1997): 

𝑃𝑔 =  𝑃1 ∗  𝑃2 ∗ 𝑃3 ∗ 𝑃4 

The chance for ore generation can be low if some of the geological factors supporting mineralization processes are 

not completely identified in the available data. Because the observation of such factors depends on the available 

geoscience data and considering that the quantity and quality of such data may change from place to place, different 

levels of exploration risk must be specified within each permissive tract or within each of the identified prospects. 

The exploration risk is equal to one minus the probability of geological success (1 − 𝑃𝑔). Although its analysis 

incorporates geological aspects (Otis and Schneidermann 1997), economic risks (e.g., exploration and operation 

costs, or other financial and political aspects; e.g., Jones and Hillis 2003; Schiozer et al. 2004; Suslick et al. 2009) 

may additionally change the permissive tract evaluation, but those are not covered by this study. Spatially, a 

permissive tract can be subdivided into low-, moderate- and high-risk domains (see examples from Grant et al. 1996 
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for petroleum exploration) describing whether sections of the permissive tract may or may not contain the mineral 

resource of interest (𝑃𝑔 being high or low respectively), or whether uncertainty prevails (𝑃𝑔  close to 0.5). Areas of 

lower exploration risk can be identified where geological factors coincide spatially. However, this concept depends 

on the maximum risk acceptance decided by the investigator, i.e. if an exploration company has some history of 

drilling with a maximum risk of 0.30, then it may plan to continue exploration with an overall risk below that level. 

In addition, if a geological factor is absent within the region evaluated, 𝑃𝑔 would be zero (high risk) because one 

geological factor will rank 0 in the analysis. 

 

Evaluating the risk of exploring mineral deposits is a difficult exercise since it requires a certain expertise from the 

geoscientist(s) to evaluate the environments to be explored. The decision to pursue an exploration project is not only 

dependent on the calculation of 𝑃𝑔, but also on (1) the choice of the explorer to involve appropriate (and 

independent) geological factors in the overall evaluation and (2) how the probability of a mineral occurrence has 

been calculated (Milkov 2015). Because subjectivity is common in probability assessments (Baddeley et al. 2004), 

guidelines have been established for evaluating geological risk factors (e.g., Duff and Hall 1996; Otis and 

Schneidermann 1997; Rose, 2001). For example, Rose (2001) introduced a conceptual nomenclature to calibrate the 

probabilistic (and subjective) evaluation of geological factors. Critical processes may be evaluated to be either (i) 

present or more likely present (𝑃𝑔 between 0.6 and 1), (ii) significantly uncertain (0.4 to 0.6), (iii) less likely to be 

present (0.2 to 0.4), or (vi) nearly or completely absent (below 0.2). Because this classification does not take into 

account the various deposit types possibly described in a permissive tract (e.g., mafic-, ultramafic- and sediment-

hosted deposits; Hannington et al. 2005), further conceptual thinking should integrate e.g., as formerly proposed by 

the U.S. Geological Survey (1991), (i) the likelihood of the presence of a resource given the environmental 

characteristics determined by e.g., geophysical and geological data, and (ii) a degree of confidence on the rating of 

resource potential, given the evidence or absence of e.g., specific rock units, structures and ore-forming processes. 

This division of subjective judgement, translated into probability values, helps to manage the problem of quantifying 

risk and uncertainty. However, it does not replace professional judgment but supplements it to improve the 

evaluation of exploration projects. Other forms of risk modeling, such as risk tables (e.g., Milkov 2015), can 

aggregate various information about the depositional environment of mineral resources. These tables compare the 

existence and reliability of data with pre-established geological models. Such models are well characterized in the oil 
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and gas industry (e.g., trap configurations, depositional settings and source rock types; Allen and Allen 2013), but 

remain to be defined for the exploration of seabed minerals. 

 

2.4. Risks related to permissive tracts and prospects 

The risk evaluation of mineral potential is made at the permissive tract and prospect levels depending on 𝑃𝑔. The risk 

defined for a particular prospect is multiplied with the risk calculated for its respective permissive tract as both target 

features are established with same geological circumstances. For example, if 𝑃𝑔 corresponds to 0.8 and 0.7 at the 

permissive tract and prospect levels respectively, then the total 𝑃𝑔 for the evaluated prospect is 0.56. Since the 

estimate of 𝑃𝑔 depends on the availability and observation of data, multiple exploration scenarios can be examined:  

a. If the permissive tract is confirmed to have at least one mineral deposit, then the permissive tract in 

question (and related prospect) is proved to contain the required geological factors to promote 

mineralization; 𝑃𝑔 is thus equal to 1 at the permissive tract (and prospect) level.  

b. If the permissive tract consists of prospects that are not confirmed or directly observed to contain 

mineral resources (unproven prospects), then 𝑃𝑔 is estimated given the geological features analyzed 

at the permissive tract and prospect levels.  

c. If no prospects can be described within a permissive tract, then some aspects of mineralization 

patterns (e.g., the natural variability in the distribution of hydrothermal venting and related sulfide 

accumulation; Fouquet et al. 2010; Hannington et al. 2010) can be considered for the permissive 

tract evaluation. Notably, hydrothermal vents are not always associated with polymetallic sulfides, 

and the recurrence of such accumulation, documented from the InterRidge database1, gives insights 

on the likelihood of their occurrence. According to the database, about 239 hydrothermal systems 

(confirmed) occur along mid-ocean ridges and back-arc spreading centers, of which 73 are 

associated to polymetallic sulfide deposits. Thereby, the probability that one or more new 

discoveries in an unexplored permissive tract is associated with accumulations of sulfide minerals 

is 0.31. This probability can be combined with the number of undiscovered mineral deposits 

estimated for an unexplored permissive tract; such estimates can be established using the three-part 

                                                           
1 A global database of active submarine hydrothermal vent fields (https://vents-data.interridge.org/). 

https://vents-data.interridge.org/
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form of mineral resource assessment from Singer (1993) and Singer and Menzie (2010) (see 

section 2.5.1). The end purpose of this is to determine the likelihood of finding unknown ore 

occurrences inside a permissive tract for which related prospects cannot be identified nor 

described. Therefore, 𝑃𝑔 would correspond to a certain value for the permissive tract given the 

analysis of related geological features, and 0.31 for the undiscovered prospects inside the 

permissive tract in question. 

 

2.5. Resource quantification 

2.5.1. Considerations 

Within a permissive tract, exploration or exploitation opportunities (camps and prospects) are ranked depending on 

the occurrence of geological phenomena (risk assessment) and the mineral potential of target zones. If the existence 

of prospects is not determined, the permissive tract evaluation can be made using a pre-established deposit model. 

The deposit model, as conceived by the three-part form of quantitative assessment provided by Singer (1993) and 

Singer and Menzie (2010), aggregates various information on e.g., the spatial distribution, grade and tonnage of well-

explored analogue deposits, to indicate the undiscovered resource potential in an area considered geologically 

permissive for the occurrence of the mineral deposit type sought. Prior to this research, Juliani and Ellefmo (2018) 

have adapted a density model to the neo-volcanic zones of an ultra-slow spreading system, while grade and tonnage 

models of volcanogenic massive sulfides (VMS) deposits, which are analogue to current deep-sea hydrothermal ores 

(Galley et al. 2007), are provided from Mosier et al. (2009). These models will be applied to the permissive tract of 

this study, which is considered geologically similar to that of the axial volcanic ridges formerly established in the 

research of Juliani and Ellefmo (2018). 

 

The potential mineralization extent in a prospect observed at the seafloor (e.g., from the analysis of high-resolution 

multi-beam data or magnetic anomalies; Lipton 2012) can be used to approximate an ore volume with the help of the 

ratio of tonnes of ore per m2 of seafloor. Seafloor massive sulfides at the Solwara 1 project in the Bismarck Sea 

(Lipton 2008, 2012), for example, have been thoroughly explored by drilling (146 holes, maximum depth of 20 m), 

and their surficial dimension is approximated to be 90,000 m2 for 2.5 Mt of ore. This area-tonnage relationship gives 

a ratio of 27.7 t/m2 that can be used to construct first-order tonnage estimates for SMS, as formerly expressed by 
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Hannington et al. (2010). Applying this ratio to undrilled prospects would in normal case disregard the underlying 

physical dimensions of the associated potential orebody, but, given the lack of drilling data among known SMS 

deposits, it is a reasonable substitute to the tonnage distribution provided from a deposit model.  

 

Geologic studies of the seafloor can be carried out locally using e.g., a remotely operated vehicle (ROV) (Yeo and 

Searle, 2013; Ludvigsen et al., 2016) on the basis of available multi-beam data that have been previously acquired 

and processed. However, because the overall mapped seafloor cannot be always visited, some areas remain under-

explored. Yet, the morpho-structural description of such areas through high-resolution multi-beam data can reveal 

structures related to unproven prospects, i.e. prospects that are not confirmed or directly observed to contain mineral 

resources. For example, mound-like or cone-shaped structures are often characteristic traits of accumulated ores 

(e.g., Hannington et al. 1998; Jamieson et al. 2014; Webber et al. 2015), and features with similar characteristics on a 

high-resolution bathymetry map may represent interesting targets. Similarly, a detailed magnetic survey over 

massive sulfide bodies can reveal strong magnetic lows due to the destruction of magnetic minerals in the associated 

hydrothermal alteration halo (e.g., Tivey et al. 1993; Tivey and Johnson 2002). The extent of such detection may 

serve as a basis to make an anticipated estimate of ore volume given the above-mentioned tonnage-surface ratio 

(27.7 t/m2). However, because a high degree of analytical uncertainty exists in many aspects of seafloor 

investigations (e.g., artifacts in bathymetry and missing beam data; de Moustier and Kleinrock, 1986), a risk 

evaluation of the quality of the data collected needs to be considered. 

 

To summarize, a permissive tract evaluation requires (i) statistical distributions of number of unknown ore 

occurrences, deposit size and ore grade, and (ii) a probability of geologic success of 0.31 if available data are not 

sufficient to identify prospects of ore; otherwise, 𝑃𝑔 is evaluated among the identified prospects. The calculation of 

ore volume is made possible using a tonnage model (provided from Mosier et al. (2009)) if no in-situ prospects are 

identified. Otherwise, the mineral potential of prospects is indicated by combining their extent with a tonnage-

surface ratio. Then, prospects are ranked given their estimated ore volumes and exploration risks (calculated using 

𝑃𝑔). Because permissive tracts and camps are ranked given these estimates, some of them might be disregarded for 

further exploration (or exploitation) activities if the estimated resources are below the expectations of the 

investigator. 
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2.5.2. Calculation 

Since SMS deposits are usually expected to contain various mixtures of precious and base metals (e.g., Cu, Zn, Au, 

and Ag; Hannington et al. 2010), separate resource evaluations will be achieved for each of these metals. After 

establishing a risk model, volumetric calculations can be carried out stochastically at the permissive tract, camp or 

prospect level using conventional Monte Carlo techniques where the number of deposits, tonnages, and grades are 

repeatedly sampled (e.g., 10,000 times in this study) and multiplied to obtain metal endowments. The evaluated risk 

associated to the permissive tract or prospects is thereafter multiplied with the metal endowment to obtain a 

probabilistic (log-normal) distribution of in-place metal resources. The distribution is generated in a cumulative form 

to present expected amounts of undiscovered metals at various confidence intervals, i.e., 10th, 50th and 90th 

percentiles; the latter is the value below which 90% of the observations may be found. The overall estimation process 

is treated through the stochastic calculator GeoX2. The process can be summarized as follow: the various unproven 

prospects in a camp are given (1) a risk value, according to in-situ investigations of the geology, (2) an approximated 

tonnage using the previously-mentioned ratio (27.7 t/m2), and (3) an associated log-normally distributed grade 

model. The Monte Carlo simulation then combines these variables to report distributions of risked ore volumes for 

each prospect. Depending on the estimated volumes, several prospects and, or, the camp itself can be disregarded if 

the range of resultant outcomes are not of economic interest or too risky to be considered. 

 

3. Case study 

In this research, the above-described multi-scale evaluation method is applied to the Mohns Ridge, an ultra-slow 

spreading MOR (15 to 16 mm/yr; Mosar et al., 2002) situated within the Norwegian-Greenland Sea. The ridge 

consists of a deep rifted axial zone associated with significant isolated neo-volcanic zones recognizable from their 

hummocky-type terrain and associated volcanic edifices (e.g., flat-topped volcanoes, conic or dome structures and 

eruptive fissures; e.g., Yeo et al. 2012, 2013; Yeo and Searle 2013). These volcanic zones often appear in the form of 

topographic highs or axial volcanic ridges (AVRs) generally marked by characteristic morphologies (e.g., dome-

shaped axial volcanic ridges, grabens, horsts and tilted blocks; Géli et al. 1994; Dauteuil and Brun 1996), which 

                                                           
2 A decision support software for risk, resource and economic evaluation of exploration projects, licensed by 

Schlumberger Ltd. (https://www.software.slb.com/products/geox). 

https://www.software.slb.com/products/geox
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relate to the interplay between variations in magma supply and tectonism. The Mohns Ridge has well-developed 

tectonic features defined by numerous faults within the ridge valley trend (see details in Juliani and Ellefmo 2018). 

Past exploration activities describe several SMS occurrences along the ridge (Pedersen et al. 2010), among which the 

Loki’s Castle vent field is situated inside the graben of the northernmost AVR currently ongoing tectonism. For the 

purpose of this research, this AVR is considered as a permissive tract into which the likelihood of undiscovered ore 

volumes will be estimated from identified prospects. The permissive tract analysis is processed using (1) low-

resolution multibeam data, which have been acquired by the Norwegian Petroleum Directorate (NPD) in 

collaboration with the Geological Institute of the Russian Academy of Sciences (GIN RAS;  Fig.2), and (2) high-

resolution imagery of the Loki’s Castle deposit and related environment to map the prospects and camps (Fig.3); 

these imagery data were acquired during the MarMine cruise by the Norwegian University of Science and 

Technology (NTNU) (Ludvigsen et al. 2016).  

 

4. Results 

4.1. Risk mapping 

The preliminary assessment of where heat, pathway, trap and reservoir coincide (Table 2 and 3; Fig.4) is based on 

the consideration that (i) the release of heat is equally dispersed within the study area (Fig.3), (ii) permeability is 

relatively high near fractures; distance buffers are implemented to outline the uncertain propagation and continuum 

of fractures and cracks because sediments, often obscure their footprints, (iii) reservoirs are likely to be present in the 

form of mound-type structures or within sediment masses, and (iv) traps are associated with these mound-type 

features; in-situ structural conditions, such as silica-cemented materials, talus slope and local depressions, associated 

with neighboring evidence of mass wasting, are useful indicators. Large-scale features, such as AVRs and faults, 

provide sufficient and compelling evidence for the existence of heat and pathways (i.e., respective chance factor is 

0.9). However, it is not clear whether these features drive hydrothermal processes as fault or fracture zones can be 

sealed (Schroeder et al. 2002; Gillis 2003) and, or, the evolution of the underlying magma source (and associated 

heat release) is in a waning or waxing stage (Parson et al. 1993; Wilcock and Delaney 1996). More local basement 

structures, i.e. reservoir and trap, are less likely to occur with high degree of certainty (evaluated to be 0.8). 

However, these can be mapped by mound-shaped structures on the seafloor (Fig.3) which can be assumed to 

represent hypothetical ore accumulations. The seafloor extent of these potential ore accumulations is usually of 
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thousands of m2 in this study, which necessarily involves trapping and sealing mechanisms to promote ore 

accumulation and preservation. 

 

4.2. Volumetric calculations 

Probabilistic assessment of potential in-place resources within the two camps are shown on Fig.5 and 6, and the 

amount of ore and metal in each prospect is presented in Table 4. Assessed individually, prospects may or may not 

be of economic interest; e.g., the average amount of metals in the prospects 1, 4 and 10 (i.e., 13 to 22 kt of metals) 

can be eventually drilled or exploited, while others (e.g., prospects 2, 3, 5, 6, 8 and 9; Table 4), which have relatively 

lower resource volumes (<5 kt), could be excluded. Taken together, however, the prospects in the camp 2 increase 

the total resource potential (Fig.5) because they are proximal to each other; this may change the final exploration or 

mining development strategy. In contrast, the resource distribution for the camp 1 is rather uniform because most of 

the variation is captured by the Loki’s Castle prospect. Within the study area, the probability of finding economically 

viable ore resources (Fig.6) depends on the combining of estimated ore volumes and related exploration risks.   

 

5. Discussion 

5.1. Mineral system 

Estimating mineral resources requires diverse geoscience knowledge as summarized in the mineral system 

description for the project area (Table 1). However, because ore-forming processes are part of more extensive (ridge-

scale) geological systems, other exploration criteria, in addition to heat source, pathway, trap and reservoir as 

presented in this study (Table 2), could be integrated; e.g., the geodynamic setting, including the spreading rate, 

sedimentary influences and the regional source of metals (host-rock type), all of which have potential impact on the 

deposit grade and tonnage (Hannington et al. 2005; 2011). Furthermore, the evaluation framework may also require 

an understanding of these criteria temporally, because hydrothermal-vent systems often tend to (i) have intermittent 

activity over long lifespan (Lalou et al. 1995; Cherkashov et al. 2016), (ii) undergo periodical activity and 

compositional changes due to nearby geological processes, such as eruptive events (Haymon et al. 1993; Butterfield 

et al. 1997; Von Damm et al. 1995, 1997) or earthquake swarms (Lilley et al. 2003; Seyfried et al. 2003), and (iii) 

occur within a specific window of seafloor construction between magmatic and tectonic spreading (Wilcock and 

Delaney 1996). The conditional rules applied to each exploration criteria (Table 2) demonstrate the limitation of the 
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multi-scale evaluation method presented in this study. However, these criteria can be described in geological, but 

also geophysical, hydrographic and, or, geochemical data, as shown in the mineral system (Table 1). For this reason, 

more conditional rules, such as those proposed in Table 2, can be applied to identify metallogenic regions given 

available data. To refine and update these rules, future investigators may get inspiration from both the type of 

information and organizing scheme employed in the petroleum system to define source‐reservoir‐trap configurations 

for oil and gas exploration (Allen and Allen 2013). 

 

5.2. Permissive tract and risk mapping 

The study area presented in this research (Fig.3), encompasses only one type locality in a tectonically active terrain 

(i.e., a portion of AVR undergoing sparse volcanic activity). However, neo-volcanic zones can form complex 

networks of volcanic structures (e.g., Yeo et al. 2013) that may require geophysical investigation, such as magnetic 

and electromagnetic surveys, to assist and optimize the permissive tract evaluation. The risk mapping of a complex 

permissive tract addresses complex structures in the crust, and the probability of finding a mineral deposit increases 

where structures are favorable for ore genesis. In the situation where a range of multiple prospects and camps are 

identified, however, the risk that mineralization events will occur in such features can be interdependent. This is 

because hydrothermal sites can extend over large areas (90,000 m2; Lipton 2008) and sulfide mounds can be 

clustered in different zones (e.g., the inactive Mir and Alvin zones situated 1.5 km east of the TAG sulfide mounds; 

Rona et al. 1993). The risk dependency of target features (prospects and camps) would increase (or decrease) the 

chance of finding new mineral occurrences when targets are considered together. If a camp (or a prospect) is 

successful or unsuccessful in terms of discovery, then the probability of making discoveries in other camps of the 

same permissive tract is assumed to change correspondingly; this conditional probability is described by Bayesian 

theorems as shown from the CCOP3 guidelines for risk assessment of petroleum target zones. In this context, 

estimated ore volumes that do not consider risk dependencies, such as those presented in Fig.5 and 6, may be biased. 

 

5.3. Volumetric calculations 

In the absence of drilling data, first-order determinations of resource potential, that are made on the basis of 

bathymetric structures (Fig.3), are informative, but also raise a whole set of new questions regarding the deposit 

                                                           
3 Document available online at http://www.ccop.or.th/assets/publication_digital/2912004_4_pdf.pdf. 

http://www.ccop.or.th/assets/publication_digital/2912004_4_pdf.pdf
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thickness or the depth of ore mineralization below the seafloor. Such an approach may be adequate if the resolution 

of bathymetric data allows to distinguish small-scale (at the centimetric level) features of hydrothermal vent fields, 

such as pinnacle-shaped sulfide structures, fractures and local mass movements of ore and, or, sedimentary materials 

(e.g., Webber et al. 2015). Detailed bathymetry, assisted by the acquired acoustical properties of seafloor (e.g., 

backscatter and hyperspectral imaging data; Ludvigsen et al. 2016) and video profiling of deposit morphologies, is 

also valuable for planning offshore geophysical surveys and selecting locations for drilling, especially if the 

prospects have been identified in areas more prone to sedimentation, landslides and tectonism (e.g., Cannat et al. 

2013). However, a high-resolution bathymetry model cannot confirm alone the existence of a sulfide body and, in 

this case, geophysical exploration techniques can be used to supplement the analysis.  

 

6. Conclusion 

The method for multi-scale quantitative risk analysis presented in this research can be used as an alternative 

framework for the investigation of seabed minerals. The framework leads to a work flow where the permissive tract, 

the camp and the prospect form a basis for identifying prospective areas early in the life of resource evaluation. 

When analyzing a permissive tract, the description of exposed geological factors (i.e., heat source, pathway, trap and 

reservoir) helps identifying the exploration risk of areas of interest while grade-tonnage-density models allow an 

estimation of preliminary resource estimates. However, a fundamental part of assessing mineral resources requires to 

take prior considerations regarding e.g., the type of deposit being studied (mafic-, ultramafic- or sediment-hosted 

deposits) and the related geological system (neo-volcanic zones, sedimented abyssal plains or tectonically active 

regions of MORs). For this reason, the mineral system described for the project area must be chosen carefully. In 

addition, this study evaluates exploration risk without drilling data. These data are necessary to develop grade-

tonnage models suitable for evaluating current findings at MORs, and they can be used to update both the resource 

potential and exploration risks in camps and, or, prospects where drilling has been conducted. If future companies 

aim to adjust grade-tonnage models for in-house assessment procedures prior to establishing mining activities, 

increasing attention should be given to drilling campaigns and related costs.  
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Table 2. Probability criteria applied to the geological factors of the study area. 

PROBABILITY CRITERIA CONDITION VALUE* 

Heat source (permissive tract level) 

P1 – Position compared to heat source Within AVR zone 0.9 

 Not within AVR zone 0.5 

Trap (camp level)   

P2 – Sediments and seafloor mounds Sedimentary terrains (i.e., ≤15° slopes) 0.8 

 Mound structures 0.8 

 Undetermined 0.5 

Pathways 

P3 – Topographic disruptions (with buffer 

distances) 

25-m distance 0.9 

50-m distance 0.8 

75-m distance 0.7 

100-m distance 0.6 

Undetermined or beyond 125m 0.5 

Reservoir 

P4 – Sedimentary or mound-type terrain Identified 0.8 

 Undetermined 0.5 

*Example of probability values attributed to the geological factors. The probability for each criterium is 1.0 for 

proven prospects. 

 

Table 3. Probabilities of prospects*. 

Criteria P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 

Trap and seal 1.0 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Reservoir presence 1.0 0.50 0.50 0.80 0.50 0.60 0.80 0.50 0.50 0.80 

Pathways 1.0 0.80 0.80 0.90 0.80 0.90 0.90 0.50 0.90 0.60 

Heat source 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Prospect probability 1.0 0.32 0.32 0.58 0.32 0.43 0.58 0.20 0.36 0.38 

*The numbering of prospects is shown on Fig.3. Probabilities are based upon in-situ observation of seafloor 

structuration and the nomenclature from Rose (2001) (section 2.3). 

 

Table 4. Metal tonnage of prospects. 

Variable P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 

Area (m2) 37,527 3,618 3,121 54,677 2,257 6,788 13,846 5,957 3,490 33,743 

Ore volume* (kt) 1042.4 100.5 86.7 1518.8 62.7 188.5 384.6 165.4 96.9 937.3 

Total metals** (kt) 15.1 1.46 1.26 21.9 0.90 2.73 5.54 2.39 1.41 13.5 

* Ore volume calculated using the ratio 27.7 t/m2. 

** Amount of metals including Cu, Zn, Au and Ag given the ore potential of prospects and the grade models 

provided by Mosier et al. (2009). The calculation is processed stochastically using GeoX. 
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Fig.1 Schematic representation of a permissive tract, and respective camps and prospects, projected on a map. The 

view is from the top (Z is the depth below seawater). 

 

Fig.2 Location of the study area at the northernmost valley zone of the Mohns Ridge. Related axial volcanic ridge 

(AVR-1) is shown to have hummocky terrains and a rift zone where the high-resolution bathymetry of the Loki’s 

Castle vent area (white rectangle) has been collected (see Fig.3). 
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Fig.3 Bathymetric map of the study case presenting the Loki’s Castle sulfide mound (a proven prospect) and 

associated geological structures. Further north, other unproven prospects were delineated according to their 

identifiable mound-like structure; no direct observation data were collected during the MarMine cruise at those 

prospects. Prospects are aggregated into two different camps (C#1 and C#2) given their proximity. Contour interval 

is 8 m. 
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Fig.4 Risk map of the study area (bottom right) built on the combining of trap, reservoir and pathway risk values (top 

left). The risk values are either low (0 to 0.6), medium (0.6 to 0.75) or high (above 0.75) depending on the available 

data and related interpretations. Sedimentary traps are determined from slope values (≤15°) given in-situ 

observations made during the MarMine cruise (Ludvigsen et al., 2016). Contour interval is 8 m. 
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Fig.5 Resource diagrams calculated for each prospect (top) and camp (bottom). The number of sampling iteration is 

10,000. 

 

Fig.6 Cumulative distribution curve of total in-place metals estimated within the two camps. Percentiles (F10, F50 

and F90) are indicated with respective resource volumes. 


