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Abstract

We design two closely related state feedback adaptive control laws for stabilization of a class of 2× 2 linear hyperbolic system
of partial differential equations (PDEs) with constant but uncertain in-domain and boundary parameters. One control law uses
an identifier, while the other is based on swapping design. We establish boundedness of all signals in the closed loop system,
pointwise in space and time, and convergence of the system states to zero pointwise in space. The theory is demonstrated in
simulations.
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1 Introduction

1.1 Background

We will in this paper consider systems on the form
of 2 × 2 linear hyperbolic partial differential equations
(PDEs), which can be used to model for instance traffic
flow [9] and pressure and flow profiles in oil wells [15].
Since equations of this type can be used to model a vast
range of different physical systems, extensive research
regarding control of this kind of systems have been per-
formed, and we list control Lyapunov functions [7], Rie-
mann invariants [10] and frequency approaches [16] to
name a few.

The pioneering backstepping approach presented in
[17] for stabilization of partial differential equations of
the parabolic type, has in recent years shown to be quite
useful and a general framework for analysis of PDEs.
The key ingredient of this approach is the introduction
of an invertible Volterra-like transformation that maps
the system to be investigated into an auxiliary system
designed to possess some desirable stability properties.
Due to the invertibility of the transformation, the sta-
bility properties of the two systems are the same.

The first use of backstepping to hyperbolic systems
was presented in [14], where among other applications,
hyperbolic PDEs were used to model actuator and sen-
sor delays in ordinary differential equations. Extensions
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of the backstepping technique to second order hyper-
bolic systems were presented in [18], and in [23] to 2× 2
coupled linear hyperbolic PDEs. Explicit non-adaptive
controllers for a subclass of the systems covered in [23]
was also offered in [22].

Adaptive stabilization of PDEs with unknown system
parameters is a field that is well-established in the case
of parabolic PDEs, with contributions like [13], [19], [20]
and [21]. Material regarding adaptive control of hyper-
bolic PDEs, however, is currently limited. The first result
was presented in [6], where an adaptive output feedback
control law was derived for a single hyperbolic partial-
integro differential equation with non-local source terms,
while a subproblem of this was presented in [24] offering
a full-state feedback solution. Recently, state feedback
stabilization of coupled 2×2 linear hyperbolic systems of
PDEs with uncertain in-domain coefficients was solved
in [2] and [3] using an identifier and swapping design, re-
spectively. Boundedness and square integrability in the
L2-sense of the states were established, while the impor-
tant result of convergence of the states to zero were not
established. In the present paper, boundedness, square
integrability and convergence to zero of system states
pointwise in space are provided, thereby completing the
missing aspects of [2], [3]. Another minor extension is
provided by considering the boundary parameters un-
known in addition to the in-domain coefficients consid-
ered in [2], [3]. A significant drawback of the result, lim-
iting it’s practical value, is the need for full state mea-
surements. Full state measurements are rarely available
in practice, however, for the particular problem motivat-
ing the present work, they can be considered available in
an approximate sense. When drilling oil wells, it is im-
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portant to control pressure accurately in the well. The
main obstacle to accurate modelling of the flow dynam-
ics in the well is the uncertainty of friction parameters,
which appear as coupling terms in the domain of the hy-
perbolic PDE. Emerging technology, referred to as wired
pipe, allows for distributed sensing along the drill-pipe
throughout the well. Sensors can be installed at every
pipe connection, about 30 meters apart, thereby pro-
viding an approximate measurement of the distributed
state of the PDE. That being said, solving the output
feedback problem is the ultimate goal, and is a topic of
our current research.

1.2 Paper structure

In Section 2, we formally pose the control problem to
be investigated. An adaptive control law based on an
identifier is presented in Section 3. The control law is for-
mally stated as Theorem 4. Then, in Section 4, another
control law based on swapping design is presented, and
the control law is formally stated as Theorem 7. Bound-
edness and square integrability of all states in the closed
loop system in the L2-sense are proved for both con-
trollers, and pointwise boundedness, square integrabil-
ity and convergence to zero of the system states are also
proved. The performance of the controllers is demon-
strated in simulations in Section 5, while Section 6 offers
some concluding remarks, and lists some pros and cons
regarding the two proposed controllers.

1.3 Notation

For a time-varying, real signal f(t), the following vec-
tor spaces are used

f ∈ Lp ⇔
(∫ ∞

0

|f(t)|pdt
) 1

p

<∞ (1)

for p ≥ 1 with the particular case

f ∈ L∞ ⇔ sup
t≥0
|f(t)| <∞. (2)

For the (possibly time-varying) vector signal u(x) de-
fined for 0 ≤ x ≤ 1, we introduce the following integral
operator

Ia [u] =

∫ 1

0

eaxu(x)dx (3)

with the derived norm

||u||2a = Ia
[
uTu

]
=

∫ 1

0

eaxuT (x)u(x)dx. (4)

The operator (3) is linear and has the property

2Ia [uux] = eau2(1)− u2(0)− a||u||2a. (5)

The norm ||u||a is equivalent to the standard L2 norm,
in the sense that there exist positive constants k1, k2 so
that

k1||u||a ≤ ||u|| ≤ k2||u||a, (6)

and also that ||u|| = ||u||0. Moreover, for the sum of
norms of u and v the shorthand notation

||u, v|| = ||u||+ ||v|| (7)

is used. Lastly, we will in subsequent sections often omit
writing the argument in time, so that e.g. u(x) = u(x, t)
and ||z|| = ||z(t)||.

2 Problem description

We consider systems on the form of 2 × 2 linear hy-
perbolic partial differential equations with constant in-
domain coefficients. These type of systems were also in-
vestigated [22], and are on the form

ut(x, t) + λux(x, t) = c1u(x, t) + c2v(x, t) (8a)

vt(x, t)− µvx(x, t) = c3u(x, t) + c4v(x, t) (8b)

u(0, t) = qv(0, t) (8c)

v(1, t) = U(t) (8d)

defined for 0 ≤ x ≤ 1, t ≥ 0, where u, v are the system
states, and

0 < λ ∈ R, 0 < µ ∈ R (9)

are known transport speeds while the coefficients

c1, c2, c3, c4, q ∈ R (10)

are unknown. However, we assume we have some bounds
on ci, i = 1 . . . 4 and q. That is, we are in possession of
some positive constants c̄i, i = 1 . . . 4 and q̄ so that

|ci| ≤ c̄i, i = 1 . . . 4, |q| ≤ q̄. (11)

These assumptions merely accommodate the use of the
projection operator (see Appendix A for the definition
and properties) to limit the parameter estimates, and
do not restrict the class of systems (8) considered since
the bounds are arbitrary. Finally, we assume the initial
states u(x, 0) = u0(x), v(x, 0) = v0(x) satisfy

u0, v0 ∈ L2. (12)

The goal is to design a state feedback adaptive control
law U that achieves regulation of the system states u
and v to zero pointwise in space and time. Moreover, all
additional signals should be bounded.

3 Adaptive control using an identifier

3.1 Introduction

In identifier-based design, a dynamical system - re-
ferred to as an identifier - is introduced. The identifier is
usually a copy of the system dynamics with certain in-
jection gains added for the purpose of making the adap-
tive laws integrable. Lyapunov theory is then used to
derive adaptive laws, and also prove that the error be-
tween the system states and identifier states is bounded.
The backstepping technique is used for controller design
and to map the identifier into a target system for which
stability analysis is easier. Boundedness of the identifier
is then proved using the target system. Due to invert-
ibility of the backstepping transform and the estimation

2



error also being bounded, the original system states are
bounded as well. An identifier is sometimes termed an
observer, although it’s purpose is parameter estimation
and not state estimation.

3.2 Identification using an identifier

Consider the identifier

∂tû1(x) + λ∂xû1(x) = $T (x)b̂1 + ρe1(x)||$||2 (13a)

∂tv̂1(x)− µ∂xv̂1(x) = $T (x)b̂2 + ρε1(x)||$||2 (13b)

û1(0) =
q̂v(0) + u(0)v2(0)

1 + v2(0)
(13c)

v̂1(1) = U (13d)

for some design gain ρ > 0, and where

e1(x) = u(x)− û1(x) (14a)

ε1(x) = v(x)− v̂1(x). (14b)

are errors between u and v and their estimates û and v̂,

$(x) =
[
u(x) v(x)

]T
(15a)

b1 =
[
c1 c2

]T
, b2 =

[
c3 c4

]T
, (15b)

and b̂1 and b̂2 are estimates of b1 and b2, respectively.
The dynamics of (14) is

∂te1(x) + λ∂xe1(x) = $T (x)b̃1 − ρe1(x)||$||2 (16a)

∂tε1(x)− µ∂xε1(x) = $T (x)b̃2 − ρε1(x)||$||2 (16b)

e1(0) =
q̃v(0)

1 + v2(0)
(16c)

ε1(1) = 0 (16d)

where

q̃ = q − q̂, c̃i = ci − ĉi, for i = 1 . . . 4. (17)

Lemma 1 Consider the system (8), the identifier (13)
and let Γ1, Γ2 be positive definite matrices, γ5 > 0, and

b̄1 =
[
c̄1 c̄2

]T
b̄2 =

[
c̄3 c̄4

]T
. (18)

The following adaptive laws

˙̂
b1 = projb̄1

{
Γ1I−γ [e1$] , b̂1

}
= projb̄1

{
Γ1

∫ 1

0

e−γxe1(x)$(x)dx, b̂1

}
(19a)

˙̂
b2 = projb̄2

{
Γ2Iγ [ε1$] , b̂2

}
= projb̄2

{
Γ2

∫ 1

0

eγxε1(x)$(x)dx, b̂2

}
(19b)

˙̂q = projq̄ {γ5e1(0)v(0)} (19c)

with initial conditions satisfying the bounds (11), guar-
antee the following properties

|ĉi| ≤ c̄i, i = 1 . . . 4, |q̂| ≤ q̄ (20a)

||e1||, ||ε1|| ∈ L∞ ∩ L2 (20b)

||e1||||$||, ||ε1||||$|| ∈ L2 (20c)

|e1(0)|, |e1(1)|, |ε1(0)|, |e1(0)v(0)| ∈ L2 (20d)

| ˙̂b1|, | ˙̂b2|, | ˙̂q| ∈ L2 (20e)

q̃v(0)√
1 + v2(0)

∈ L2 (20f)

PROOF. Consider the Lyapunov function candidate

V1 = V2 + b̃T1 Γ−1
1 b̃1 + b̃T2 Γ−1

2 b̃2 +
λ

2γ5
q̃2 (21)

where

V2 = ||e1||2−γ + ||ε1||2γ . (22)

Differentiating (21) with respect to time and inserting
the dynamics (16a)–(16b) we find

V̇1 = 2I−γ

[
e1(−λ∂xe1 +$T b̃1 − ρe1||$||2)

]
+ 2Iγ

[
ε1(µ∂xε1 +$T b̃2 − ρε1||$||2)

]
+ 2b̃T1 Γ−1

1
˙̃
b1 + 2b̃T2 Γ−1

2
˙̃
b2 + λγ−1

5 q̃ ˙̃q. (23)

Using the property (5), inserting the adaptive laws (19a)
and (19b), and using property (A.12) of Lemma 9 in
Appendix A give

V̇1 ≤ −λe−γe2
1(1) + λe2

1(0)− λγ||e1||2−γ + µeγε21(1)

− µε21(0)− µγ||ε1||2γ − 2ρI−γ
[
e2

1

]
||$||2

− 2ρIγ
[
ε21
]
||$||2 + λγ−1

5 q̃ ˙̃q. (24)

Substituting the boundary conditions (16c)–(16d) and
the adaptive law (19c), using property (A.12) of Lemma
9 in Appendix A, and

e1(0) = q̃v(0)− e1(0)v2(0), (25)

we find

V̇1 ≤ −λe−γe2
1(1)− µε21(0)− e2

1(0)v2(0)− λγ||e1||2−γ
− µγ||ε1||2γ − 2ρ||e1||2−γ ||$||2 − 2ρ||ε1||2γ ||$||2 (26)

which shows that V1 is bounded and from the definition
of V1 and V2 gives (20a) and ||e1||, ||ε1|| ∈ L∞. Integrat-
ing (26) in time from zero to infinity gives ||e1||, ||ε1|| ∈
L2, (20c) and |e1(1)|, |ε1(0)|, |e1(0)v(0)| ∈ L2. From the
properties (20c), |e1(0)v(0)| ∈ L2 and the adaptive laws
(19), (20e) follows. Using the following Lyapunov func-
tion candidate

V3 =
1

2γ5
q̃2, (27)

and the property (A.12), we find

V̇3 ≤ −q̃e1(0)v(0) ≤ − q̃2v2(0)

1 + v2(0)
. (28)
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This means that V3 is bounded from above, and hence
V3 ∈ L∞. Integrating (28) from zero to infinity gives

V̇3 ∈ L1 and hence (20f). From (25) and (16c), we have

e2
1(0) = e1(0)(q̃v(0)− e1(0)v2(0))

=
q̃2v2(0)

1 + v2(0)
− e2

1(0)v2(0) (29)

and from |e1(0)v(0)| ∈ L2 and (20f), |e1(0)| ∈ L2 follows.
2

3.3 Adaptive control

In this section, a stabilizing adaptive controller is de-
signed for system (8). The controller is derived using
the backstepping technique where an invertible Volterra
transformation is used to map the identifier (13) into a
target system which is shown to be stable using Lya-
punov analysis.

3.3.1 Kernel equations
Consider the following equation in K = K(x, ξ, t),

L = L(x, ξ, t)

µKx − λKξ = (ĉ1 − ĉ4)K + ĉ3L (30a)

µLx + µLξ = ĉ2K (30b)

L(x, 0) = q̂
λ

µ
K(x, 0) (30c)

K(x, x) = − ĉ3
λ+ µ

(30d)

defined over T1, given as

T1 = T × {t ≥ 0} (31a)

T = {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1} . (31b)

The well-posedness of the equation is addressed in the
following Lemma.
Lemma 2 For every time t ≥ 0, equation (30) has a
unique, continuous solution (K,L) with the following
properties

|K(x, ξ, t)| ≤ K̄, ∀(x, ξ) ∈ T , t ≥ 0 (32a)

|L(x, ξ, t)| ≤ L̄, ∀(x, ξ) ∈ T , t ≥ 0 (32b)

|Kt(x, ξ, ·)| ∈ L2, ∀(x, ξ) ∈ T . (32c)

|Lt(x, ξ, ·)| ∈ L2, ∀(x, ξ) ∈ T . (32d)

for some positive constants K̄, L̄ depending on the pa-
rameter bounds (11).
The proof of this lemma is given in Appendix B.
Remark 3 For every time t ≥ 0, explicit solutions of
(30) can (through a transformation) be found in [22].

3.3.2 Main theorem
Theorem 4 Consider the system (8) and the identifier
(13), and consider the control law

U =

∫ 1

0

K(1, ξ)û1(ξ)dξ +

∫ 1

0

L(1, ξ)v̂1(ξ)dξ (33)

where K, L is the solution to (30). Then all signals in
the closed loop system are bounded and integrable in the

L2-sense. Moreover, u(x, ·), v(x, ·) ∈ L∞ ∩ L2 for all
x ∈ [0, 1], and u(x, ·), v(x, ·)→ 0 for all x ∈ [0, 1].
The proof of Theorem 4 is the subject of the next sec-
tions.

3.3.3 Backstepping transformation
For every time t ≥ 0, consider the following adaptive

backstepping transformation

w1(x) = û1(x) (34a)

z1(x) = v̂1(x)−
∫ x

0

K(x, ξ)û1(ξ)dξ

−
∫ x

0

L(x, ξ)v̂1(ξ)dξ =: T [û1, v̂1](x) (34b)

where K, L is the solution to (30). As with all backstep-
ping transformations with uniformly bounded kernels,
transformation (34) is invertible with an inverse on the
form

û1(x) = w1(x) (35a)

v̂1(x) = T−1[w1, z1](x) (35b)

where T−1 is an integral operator taking a similar form
as (34).
Lemma 5 The transformation (34) and the control law
(33) with kernels satisfying (30) map the identifier (13)
into the following target system

∂tw1(x) + λ∂xw1(x) = ĉ1w1(x) + ĉ2z1(x)

+

∫ x

0

ω(x, ξ)w1(ξ)dξ +

∫ x

0

κ(x, ξ)z1(ξ)dξ

+ ĉ1e1(x) + ĉ2ε1(x) + ρe1(x)||$||2 (36a)

∂tz1(x)− µ∂xz1(x) = ĉ4z1(x)− λK(x, 0)q̂ε1(0)

− λK(x, 0)q̃v(0) + λK(x, 0)e1(0)

−
∫ x

0

Kt(x, ξ)w1(ξ)dξ

−
∫ x

0

Lt(x, ξ)T
−1[w1, z1](ξ)dξ

+ T [ĉ1e1 + ĉ2ε1, ĉ3e1 + ĉ4ε1](x)

+ ρT [e1, ε1](x)||$||2 (36b)

w1(0) = qz1(0) + qε1(0)− e1(0) (36c)

z1(1) = 0 (36d)

with

ω(x, ξ) = ĉ2K(x, ξ) +

∫ x

ξ

κ(x, s)K(s, ξ)ds (37a)

κ(x, ξ) = ĉ2L(x, ξ) +

∫ x

ξ

κ(x, s)L(s, ξ)ds (37b)

satisfying

|ω(x, ξ, t)| ≤ ω̄, ∀(x, ξ) ∈ T , t ≥ 0 (38a)

|κ(x, ξ, t)| ≤ κ̄, ∀(x, ξ) ∈ T , t ≥ 0 (38b)

for some positive constants ω̄, κ̄ depending on the param-
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eter bounds (11). Moreover, there exist positive constants
k1 and k2 such that

k1||w1, z1|| ≤ ||û1, v̂1|| ≤ k2||w1, z1|| (39)

for all t ≥ 0, where the notation (7) has been used, and
k1, k2 depend on the parameter bounds (11).

PROOF. Differentiating (34b) with respect to time, in-
serting the dynamics (13a)–(13b), integration by parts,
and inserting the boundary condition (13c) we find

∂tv̂1(x) = ∂tz1(x) +

∫ x

0

Kt(x, ξ)û1(ξ)dξ

+

∫ x

0

Lt(x, ξ)v̂1(ξ)dξ − λK(x, x)û1(x)

+ λq̂K(x, 0)v̂1(0) + λq̂K(x, 0)ε1(0)

+ λK(x, 0)q̃v(0)− λK(x, 0)e1(0)

+

∫ x

0

Kξ(x, ξ)λû1(ξ)dξ +

∫ x

0

K(x, ξ)ĉ1û1(ξ)dξ

+

∫ x

0

K(x, ξ)ĉ1e1(ξ)dξ +

∫ x

0

K(x, ξ)ĉ2v̂1(ξ)dξ

+

∫ x

0

K(x, ξ)ĉ2ε1(ξ)dξ + ρ

∫ x

0

K(x, ξ)e1(ξ)dξ||$||2

+ L(x, x)µv̂1(x)− L(x, 0)µv̂1(0)

−
∫ x

0

Lξ(x, ξ)µv̂1(ξ)dξ +

∫ x

0

L(x, ξ)ĉ3û1(ξ)dξ

+

∫ x

0

L(x, ξ)ĉ3e1(ξ)dξ +

∫ x

0

L(x, ξ)ĉ4v̂1(ξ)dξ

+

∫ x

0

L(x, ξ)ĉ4ε1(ξ)dξ

+ ρ

∫ x

0

L(x, ξ)ε1(ξ)dξ||$||2. (40)

Equivalently, differentiating (34b) with respect to space,
we obtain

∂xv̂1(x) = ∂xz1(x) +K(x, x)û1(x) + L(x, x)v̂1(x)

+

∫ x

0

Kx(x, ξ)û1(ξ)dξ +

∫ x

0

Lx(x, ξ)v̂1(ξ)dξ. (41)

Inserting (40) and (41) into (13b), using the equations
(30) and inserting the inverse transformation (35), one
obtains (36b). Inserting (34) into (36a), changing the
order of integration in the double integrals and using
(37), we obtain (13a). The existence of a unique solution
κ of (37b) is ensured by Volterra equation theory (see
e.g. [4, Lemma 9] for a proof). The boundary condition
(36c) follows from inserting (34) into (13c) and noting
that

w1(0) = qv(0)− e1(0) (42)

and

v(0) = z1(0) + ε1(0). (43)

From the properties (32a)–(32b) with bounds K̄ and L̄
depending on the parameter bounds (11), the bounds
(38) immediately follow. A similar argument holds for
the bounds (39), since the backstepping transformation
(34) has uniformly bounded kernels and is thus invert-
ible.

2

3.3.4 Stability
We are ready to prove the Theorem 4.

PROOF. [Proof of Theorem 4] Consider the Lyapunov
function candidate

V4 = V5 + aV6, (44)

with

V5 = ||w1||2−δ, V6 = ||z1||2k (45)

and where a > 0, k, δ are constants to be decided. It can
be shown using the properties of Lemmas 1 and 5, and
assuming δ, k ≥ 1 (see Appendix C for details), that the
derivatives of (45) satisfy

V̇5 ≤ h1z
2
1(0)−

[
λδ − h2

]
V5 + h3V6 + l1V5 + l2 (46a)

V̇6 ≤ −
[
µ− h6q̃

2ek
]
z2

1(0) + h5V5 − [kµ− h4]V6

+ l3V5 + l4V6 + l5 (46b)

where li, i = 1, . . . , 5 are integrable functions (i.e. in L1),
and h1 . . . h6 are positive constants. Letting

a =
h1 + 1

µ
(47)

gives

V̇4 ≤ −
[
λδ − h2 − ah5

]
V5 − [akµ− ah4 − h3]V6

−
[
1− ah6q̃

2ek
]
z2

1(0)

+ l1V5 + al3V5 + al4V6 + l2 + al5 (48)

and selecting

δ >
h2 + ah5

λ
, k >

h3 + ah4

aµ
(49)

give

V̇4 ≤ −cV4 −
[
1− ah6q̃

2ek
]
z2

1(0) + l6V4 + l7 (50)

for some positive constant c and integrable functions l6
and l7. From the relationship

z1(0) = v̂1(0) = v(0) + ε1(0) (51)

we find

z2
1(0) ≤ 2v2(0) + 2ε21(0)

≤ 2
v2(0)

1 + v2(0)
[1 + v2(0)] + 2ε21(0)

≤ 2
v2(0)

1 + v2(0)

[
1 + 2z2

1(0) + 2ε21(0)
]

+ 2ε21(0)
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≤ 2
v2(0)

1 + v2(0)

[
1 + 2z2

1(0)
]

+ 6ε21(0) (52)

Inserting this into (50), we obtain

V̇4 ≤ −cV4 −
[
1− bq̃2g

]
z2

1(0) + l6V4 + l8 (53)

where

g =
v2(0)

1 + v2(0)
(54)

has the property

0 ≤ g < 1, ∀t ≥ 0, (55)

the function

l8 = l7 + 2ah6e
k q̃2v2(0)

1 + v2(0)
+ 6ah6q̃

2ekε21(0) (56)

is integrable, and

b = 4ah6e
k (57)

is a positive constant. From (28) and the property
(A.12), we have

V̇3 ≤ −q̃2g (58)

It then follows from Lemma 10 in Appendix E that

V4 ∈ L1 ∩ L∞ (59)

and hence ||w1|| and ||z2|| are bounded and integrable.
Due to the equivalence of norms (39) we then have
||û1||, ||v̂1|| ∈ L∞ ∩ L2 and

||u||, ||v|| ∈ L∞ ∩ L2. (60)

We proceed by showing pointwise boundedness and
square integrability. It was in [23] shown that system
(8) is through an invertible backstepping transformation
equivalent to the system

αt(x) + λαx(x) = h(x)β(0) (61a)

βt(x)− µβx(x) = 0 (61b)

α(0) = qβ(0) (61c)

β(1) = U −
∫ 1

0

G1(ξ)u(ξ)dξ

−
∫ 1

0

G2(ξ)v(ξ)dξ, (61d)

for some bounded functions h,G1, G2 ∈ C of the un-
known parameters c1 . . . c4 and q. Equation (61) can ex-
plicitly be solved for t > λ−1 + µ−1 to yield (see e.g. [1,
Lemma 1] for details)

α(x, t) = qβ(1, t− µ−1 − λ−1x)

+ λ−1

∫ x

0

h(τ)β(1, t− µ−1 − λ−1(x− τ))dτ (62a)

β(x, t) = β(1, t− µ−1(1− x)). (62b)

From (61d), the control law (33) and the properties
||u||, ||v||, ||û1||, ||v̂1|| ∈ L∞∩L2, it follows that β(1, ·) ∈
L∞ ∩ L2, and from (62), that α(x, ·), β(x, ·) ∈ L∞ ∩ L2

for all x ∈ [0, 1]. From the invertibility of the transform,
we will therefore also have u(x, ·), v(x, ·) ∈ L∞ ∩ L2 for
all x ∈ [0, 1]. From the structure of the identifier (13),
we will also have û1(x, ·), v̂1(x, ·) ∈ L∞ ∩ L2, and hence
e1(x, ·), ε1(x, ·) ∈ L∞ ∩ L2.

We proceed by proving convergence to zero. We will
use Barbalat’s Lemma (see e.g. [12, Corollary A.7]),

which can be applied if V4 ∈ L1∩L∞, and V̇4 ∈ L∞. We
already know that V4 ∈ L1∩L∞, and it can be seen from
the derivations of (46a) and (46b) stated in Appendix C,

that V̇4 ∈ L∞ if e1(0), ε1(0), z1(0) ∈ L∞. The first one
follows trivially from (16c), while the two latter follow
from ε1(x, ·), v̂(x, ·),∈ L∞, since z1(0) = v̂1(0). Thus,

V̇4 ∈ L∞ and Barbalat’s Lemma gives V4 → 0 and hence
||w1||, ||z1|| → 0 and ||û1||, ||v̂1|| → 0. We note from (22)

that V̇2 ∈ L∞, and hence ||e1||, ||ε2|| → 0, which from
(14) implies

||u||, ||v|| → 0. (63)

The same argument as above using (62) then yields
α(x, ·), β(x, ·)→ 0 and thus

u(x, ·), v(x, ·)→ 0 (64)

for all x ∈ [0, 1]. 2

4 Swapping design

4.1 Introduction

When using swapping design, one designs filters cre-
ated so that they can be used to express the system
states as linear, static combinations of the filters, the
unknown parameters and some error terms. The error
terms are then shown to go to zero. From the static pa-
rameterization of the system states, standard parameter
identification laws can be used to estimate the unknown
parameters. The number of filters required when using
this method equals the number of unknown parameters
plus one.

4.2 Filter equations

We introduce the boundary parameter filter

ηt(x) + ληx(x) = 0, η(0) = v(0) (65a)

φt(x)− µφx(x) = 0, φ(1) = U (65b)

pt(x) + λpx(x) = $(x), p(0) = 0 (65c)

rt(x)− µrx(x) = $(x), r(1) = 0 (65d)

where

p(x) =
[
p1(x) p2(x)

]T
(66a)

r(x) =
[
r1(x) r2(x)

]T
(66b)

and $ is defined in (15a). All filters are defined for x ∈
[0, 1], t ≥ 0, and the initial conditions η(x, 0) = η0(x),
φ(x, 0) = φ0(x), p(x, 0) = p0(x) and r(x, 0) = r0(x, 0)
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are assumed to satisfy η0, φ0, p0, r0 ∈ L2([0, 1]). We can
then construct non-adaptive estimates of the system
states as

ū(x) = pT (x)b1 + η(x)q (67a)

v̄(x) = rT (x)b2 + φ(x) (67b)

where b1 and b2 are defined in (15b). The corresponding
estimation errors

e2(x) = u(x)− ū(x) (68a)

ε2(x) = v(x)− v̄(x) (68b)

can straightforwardly be shown to satisfy

∂te2(x) + λ∂xe2(x) = 0 (69a)

∂tε2(x)− µ∂xε2(x) = 0 (69b)

e2(0) = 0 (69c)

ε2(1) = 0, (69d)

which will be identically zero for t > max{λ−1, µ−1}.

4.3 Adaptive laws

Motivated by the static relationships (67) and (71), we
propose the following adaptive state estimates û2 and v̂2

û2(x) = pT (x)b̂1 + η(x)q̂ (70a)

v̂2(x) = rT (x)b̂2 + φ(x). (70b)

with associated ”prediction errors”

ê2(x) = u(x)− û2(x) (71a)

ε̂2(x) = v(x)− v̂2(x), (71b)

and the following adaptive laws

˙̂
b1 = projb̄1

{
Γ1

∫ 1

0
p(x)ê2(x)dx

1 + ||p||2 + ||η||2

}
(72a)

˙̂
b2 = projb̄2

{
Γ2

[∫ 1

0
r(x)ε̂2(x)dx

1 + ||r||2

+
ε̂2(0)r(0)

1 + |r(0)|2

]}
(72b)

˙̂q = projq̄

{
γ5

∫ 1

0
η(x)ê2(x)dx

1 + ||p||2 + ||η||2

}
, (72c)

with initial conditions chosen inside the bounds (11),
and

Γ1 = diag{γ1, γ2}, Γ2 = diag{γ3, γ4} (73)

with γi, i = 1 . . . 5 as positive design gains.
Lemma 6 Consider the system (8) with filters (65a)–
(65d). The adaptive laws (72) guarantee the following
properties

|ĉi| ≤ c̄i, i = 1 . . . 4, |q̂| ≤ q̄ (74a)

||e2||, ||ε2|| ∈ L∞ ∩ L2 (74b)

||ê2||√
1 + ||η||2 + ||p||2

,
||ε̂2||√

1 + ||r||2
∈ L2 (74c)

|e2(1)|, |ε2(0)| ∈ L2 (74d)

| ˙̂b1|, | ˙̂b2|, | ˙̂q| ∈ L∞ ∩ L2 (74e)

ε̂2(0)√
1 + |r(0)|2

∈ L∞ ∩ L2 (74f)

PROOF. Consider the Lyapunov function candidate

V7 = λ−1

∫ 1

0

(2− x)e2
2(x)dx+ µ−1

∫ 1

0

(1 + x)ε22(x)dx

+
1

2
b̃21Γ−1

1 b̃1 +
1

2
b̃22Γ−1

2 b̃2 +
1

2
γ−1

5 q̃2. (75)

Differentiating with respect to time, inserting the adap-
tive laws (72), using property (A.12) of Lemma 9 in Ap-
pendix A, and integration by parts, we obtain

V̇7 ≤ −e2
2(1)−

∫ 1

0

e2
2(x)dx− ε22(0)−

∫ 1

0

ε22(x)dx

−
∫ 1

0
(pT (x)b̃1 + η(x)q̃)ê2(x)dx

1 + ||p||2 + ||η||2

−
∫ 1

0
rT (x)b̃2ε̂2(x)dx

1 + ||r||2
− rT (0)b̃2ε̂2(0)

1 + |r(0)|2
. (76)

From (67), (68), (71) and (70), we note that

ê2(x)− e2(x) = pT (x)b̃1 + η(x)q̃ (77a)

ε̂2(x)− ε2(x) = rT (x)b̃2 (77b)

and find

V̇7 ≤ −e2
2(1)−

∫ 1

0

e2
2(x)dx− ε22(0)−

∫ 1

0

ε22(x)dx

−
∫ 1

0
ê2

2(x)dx

1 + ||η||2 + ||p||2
+

∫ 1

0
ê2(x)e2(x)dx

1 + ||η||2 + ||p||2

−
∫ 1

0
ε̂22(x)dx

1 + ||r||2
+

∫ 1

0
ε̂2(x)ε2(x)dx

1 + ||r||2

− ε̂22(0)

1 + |r(0)|2
+
ε̂2(0)ε2(0)

1 + |r(0)|2
. (78)

Using Cauchy-Schwarz’ inequality on the cross terms,
one finds

V̇7 ≤ −e2
2(1)− 1

2
ε22(0)− 1

2
||e2||2 −

1

2
||ε2||2

− 1

2

||ê2||2

1 + ||η||2 + ||r||2
− 1

2

||ε̂2||2

1 + ||r||2

− 1

2

ε̂22(0)

1 + |r(0)|2
. (79)

Thus V7 is bounded, and (74a) and ||e2||, ||ε2|| ∈ L∞
follow. Integrating (79) gives ||e2||, ||ε2|| ∈ L2, (74c)–

(74d) and ε̂2(0)√
1+|r(0)|2

∈ L2. Inserting

ε̂2(0) = ε2(0) + rT (0)b̃2 (80)
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into ε̂2(0)√
1+|r(0)|2

, we obtain

|ε̂2(0)|√
1 + |r(0)|2

≤ |ε2(0)|√
1 + |r(0)|2

+ |b̃2|. (81)

Since ε2(0) = 0 for t > µ−1, we obtain ε̂2(0)√
1+|r(0)|2

∈ L∞.

Lastly, consider for instance the first adaptive law of
(72a). Using the Cauchy-Schwarz inequality

| ˙̂c1| ≤ γ1

∫ 1

0
|p1(x)ê2(x)|dx

1 + ||η||2 + ||p||2

≤ γ1
||p1||√

1 + ||η||2 + ||p||2
||ê2||√

1 + ||η||2 + ||p||2

≤ γ1
||ê2||√

1 + ||η||2 + ||p||2
(82)

which from (74c) shows that | ˙̂c1| is square integrable.
Using (77a) and the fact that e2 ≡ 0 for t > λ−1, we get

| ˙̂c1| ≤ γ1
||p1||||ê2||

1 + ||η||2 + ||p||2
≤ γ1

||ê2||√
1 + ||η||2 + ||p||2

≤ γ1
||pT b̃1||+ ||ηq̃||√
1 + ||η||2 + ||p||2

≤ γ1(|b̃1|+ |q̃|) (83)

which from (74a) shows that | ˙̂c1| is bounded. A similar
argument holds for the additional adaptive laws (72),
and hence (74e) follows. 2

4.4 Adaptive control

4.4.1 Main theorem
Theorem 7 Consider the system (8) and the state es-
timates û, v̂ generated from (70) using the filters (65a)–
(65d) and the adaptive laws (72). Consider also the con-
trol law

U =

∫ 1

0

K(1, ξ)û2(ξ)dξ +

∫ 1

0

L(1, ξ)v̂2(ξ)dξ (84)

where (K,L) is the solution to (30). Then all signals
in the closed loop system are bounded and integrable in
the L2-sense. Moreover, u(x, ·), v(x, ·) ∈ L∞ ∩L2 for all
x ∈ [0, 1], and u(x, ·), v(x, ·)→ 0 for all x ∈ [0, 1].

Again, we split the proof over the next subsections.

4.4.2 State estimate dynamics
First off, we state the dynamics for the estimates û2

and v̂2 generated from (70). It can straight forwardly be
shown to be

∂tû2(x) + λ∂xû2(x) = ĉ1u(x) + ĉ2v(x)

+ pT (x)
˙̂
b1 + η(x) ˙̂q (85a)

∂tv̂2(x)− µ∂xv̂2(x) = ĉ3u(x) + ĉ4v(x)

+ rT (x)
˙̂
b2 (85b)

û2(0) = q̂v(0) (85c)

v̂2(1) = U. (85d)

4.4.3 Backstepping
Consider the same backstepping transformation as in

the previous section, namely (34)

w2(x) = û2(x) (86a)

z2(x) = T [û2, v̂2](x) (86b)

with inverse (35), namely

û2(x) = w2(x) (87a)

v̂2(x) = T−1[w2, z2](x). (87b)

Lemma 8 The backstepping transformation (86) and
the controller (84) with the backstepping kernels satisfy-
ing (30) maps the dynamics (85) into the target system

∂tw2(x) + λ∂xw2(x) = ĉ1w2(x) + ĉ2z2(x)

+ ĉ1ê2(x) + ĉ2ε̂2(x)

+

∫ x

0

ω(x, ξ)w2(ξ)dξ +

∫ x

0

κ(x, ξ)z2(ξ)dξ

+ pT (x)
˙̂
b1 + η(x) ˙̂q (88a)

∂tz2(x)− µ∂xz2(x) = ĉ4z2(x)−
∫ x

0

Kt(x, ξ)w2(ξ)dξ

−
∫ x

0

Lt(x, ξ)T
−1[w2, z2](ξ)dξ

− λK(x, 0)q̂ε̂2(0)

+ T [ĉ2ε̂2 + ĉ1ê2, ĉ3ê2 + ĉ4ε̂2](x)

−
∫ x

0

K(x, ξ)η(ξ)dξ ˙̂q

+ T [pT
˙̂
b1, r

T ˙̂
b2](x) (88b)

w2(0) = q̂z2(0) + q̂ε̂2(0) (88c)

z2(1) = 0, (88d)

where ω, κ satisfy (38). Moreover, there exists constants
k3 and k4 such that

k3||w2, z2|| ≤ ||û2, v̂2|| ≤ k4||w2, z2|| (89)

for all t ≥ 0.

PROOF. The proof follows the same steps as the proof
of Lemma 5 and is therefore omitted. 2

4.4.4 Boundedness

PROOF. [Proof of Theorem 7] Consider the Lyapunov
function candidate

V8 =

13∑
i=9

aiVi (90)

where

V9 = ||p||2−δ V10 = ||r||2k V11 = ||η||2−δ (91a)

V12 = ||w2||2−δ V13 = ||z2||2k (91b)
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and the coefficients ai, i = 9 . . . 13 are some positive
constants.

It can be shown using the properties of Lemmas 6 and
8, and assuming δ, k ≥ 1 (see Appendix D for details),
that

V̇9 ≤ −(λδ − 1)V9 + h7e
δV12 + h8V13

+ l9V11 + l9V9 + l10V10 + l11 (92a)

V̇10 ≤ −µ|r(0)|2 − (µk − 1)V10 + h7e
δ+kV12 + h8V13

+ l12V9 + l13V10 + l12V11 + l14 (92b)

V̇11 ≤ h9z
2
2(0) + h9ε̂

2
2(0)− λδV11 (92c)

V̇12 ≤ h10z
2
2(0) + h10ε̂

2
2(0)− [λδ − h11]V12

+ 2V13 + l15V9 + l16V10 + l16V11 + l18 (92d)

V̇13 ≤ −µz2
2(0) + ekε22(0)− [kµ− h12]V13

+ l19V9 + l20V10 + l21V11

+ l22V12 + l23V13 + l24 (92e)

where h7 . . .h12 are positive constants and l8 . . . l24 are
integrable functions. From (90), we find

V̇8 ≤ −a9(λδ − 1)V9 − a10(µk − 1)V10 − a11λδV11

−
[
a12λδ − a12h11 − a9h7e

δ − a10h7e
δ+k
]
V12

− [a13kµ− a13h12 − a9h8 − a10h8 − 2a12]V13

− a10µr
2(0)− [a13µ− a11h9 − a12h10] z2

2(0)

+
[
a11h9 + a12h10 + a13e

k
]
ε̂22(0)

+ [a9l9 + a10l12 + a12l15 + a13l19]V9

+ [a9l10 + a10l13 + a12l16 + a13l20]V10

+ [a9l9 + a10l12 a12l16 + a13l21]V11 + a10l14

+ a13l22V12 + a13l23V13 + a9l11

+ a12l18 + a13l24 (93)

Let

a9 = e−δ a10 = e−k−δ a11 = 1 (94a)

a12 = 1 a13 =
h9 + h10

µ
(94b)

and then choose

δ > max

{
1,

1

λ
,
h11 + 2h7

λ

}
(95)

k > max

{
1,

1

µ
,
a13h12 + 2h8 + 2

a13µ

}
(96)

then

V̇8 ≤ −cV8 − a10µr
2(0) + bε̂22(0) + l25V8 + l26 (97)

for some integrable functions l25 and l26 and positive
constants c and

b = h9 + h10 + a13e
k. (98)

We now rewrite ε̂22(0) as

ε̂22(0) =
ε̂22(0)

1 + |r(0)|2
+

ε̂22(0)

1 + |r(0)|2
|r(0)|2, (99)

where the first term on the right hand side is integrable.
Inserting this, we find

V̇8 ≤ −cV8 −
[
a10µ− b

ε̂22(0)

1 + |r(0)|2

]
|r(0)|2

+ l25V8 + l27 (100)

where

l27 = l26 + b
ε̂22(0)

1 + |r(0)|2
(101)

is an integrable function. Using

ε̂2(0) = ε2(0) + rT (0)b̃2 (102)

and the fact that ε2(0) = 0 for t > µ−1, we obtain

V̇8 ≤ −cV8 −
[
a10µ− bb̃T2 Gb̃2

]
|r(0)|2

+ l25V8 + l27 (103)

where

G =
r(0)rT (0)

1 + |r(0)|2
(104)

satisfies 0 ≤ G = GT < 0. Furthermore, from the adap-
tive law (72b) and the property (A.12), we have that

V14 =
1

2
b̃T2 Γ−1

2 b̃2 (105)

satisfies

V̇14 ≤ −b̃T2 Gb̃2. (106)

It then follows from Lemma 10 in Appendix E that

V8 ∈ L1 ∩ L∞ (107)

and ||p||, ||r||, ||η||, ||w||, ||z|| ∈ L∞ ∩ L2 are established.
From the control law (84) and (70), it follows that U
is bounded and integrable, and from (65b), that φ(x) is
bounded and integrable for all x. From (68) and (67),
we have

||u|| ≤ ||p|||b1|+ ||η|||q|+ ||e|| (108a)

||v|| ≤ ||r|||b2|+ ||φ||+ ||ε||, (108b)

and hence, from (74a)–(74b), we get

||u||, ||v|| ∈ L∞ ∩ L2. (109)

From (61) and (62), we get

u(x, ·), v(x, ·) ∈ L∞ ∩ L2 (110)

for all x ∈ [0, 1], and from the structure of the filters, it
immediately follows that

p1(x, ·), p2(x, ·), r1(x, ·), r2(x, ·) ∈ L∞ ∩ L2 (111a)

η(x, ·), φ(x, ·) ∈ L∞ ∩ L2 (111b)

for all x ∈ [0, 1]. Then the same line of reasoning using
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Barbalat’s Lemma as in the proof of Theorem 4 gives

u(x, ·), v(x, ·)→ 0. (112)

for all x ∈ [0, 1]. 2

5 Simulation

The system (8) and the control laws of Theorem 4 and
7 were implemented in MATLAB. The system parame-
ters were set to

c1 = −0.1, c2 = 1, c3 = 0.4, c4 = 0.2, q = 4 (113)

while the a priori upper bounds were set to

c̄1 = 10, c̄2 = 10, c̄3 = 10, c̄4 = 10, q̄ = 10. (114)

This system is open loop (U ≡ 0) unstable. The design
gains were for both controllers set to

γ1 = γ2 = γ3 = γ4 = γ5 = 10, (115)

while for the controller of Theorem 4, we set

γ = ρ = 0.01. (116)

The initial conditions for the system were in both cases
the following

u(x, 0) = sin(2πx), v(x, 0) = x, (117)

while the initial conditions of the identifier, filters and
estimated parameters were all set to zero. The system
states for the case of open loop is clearly shown to diverge
in Figure 1. In both the adaptive control cases, the sys-
tem states are seen to be bounded and converge to zero
in Figures 2 and 5, respectively. The actuation signals U
are also seen to converge to zero in Figures 3 and 6. All
estimated parameters are seen to be bounded in Figures
4 and 7. Convergence of the estimated parameters is not
guaranteed by any of the derived control laws, however.
The identifier-based method is slightly more aggressive
in terms of control, as can be seen from comparing Fig-
ure 3 with Figure 6. However, this does not have an im-
pact on the state norms observed in Figures 4 and 7.

Simulations were also performed to test for robust-
ness with respect to errors in the transport speeds λ and
µ, and indicate robustness to small errors in these pa-
rameters. For the specific case (113)–(117), stability was
preserved for errors up to plus/minus 10%.

6 Conclusions

We have derived two adaptive control laws for stabi-
lization of 2 × 2 linear hyperbolic PDEs with constant
in-domain coefficients. One control law is based on an
identifier, while the other is based on swapping design.
Proof of pointwise boundedness, square integrability and
convergence to zero are given and the theory is verified
in simulations.

The identifier based method requires the introduc-
tion of an auxiliary system - the identifier - which has
a dynamical order equal to the system itself, regardless
of the number of unknowns. However, for swapping de-
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Fig. 1. Norm of the system states in the open loop case.

0 2 4 6 8 10

0

20

40

Time [s]

V
a

lu
e

||u|| + ||v||

Fig. 2. Norm of the system states for the controller of The-
orem 4.
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Fig. 3. Actuation signal for the controller of Theorem 4.

sign, one requires the introduction of a number of filters
equal to the number of unknown parameters plus one,
and hence, the dynamic order is higher. One advantage
of the swapping based controller, is that the static for-
mulation opens for a larger family of adaptive laws to be
used, as well as the possibility to create adaptive laws
that are not only square integrable, but also bounded.

Simulations did not show any particular advantage of
choosing one controller over the other one, with the two
performing very similarly and both achieving conver-
gence of the system states to zero after approximately
the same amount of time. The identifier-based method
is slightly more aggressive in terms of control effort, but
not enough to have significant effect on the state norms.
The transient performance can be slightly altered by
tuning the adaptation gains used.

An obvious drawback of the proposed methods, is the
need to have distributed measurements of the system
states, a property which is usually unrealistic in practice.
Ultimately, stabilization using output feedback should
therefore be investigated.
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A Projection operator

Let

θ =
[
θ1 . . . θn

]T
(A.1)

be a vector of unknowns. Assume a vector of bounds

θ̄ =
[
θ̄1 . . . θ̄n

]T
(A.2)

is known, so that for all i = 1 . . . n

|θi| ≤ θ̄i. (A.3)

Assume

θ̂ =
[
θ̂1 . . . θ̂n

]T
(A.4)

is an estimate of θ, which is generated using the following
adaptive law

˙̂
θ = projθ̄{τ, θ̂} (A.5)

for a vector of adaptive laws

τ =
[
τ1 . . . τn

]T
(A.6)

and initial conditions

θ̂(0) =
[
θ̂1(0) . . . θ̂n(0)

]T
(A.7)

satisfying, for all i = 1 . . . n

|θ̂i(0)| ≤ θ̄i, (A.8)

while the projection operator acts element-wise, and is
for every element given as

projθ̄i(τi, θ̂i) =

{
0 if |θ̂i| ≥ θ̄i and θ̂iτi ≥ 0

τi otherwise.
(A.9)

Lemma 9 The adaptive law (A.5) using the projection
operator (A.9) has the following properties for all t ≥ 0:
(1) For i = 1 . . . n have

|θ̂i| ≤ θ̄i. (A.10)

(2) The following inequalities hold(
projθ̄(τ, θ̂)

)2

≤ τ2 (A.11)

and

−θ̃Tprojθ̄(τ, θ̂) ≤ −θ̃T τ (A.12)

where

θ̃ = θ − θ̂. (A.13)

PROOF. Proof of (A.11) and (A.12) follow similar
steps as in [11, Lemma E.1], while for (A.10), we first

note that θ̂i is continuous. Assume θ̂i(t) > θ̄i for some

t. Since θ̂i is continuous, there exist t∗, T such that

θ̂i(t) > θ̄i for all t ∈ (t∗, t∗ + T ], and
˙̂
θ(t̄) > 0 for some

t̄ ∈ (t∗, t∗ + T ]. Then
˙̂
θi(t̄) > 0 implies that τi(t̄) > 0,

which gives θ̂i(t̄)τi(t̄) > 0, contradicting (A.9).

B Well-posedness of kernel equations

PROOF. [Proof of Lemma 2] For every time t, the ex-
istence of a unique, pointwise bounded solution of (30)
is ensured by [8, Theorem A.1], which also states point-
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wise bounds on the form

|K(x, ξ, t)| ≤ f1(ĉ1(t), . . . ĉ4(t), q̂(t)) (B.1a)

|K(x, ξ, t)| ≤ f2(ĉ1(t), . . . ĉ4(t), q̂(t)) (B.1b)

for all (x, ξ) ∈ T and t ≥ 0. The set A of admissible
ĉ1, . . . ĉ4, q̂, is compact due to projection. f1 and f2 are
continuous functions of the estimates ĉ1, . . . ĉ4, q̂, and
hence f1 and f2 attain maximum (and minimum) values
on A. Let K̄ be the maximum value of f1, and L̄ the
maximum value of f2 over A give the bounds (32a)–
(32b). Now differentiating (30) with respect to time, we
find

µKtx − λKtξ = (ĉ1 − ĉ4)Kt + ĉ3Lt

+ ( ˙̂c1 − ˙̂c4)K + ˙̂c3L (B.2a)

µLtx + µLtξ = ĉ2Kt + ˙̂c2K (B.2b)

Lt(x, 0) = q̂
λ

µ
Kt(x, 0) + ˙̂q

λ

µ
K(x, 0) (B.2c)

Kt(x, x) = −
˙̂c3

λ+ µ
. (B.2d)

Again using [8, Theorem A.1] on Equation (B.2) in
(Kt, Lt), we find that the equations have a unique solu-
tion (Kt, Lt) which is bounded as follows

|Kt(x, ξ)| ≤M1| ˙̂c1|+M2| ˙̂c2|+M3| ˙̂c3|
+M4| ˙̂c4|+M5| ˙̂q| (B.3a)

|Lt(x, ξ)| ≤M6| ˙̂c1|+M7| ˙̂c2|+M8| ˙̂c3|
+M9| ˙̂c4|+M10| ˙̂q| (B.3b)

for some positive constants Mi, i = 1 . . . 10. From the
property (20e), we find (32c)–(32d). 2

C Details regarding Theorem 4

We will in this section frequently use Cauchy-Schwarz’
inequality

Ia [guv] ≤ k1||g||
2
||u||2a +

||g||
2k1
||v||2a (C.1a)

which holds for any a and arbitrary positive constant k1,
and the following inequalities which hold provided a ≥ 1

I−a

[
u(x)

∫ x

0

f(x, ξ)v(ξ)dξ

]
≤ f̄k2

2
||u||2−a +

f̄

2k2
||v||2−a (C.1b)

Ia

[
u(x)

∫ x

0

f(x, ξ)v(ξ)dξ

]
≤ ||f ||k3

2
||u||2a +

||f ||
2k3

ea||v||20 (C.1c)

for arbitrary positive constants k2 and k3, and where f̄
bounds |f(x, ξ)| for all (x, ξ) ∈ T .

Also, we state an important property regarding the
transform (34) and its inverse (35). Consider three sig-

nals a, b, u defined for x ∈ [0, 1], t ≥ 0, given from

u(x) = T [a, b](x) (C.2a)

b(x) = T−1[a, u](x). (C.2b)

Since the kernels (K,L) are uniformly, pointwise
bounded for every t, the following inequalities hold

||u|| ≤ A1||a||+A2||b|| (C.3a)

||b|| ≤ B1||a||+B2||u|| (C.3b)

for some positive constants A1, A2, B1, B2 depending
on the parameter bounds (11). From (14), (34) and (35),
we then have

||v|| ≤ ||v̂1||+ ||ε1|| = ||T−1[w1, z1]||+ ||ε1||
≤ B1||w1||+B2||z1||+ ||ε1|| (C.4a)

||u|| ≤ ||û1||+ ||e1||
≤ ||w1||+ ||e1||. (C.4b)

C.1 Bounds on V5

Differentiating V5 in (45), inserting the dynamics
(36a), we find

V̇5 = −2λI−δ [w1∂xw1] + 2ĉ1I−δ
[
w2

1

]
+ 2ĉ2I−δ [w1z1]

+ 2I−δ

[
w1

∫ x

0

ω(x, ξ)w1(ξ)dξ

]
+ 2I−δ

[
w1

∫ x

0

κ(x, ξ)z1(ξ)dξ

]
+ 2ĉ1I−δ [w1e1]

+ 2ĉ2I−δ [w1ε1] + 2ρI−δ [w1e1] ||$||2. (C.5)

Using the properties (5) and (C.1) and the bounds (20a)
of Lemma 1 and (38) of Lemma 5, we bound the above
term as follows

V̇5 ≤ λw2
1(0)− λδ||w1||2−δ + 2ĉ1||w1||2−δ

+ c̄22||w1||2−δ + ||z1||2−δ + 2ω̄||w1||2−δ
+ κ̄2||w1||2−δ + ||z1||2−δ + c̄21||w1||2−δ + ||e1||2−δ
+ c̄22||w1||2−δ + ||ε1||2−δ + 2ρI−δ [w1e1] ||$||2. (C.6)

Consider the latter term. We find

2ρI−δ [w1e1] ||$||2 = 2ρI−δ [w1e1] ||$||(||u||+ ||v||)
≤ ρ2eδ(I−δ [w1e1])2||$||2 + e−δ(||u||+ ||v||)2

≤ ρ2eδ(I−δ [w1e1])2||$||2

+ e−δ((1 +B1)||w1||+B2||z1||+ ||e1||+ ||ε1||)2

≤ ρ2eδ||w1||2−δ||e1||2−δ||$||2 + 4e−δ(1 +B1)2||w1||2

+ 4e−δB2
2 ||z1||2 + 4e−δ||e1||2 + 4e−δ||ε1||2. (C.7)

Inserting this and the boundary condition (36c), we ob-
tain

V̇5 ≤ 3λq2z2
1(0) + 3q2ε21(0) + 3e2

1(0)

−
[
λδ − 2c̄1 − c̄22 − 2ω̄ − κ̄2 − c̄21
− c̄22 − 4(1 +B1)2

]
||w1||2−δ

+ (2 + 4B2
2)||z1||2k + 5||e1||2−δ + 5||ε1||2−δ
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+ ρ2eδ||e1||2−δ||$||2||w1||2−δ (C.8)

Which can be written as

V̇5 ≤ h1z
2
1(0)−

[
λδ − h2

]
||w1||2−δ

+ h3||z1||2k + l1||w1||2−δ + l2 (C.9)

since

||z1||−δ ≤ ||z1||k (C.10)

for the positive constants

h1 = 3λq2 (C.11a)

h2 = 2c̄1 + c̄22 + 2ω̄ + κ̄2 + c̄21
+ c̄22 + 4(1 +B1)2 (C.11b)

h3 = 2 + 4B2
2 (C.11c)

and integrable functions

l1 = ρ2eδ||e1||2−δ||$||2 (C.12a)

l2 = 3e2
1(0) + 3q2ε21(0) + 5||e1||2−δ + 5||ε1||2−δ (C.12b)

C.2 Bounds on V6

Similarly, differentiating V6 in (45), inserting the dy-
namics (36b), we obtain

V̇6 = 2µIk [z1∂xz1] + 2ĉ4Ik
[
z2

1

]
− 2λIk [z1K(x, 0)q̂ε1(0)]

− 2λIk [z1K(x, 0)q̃v(0)] + 2λIk [z1K(x, 0)e1(0)]

− 2Ik

[
z1

∫ x

0

Kt(x, ξ)w1(ξ)dξ

]
− 2Ik

[
z1

∫ x

0

Lt(x, ξ)T
−1[w1, z1](ξ)dξ

]
+ 2Ik [z1T [ĉ1e1 + ĉ2ε1, ĉ2e1 + ĉ4ε1](x)]

+ 2ρIk [z1T [e1, ε1](x)] ||$||2. (C.13)

Using the properties (5) and (C.1), and inserting the
boundary condition, we obtain

V̇6 ≤ −µz2
1(0)− [kµ− 2c̄4 − 5] ||z1||2k + λ2K̄2q̄2ε21(0)ek

+ λ2K̄2q̃2v2(0)ek + λ2K̄2e2
1(0)ek + ||Kt||2ek||w1||20

+ 2||Lt||2ek(B2
1 ||w1||2 +B2

2 ||z1||2)

+ ||T [ĉ1e1 + ĉ2ε1, ĉ2e1 + ĉ4ε1](x)||2k
+ 2ρIk [z1T [e1, ε1](x)] ||$||2 (C.14)

where we have used that

||1||k =
1

k
(ek − 1) ≤ ek (C.15)

for k ≥ 1. Now using

v(0) = z1(0) + ε1(0) (C.16)

and

2ρIk [z1T [e1, ε1](x)] ||$||2

≤ eδIk [z1T [e1, ε1](x)]
2 ||$||2 + e−δ(||u||+ ||v||)2

≤ eδ+kIk
[
z2

1T
2[e1, ε1](x)

]
||$||2 + e−δ(||u||+ ||v||)2

≤ 2eδ+k(A2
1||e1||+A2

2||ε1||)||$||2||z1||2k
+ e−δ((1 +B1)||w1||+B2||z1||+ ||e1||+ ||ε1||)2

≤ 2eδ+k(A2
1||e1||+A2

2||ε1||)||$||2||z1||2k
+ 4e−δ(1 +B1)2||w1||2 + 4e−δB2

2 ||z1||2

+ 4e−δ||e1||2 + 4e−δ||ε1||2 (C.17)

we obtain

V̇6 ≤ −µz2
1(0)− [kµ− 2c̄4 − 5] ||z1||2k + λ2K̄2q̄2ε21(0)ek

+ 2λ2K̄2q̃2z2
1(0)ek + 8λ2K̄2q̄2ε21(0)ek

+ λ2K̄2e2
1(0)ek + ||Kt||2ek||w1||20

+ 2||Lt||2ek(B2
1 ||w1||2 +B2

2 ||z1||2)

+ ||T [ĉ1e1 + ĉ2ε1, ĉ2e1 + ĉ4ε1](x)||2k
+ 2eδ+k(A2

1||e1||+A2
2||ε1||)||$||2||z1||2k

+ 4(1 +B1)2||w1||2−δ + 4e−δB2
2 ||z1||2

+ 4e−δ||e1||2 + 4e−δ||ε1||2. (C.18)

Defining the positive constants

h4 = 2λ2K̄2 h5 = 4(1 +B1)2 (C.19a)

h6 = 2c̄4 − 4B2
2 − 5 (C.19b)

and the integrable functions

l3 = ||Kt||2eδ+k + 2B2
1 ||Lt||2eδ+k (C.20a)

l4 = 2B2
2 ||Lt||2ek

+ 2eδ+k(A2
1||e1||+A2

2||ε1||)||$||2 (C.20b)

l5 = λ2K̄2q̄2ε21(0)ek + 8λ2K̄2q̄2ε21(0)ek

+ 4e−δ||e1||2 + 4e−δ||ε1||2 + λ2K̄2e2
1(0)ek

+ ||T [ĉ1e1 + ĉ2ε1, ĉ2e1 + ĉ4ε1](x)||2k, (C.20c)

(C.18) can be written

V̇6 ≤ −
[
µ− h6q̃

2ek
]
z2

1(0) + h5||w1||2−δ
− [kµ− h4] ||z1||2k
+ l3||w1||2−δ + l4||z1||2k + l5. (C.21)

D Details regarding Theorem 7

Since the backstepping transformation of Lemma 8 is
the same as in Lemma 5, the bounds (C.3) hold.

D.1 Bounds on V9

Using the dynamics (65c), we find

V̇9 = −2λI−δ
[
pT px

]
+ 2I−δ

[
pT$

]
. (D.1)

Using the properties (5) and (C.1), we obtain

V̇9 ≤ −λe−δpT (1)p(1) + λpT (0)p(0)− λδ||p||2−δ
+ ||p||2−δ + ||$||2−δ (D.2)

Inserting the boundary condition (65c), we obtain

V̇9 ≤ −(λδ − 1)||p||2−δ + ||$||2−δ. (D.3)
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For the latter term, we have, using the bounds (C.3)

||$||2−δ ≤ ||$||2 = ||u||2 + ||v||2

≤ (||w1||+ ||ê1||)2 + (||z1||+ ||ε̂1||)2

≤ (2 + 3B2
1)||w2||2 + 3B2

2 ||z2||2

+ 2||ê2||2 + 3||ε̂2||2

≤ (2 + 3B2
1)||w2||2 + 3B2

2 ||z2||2

+ 2
||ê2||2

1 + ||η||2 + ||p||2
(1 + ||η||2 + ||p||2)

+ 3
||ε̂2||2

1 + ||r||2
(1 + ||r||2) (D.4)

Inserting this, we obtain

V̇9 ≤ −(λδ − 1)||p||2−δ + h7e
δ||w2||2−δ + h8||z2||2k

+ l9||η||2−δ + l9||p||2−δ + l10||r||2k + l11 (D.5)

where

l9 = 2
||ê2||2

1 + ||η||2 + ||p||2
eδ (D.6a)

l10 = 3
||ε̂2||2

1 + ||r||2
, l11 = e−δl9 + l10 (D.6b)

are integrable functions and

h7 = 2 + 3B2
1 , h8 = 3B2

2 (D.7)

are positive constants.

D.2 Bounds on V10

Following the same steps as for V9 in the previous
subsection, using the dynamics (65d) and the boundary
condition (65d), we find

V̇10 ≤ −µr2(0)− (µk − 1)||r||2k + h7e
δ+k||w2||2−δ

+ h8||z2||2k + l12||η||2−δ + l12||p||2−δ
+ l13||r||2k + l14 (D.8)

where

l12 = ekl9, l13 = ekl10, l14 = e−δl12 + l13 (D.9)

and where h7 and h8 are the same as in (D.7).

D.3 Bounds on V11

Using the dynamics (65a) and the boundary condition
(65a), we find

V̇11 = −2λI−δ [ηηx]

= −λe−δη2(1) + λη2(0)− λδ||η||2−δ
≤ λv2(0)− λδ||η||2−δ
≤ h9z

2
2(0) + h9ε̂

2
2(0)− λδ||η||2−δ (D.10)

where

h9 = 2λ (D.11)

is a positive constant.

D.4 Bounds on V12

Using the dynamics (88a), we find

V̇12 = −λe−δw2
2(1) + λw2

2(0)− λδI−δ
[
w2

2

]
+ 2ĉ1I−δ

[
w2

2

]
+ 2ĉ2I−δ [w2z2] + 2ĉ1I−δ [w2ê2]

+ 2ĉ2I−δ [w2ε̂2] + 2I−δ

[
w2

∫ x

0

ω(x, ξ)w2(ξ)dξ

]
+ 2I−δ

[
w2

∫ x

0

κ(x, ξ)z2(ξ)dξ

]
+ 2I−δ

[
w2p

T (x)
˙̂
b1

]
+ 2I−δ

[
w2η(x) ˙̂q

]
. (D.12)

Using the properties (5) and (C.1), the boundary con-
dition (88c) and the bounds (38), we obtain the upper
bounds

V̇12 ≤ 2λq̄2z2
2(0) + 2λq̄2ε̂22(0)

−
[
λδ − 2c̄1 − c̄21 − 2c̄22 − 2ω̄ − κ̄2 − 2

]
||w2||2−δ

+ 2||z2||2−δ + ||ê2||2−δ + ||ε̂2||2−δ
+ ||pT ˙̂

b1||2−δ + ||η ˙̂q||2−δ (D.13)

which can be rewritten as

V̇12 ≤ h10z
2
2(0) + h10ε̂

2
2(0)− [λδ − h11] ||w2||2−δ

+ 2||z2||2−δ + l15||p||2−δ + l16||r||2k
+ l16||η||2k + l18 (D.14)

where

h10 = 2λq̄2 (D.15a)

h11 = 2c̄1 + c̄21 + 2c̄22 + 2ω̄ + κ̄2 + 2 (D.15b)

are positive constants, and

l15 =
||ê2||2

1 + ||η||2 + ||p||2
eδ +

˙̂
bT1

˙̂
b1 (D.16a)

l16 =
||ε̂2||2

1 + ||r||2
(D.16b)

l17 =
||ê2||2

1 + ||η||2 + ||p||2
+ ˙̂q2 (D.16c)

l18 =
||ê2||2

1 + ||η||2 + ||p||2
+
||ε̂2||2

1 + ||r||2
(D.16d)

are integrable functions.

D.5 Bounds on V13

Lastly, using the dynamics (88b), we find

V̇13 = µz2
2(1)− µz2

2(0)− kµIk
[
z2

2

]
+ 2ĉ4Ik

[
z2

2

]
− 2Ik

[
z2

∫ x

0

Kt(x, ξ)w2(ξ)dξ

]
− 2Ik

[
z2

∫ x

0

Lt(x, ξ)T
−1[w2, z2](ξ)dξ

]
− 2λq̂Ik [z2K(x, 0)ε̂2(0)] + 2Ik [z2T [ĉ2ε̂2, ĉ3ê2]] (x)

+ 2Ik [z2T [ĉ1ê2, ĉ4ε̂2]] (x)
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− 2Ik

[
z2

∫ x

0

K(x, ξ)η(ξ)dξ ˙̂q

]
+ 2Ik

[
z2T [pT

˙̂
b1, r

T ˙̂
b2]
]
. (D.17)

Using the different properties, we bound this as follows

V̇13 ≤ −µz2
2(0)−

[
kµ− 2c̄4 − 5− λ2q̄2K̄2 − K̄2

]
||z2||2k

+ ||Kt||2ek||w2||20 + 2||Lt||2(B2
1 ||w2||2 +B2

2 ||z2||2)

+ ||1||2kε22(0) + ||T [ĉ2ε̂2, ĉ3ê2]||2k + ||T [ĉ1ê2, ĉ4ε̂2]||2k
+ ˙̂q2||η||20 + ||T [pT

˙̂
b1, r

T ˙̂
b2]||2k. (D.18)

We investigate the four latter terms.

||T [ĉ2ε̂2, ĉ3ê2]||2k + ||T [ĉ1ê2, ĉ4ε̂2]||2k
+ ˙̂q2||η||20 + ||T [pT

˙̂
b1, r

T ˙̂
b2]||2k

≤ ek||T [ĉ2ε̂2, ĉ3ê2]||2 + ek||T [ĉ1ê2, ĉ4ε̂2]||2

+ ˙̂q2||η||2 + ek||T [pT
˙̂
b1, r

T ˙̂
b2]||2

≤ 2ek(A2
1c̄

2
1 +A2

2c̄
2
3)||ê2||2

+ 2ek(A2
1c̄

2
2 +A2

2c̄
2
4)||ε̂2||2

+ ˙̂q2||η||2 + 2ekA2
1|

˙̂
b1|2||p||2 + 2ekA2

2|
˙̂
b2|2||r||2

≤ 2ek(A2
1c̄

2
1 +A2

2c̄
2
3)||ê2||2

1 + ||η||2 + ||p||2
(1 + ||η||2 + ||p||2)

+
ek(A2

1c̄
2
2 +A2

2c̄
2
4||ε̂2||2

1 + ||r||2
(1 + ||r||2) + ˙̂q2||η||2

+ 2ekA2
1|

˙̂
b1|2||p||2 + 2ekA2

2|
˙̂
b2|2||r||2. (D.19)

Inserting this, and using the property (C.15), for k ≥ 1,
we obtain

V̇13 ≤ −µz2
2(0) + ekε22(0)− [kµ− h12] ||z2||2k

+ l19||p||2−δ + l20||r||2k + l21||η||2−δ
+ l22||w2||2−δ + l23||z2||2k + l24 (D.20)

for the positive constant

h12 = 2c̄4 + 5 + λ2q̄2K̄2 + K̄2 (D.21)

and the integrable functions

l19 =
2eδ+k(A2

1c̄
2
1 +A2

2c̄
2
3)||ê2||2

1 + ||η||2 + ||p||2

+ 2eδ+kA2
1|

˙̂
b1|2 (D.22a)

l20 =
ek(A2

1c̄
2
2 +A2

2c̄
2
4)||ε̂2||2

1 + ||r||2
+ 2ekA2

2|
˙̂
b2|2 (D.22b)

l21 = ˙̂q2eδ (D.22c)

l22 = ||Kt||2eδ+k + 2B2
1 ||Lt||2eδ (D.22d)

l23 = 2B2
2 ||Lt||2 (D.22e)

l24 =
2ek(A2

1c̄
2
1 +A2

2c̄
2
3)||ê2||2

1 + ||η||2 + ||p||2

+
ek(A2

1c̄
2
2 +A2

2c̄
2
4)||ε̂2||2

1 + ||r||2
. (D.22f)

E Stability lemma

Lemma 10 Let v1(t), v2(t), l1(t), l2(t), f(t), be real-
valued functions, andG(t) a real-valued matrix of dimen-
sions n× n defined for t ≥ 0, with

v1(t) =
1

2
νT (t)Γ−1ν(t) (E.1)

for a signal vector ν of length n and some matrix Γ > 0.
Suppose

0 ≤ v1(t), v2(t) ∀t ≥ 0 (E.2a)

0 ≤ l1(t), l2(t), f(t) ∀t ≥ 0 (E.2b)

l1, l2 ∈ L1 (E.2c)

|ν| ∈ L∞ (E.2d)

0 ≤ G(t) = GT (t) < In×n (E.2e)∫ t

0

f(s)ds ≤ AeBt (E.2f)

v̇1(t) ≤ −νT (t)G(t)ν(t) (E.2g)

v̇2(t) ≤ −cv2(t) + l1(t)v2(t) + l2(t)

− a(1− bνT (t)G(t)ν(t))f(t) (E.2h)

for some positive constants A, B, a, b and c. Then v2 ∈
L1 ∩ L∞.

PROOF. See [5].
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