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Abstract. Changes in the structural components of aortic tissues havebeen shown to play a significant

role in the pathogenesis of aortic degeneration. Therefore, reliable stress analyses require a suitable and

meaningful constitutive model that captures micro-structural changes. As recent data show, in-plane and

out-of-plane collagen fiber dispersions vary significantlybetween healthy and aneurysmatic aortic walls.

The aim of this study is to computationally investigate the influence of fiber dispersion on the mechan-

ical response of aortic tissues in health and disease. In particular, the influence of three different fiber

dispersions is studied: (i) non-rotationally symmetric dispersion, the most realistic assumption for aortic

tissues; (ii) transversely isotropic dispersion, a special case; (iii) perfectly aligned fibers (no dispersion in

either plane), another special case. Explicit expressionsfor the stress and elasticity tensors as needed for

the implementation in a finite element code are provided. Three representative numerical examples are

studied: planar biaxial extension, inflation of residuallystressed and pre-stretched aortic segments and

inflation of an idealized abdominal aortic aneurysm (AAA) geometry. For the AAA geometry the case

of isotropic dispersion is additionally analyzed. Documented structural and mechanical parameters are

taken from human aortas (healthy media/adventitia and AAA). The influence of fiber dispersions upon

magnitudes and distributions of stresses and deformationsare presented and analyzed. Stresses vary

significantly, especially in the AAA case, where material stiffening is significantly influenced by fiber

dispersion. The results highlight the need to incorporate the structural differences into finite element

simulations to obtain more accurate stress predictions. Additionally, results show the capability of one

constitutive model to represent different scenarios of aortic micro-structures allowing future studies of

collagen reorientation during disease progression.

Keywords: Collagen fiber dispersion, constitutive model, arterial wall mechanics, human aorta, abdom-

inal aortic aneurysm, finite element method
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1 Introduction

Aortic tissues can be viewed as fibrous composites assembledfrom a ground matrix and em-

bedded families of collagen fibers with orientations that are distributed spatially. It is well

established that the mechanical behavior of fibrous tissuessuch as arterial walls is strongly in-

fluenced by the underlying collagen structure, in particular, by collagen orientationanddisper-

sion, see, e.g., Holzapfel and Ogden [1]. It has been shown that during the development of dis-

eases such as an abdominal aortic aneurysm (AAA) the collagen structure changes significantly.

For example, collagen fibers in healthy abdominal aortas areconsiderably dispersed in-plane

(circumferential-axial plane), but have a rather small dispersion out-of-plane (circumferential-

radial plane) (Schriefl et al. [2]; Niestrawska et al. [3]). AAAs, however, show a significantly

higher dispersion out-of-plane. In addition, by means of several samples it has been shown that

the characteristic three-layered wall structure, as seen in healthy abdominal aortas, is no longer

present in AAAs [3]. A quantification and analysis of the reorientation of the micro-structure

are key to better understand disease progression. The recently proposed model by Holzapfel et

al. [4] is one that is able to capture the spatially distributed orientations of collagen fibers in

arterial tissues, and, therefore, allows to provide a deeper insight into the (pathological) changes

of fibrous tissues as occurring in AAAs.

As mentioned, the mechanical response of aortic tissues is strongly influenced by the un-

derlying collagen structure. Nevertheless, several studies which investigate the magnitude and

location of peak wall stresses in AAAs have utilized either isotropic models (see, e.g. Elger

et al. [5]; Vorp et al. [6]; Raghavan et al. [7]; Raghavan and Vorp et al. [8]; Thubrikar et

al. [9]; Doyle et al. [10]; Raut et al. [11]) or material parameters which were received from

healthy aortic tissues (Pierce et al. [12]). Early studies have used the law of Laplace to study

the influence of the geometry on AAA stresses (Stringfellow et al. [13]; McGiffin et al. [14]) or

modeled AAAs as axisymmetric membranes (Elger et al. [5]). Also linear elastic models were

used to study AAA stresses (Inzoli et al. [15]; Mower et al. [16]); these models are not able to

capture the typical nonlinear behavior of aortic tissues. Studies such as those by Vande Geest et

al. [17], Tong et al. [18], O’Leary et al. [19], Sassani et al.[20] or Niestrawska et al. [3] have

illustrated that AAA tissues are anisotropic, which requires the consideration of appropriate

models and parameters to analysis wall stresses. Especially as three-dimensional (3D) imaging

data of the wall micro-structure become available it shouldbe combined with mechanical data

to ensure more accurate estimates of wall stress magnitudesand related locations.

The influence of material parameters and models on wall stress predictions was studied by

several groups, with contradicting results. While the studies by Raghavan and Vorp [8] and
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Fillinger et al. [21, 22] stated that the peak wall stress is mainly influenced by AAA shape

and/or AAA diameter, Polzer et al. [23] stated that it is important to account for nonlinearity

when simulating AAA responses. On the basis of the same AAA geometry Rodrı́guez et al.

[24] showed that the use of an anisotropic model yields higher maximum wall stresses when

compared with isotropic models. The same group investigated the influence of anisotropy on

peak wall stresses. They also studied the impact of the modelon five different patient-specific

AAA geometries and concluded that the inclusion of anisotropy scales up the magnitude of peak

wall stresses (Rodrı́guez et al. [25]). Additionally they studied the outcome of two different

anisotropic models, one of them was the model by Holzapfel etal. [26] and the other one

by Rodrı́guez et al. [24], and they concluded that parameters describing the fiber orientation

should always be obtained independently from the fitting of the other parameters to stress-strain

data. However, the authors fitted the models they compared todifferent data sets, hence their

conclusion on the influence of fiber dispersion is not that compelling.

To the authors’ knowledge the influence of different fiber dispersions on the basis of the

structural model by Holzapfel et al. [4] using systematic numerical simulations has not yet been

studied. In addition, stress distributions obtained from parameter sets taken from healthy and

diseased aortic tissues have not yet been compared. The present paper aims to investigate the

influence of three different fiber dispersions: (i) non-rotationally symmetric dispersion, which

is the most realistic assumption recently introduced by Holzapfel et al. [4]; (ii) transversely

isotropic (rotationally symmetric) dispersion, according to Gasser et al. [27], a special case of

[4]; (iii) perfectly aligned fibers (no dispersion in eitherplane), according to Holzapfel et al.

[26], another special case of [4]. All three dispersion assumptions are studied with material and

structural parameters obtained from the media and adventitia of healthy abdominal aortic walls,

and from one AAA sample (Niestrawska et al. [3]).

The outline of the paper is as follows. In Section 2 the required continuum mechanical

framework is provided by briefly explaining the utilized non-symmetric fiber dispersion model

[4]. In addition, explicit expressions for the stress and elasticity tensors are provided, as needed

for the implementation in a finite element code. In Section 3 the used method is described, i.e.

different fiber dispersions are studied using three representative numerical examples, and related

finite element simulations are performed. The results of these simulations are then summarized

and discussed in Section 4, which is followed by a conclusion.
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2 Continuum Mechanical Framework

This section briefly reviews the required continuum mechanical framework, with notation ac-

cording to Holzapfel [28], and summarizes the used non-symmetric (non-rotationally symmet-

ric) fiber dispersion model. It provides the background for the mathematical description of the

stress and elasticity tensors needed for the implementation in the general purpose finite element

analysis programFEAP (Taylor [29]).

2.1 Kinematics

LetΩ0 be a reference (or undeformed) configuration andΩ its current (or deformed) configura-

tion. The deformation mapχ(X) transforms a material pointX ∈ Ω0 into a spatial pointx ∈ Ω.

With this map we define the deformation gradientF = ∂χ(X)/∂X that allows to map a tangent

vectordX from the reference to the current configuration viadx = FdX. The determinant of

F is denoted byJ and describes the ratio between the volume in the current andthe reference

configuration. For incompressible materials, as considered in the present work,J requires to be

equal to unity (Holzapfel [28]). For subsequent use we decoupleF into a spherical (dilatational)

partJ1/3I and a unimodular (distortional) partF = J−1/3F, with detF ≡ 1; the second-order

unit tensor is denoted byI . The right Cauchy–Green tensorC = FTF and the left Cauchy–

Green tensorb = FFT are defined together with their modified counterpartsC = F
T
F and

b = F F
T
, respectively, with the related invariantsI1 = trC = trb andĪ1 = trC = trb.

2.2 Non-symmetric fiber dispersion model

Let us now introduce the probability densityρ(Θ,Φ) of the (collagen) fiber orientation in the

reference configuration in terms of the two anglesΘ andΦ (Holzapfel et al. [4]). The experi-

mentally observed distribution of the collagen fibers in theaorta is non-symmetric [2, 3] so that

we decomposeρ in the formρ(Θ,Φ) = ρip(Φ)ρop(Θ), whereρip(Φ) andρop(Θ) describe the

in-plane and out-of-plane dispersions, respectively. Forρip andρop we consider the von Mises

distributions of the forms

ρip(Φ) =
exp[a cos 2(Φ± α)]

I0(a)
, ρop(Θ) = 2

√

2b

π

exp[b(cos 2Θ− 1)]

erf(
√
2b)

, (1)

wherea and b are constant concentration parameters,I0(a) is the modified Bessel function

of the first kind of order0, andα denotes the angle between the mean fiber direction and the

circumferential direction of the blood vessel. To include the fiber dispersion into a strain-energy
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function, two scalar measures can be defined according to [4], namely

κip =
1

2
− I1(a)

2I0(a)
, κop =

1

2
− 1

8b
+

1

4

√

2

πb

exp(−2b)

erf(
√
2b)

, (2)

whereI1(a) is the modified Bessel function of the first kind of order1, and0 ≤ κip ≤ 1 and

0 ≤ κop ≤ 1/2.

We introduce now two symmetric fiber families with the (in-plane) mean fiber directions

M 4 = cosαe1 + sinαe2, M 6 = cosαe1 − sinαe2, (3)

wheree1 denotes the circumferential direction ande2 the axial direction of the blood vessel.

Additionally, we introduce the invariantsI4, I6 andIn, i.e.

Ii = C : M i ⊗ M i, i = 4, 6, In = C : Mn ⊗ Mn, (4)

whereMn is a unit out-of-plane vector. The related modified invariants are simplȳIi = J−2/3Ii

andĪn = J−2/3In.

To include the fiber dispersion in the strain-energy function, sayΨ, the generalized structure

tensorsH4 andH6, describing the material behavior, are then used, i.e.

Hi = AI +BM i ⊗ M i + (1− 3A−B)Mn ⊗ Mn, i = 4, 6, (5)

with the constants

A = 2κopκip, B = 2κop(1− 2κip). (6)

According to [28] the strain-energy functionΨ (per unit reference volume) is now additively de-

composed intoΨvol, describing the volumetric elastic response, andΨ describing the isochoric

elastic response. Thus,

Ψ = Ψvol(J) + Ψ(C,H4,H6), (7)

whereΨvol = κ̄(lnJ)2/2 serves here as a penalty function, andκ̄ is a (positive) penalty param-

eter (for the subsequent analyses we used10 000 kPa). The isochoric partΨ of Ψ has now the

form

Ψ = Ψg(C) +
∑

i=4,6

Ψf,i(C,Hi), (8)

where

Ψg(C) =
c

2
(Ī1 − 3) (9)

captures the energy stored in the ground matrix, withc representing the stiffness of the (non-

collageneous) matrix, and the contributionΨf,i of the two fiber families is captured by

Ψf,i

(

C,Hi

)

=
k1
2k2

[exp(k2E
2

i )− 1], i = 4, 6, (10)
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wherek1 > 0 is a stress-like parameter andk2 > 0 is a dimensionless parameter, whileEi are

quantities according to

Ei = tr(HiC)− 1 = AĪ1 +BĪi + (1− 3A−B)Īn − 1, i = 4, 6. (11)

In (11) the mean fiber directionsM i are included in form of the invariants̄Ii, while the disper-

sion parametersκip andκop are considered in the constantsA andB.

2.2.1 Stress tensors

The second Piola-Kirchhoff stress tensorSdescribes the change of the strain energy with respect

to C and is defined byS= 2∂Ψ/∂C. Using the introduced decoupled form of the strain-energy

function (7) two stress contributions can be identified suchthatS = Svol + S. The volumetric

part is derived by means of the chain rule, which reads

Svol = 2
∂Ψvol(J)

∂J

∂J

∂C
= pJC−1, p =

dΨvol(J)

dJ
, (12)

wherep denotes the hydrostatic pressure. The isochoric contribution toS is obtained by

S= 2
∂Ψ

∂C
= J−2/3

P : S̃, S̃= 2
∂Ψ

∂C
, (13)

whereP = I− 1
3
C−1⊗C is the projection tensor in the Lagrangian setting,I is the fourth-order

identity tensor and̃S is the fictitious second Piola-Kirchhoff stress tensor. According to the

introduced structure of the strain-energy function (8) we may writeS̃as

S̃= S̃g +
∑

i=4,6

S̃f,i, S̃g = 2
∂Ψg

∂C
= cI , S̃f,i = 2

∂Ψf,i

∂C
= 2ψ′

iHi, (14)

where (9)-(11) and the abbreviation

ψ′

i =
∂Ψf,i

∂Ei

= k1Eiexp(k2E
2

i ) (15)

have been used.

For the finite element implementation we use the Kirchhoff stress tensorτ , which is the

push forward ofS so that

τ = FSFT = τ vol + τ , (16)

where

τ vol = pJ I , τ = P : τ̃ , (17)
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P = I − 1
3
I ⊗ I is the projection tensor (deviatoric operator) in the Eulerian description, and

τ̃ is the push forward of the fictitious second Piola-Kirchhofftensor given in eq. (13)2. The

contributions of the ground matrix and the fibers to the fictitious stress can be split according to

τ̃ = τ̃ g +
∑

i=4,6

τ̃ f,i, (18)

which is the analogue of eq. (14)1. Hence, from (14)2 and (14)3 we get the fictitious Kirchhoff

stress tensors by a push-forward operation according to

τ̃ g = FS̃gF
T
= cb, τ̃ f,i = FS̃f,iF

T
= 2ψ′

ihi, (19)

where the definition for the Eulerian structure tensors

hi = FHiF
T
, i = 4, 6, (20)

has been introduced.

2.2.2 Elasticity tensors

The decoupled form of the Eulerian elasticity tensorC can be obtained in an analogous manner

as the decoupled stress tensor (16)2, i.e.

C = Cvol + C, (21)

with Cvol = p̃I ⊗ I − 2pI, wherep̃ = p+ Jdp/dJ , and [28]

JC = P : C̃ : P +
2

3
tr(τ̃ )P − 2

3
(I ⊗ τ + τ ⊗ I), (22)

where C̃ is the fourth-order fictitious elasticity tensor in the Eulerian description, defined as

the push-forward operation of2J−4/3∂S̃/∂C. By using the specific choice of the strain-energy

function and the derived stress relation (14) forC̃ we obtain the explicit form

C̃ = 4J−4/3ψ′′

i hi ⊗ hi, (23)

where the definition (20) and the abbreviation

ψ′′

i =
∂2Ψf,i

∂E
2

i

= k1(1 + 2k2E
2

i )exp(k2E
2

i ) (24)

have been used. Hence, with (23), (20) and the stress tensors(18) and (17)2 the purely isochoric

contributionC to the Eulerian elasticity tensor can be calculated from relationship (22).

By considering minor and major symmetries of the elasticitytensors the Voigt notation was

then used for the implementation in the finite element analysis programFEAP [29].
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3 Methods

Here we describe three cases of fiber dispersions. The (material and structural) parameters used

for the numerical analyses of three examples are outlined indetail.

3.1 Parameters used for the numerical analyses

We are studying three different cases of fiber dispersions:

(i) Non-rotationally symmetric dispersion (i.e. the general case), as introduced in 2015, and

reviewed in Section 2; for more details see Holzapfel et al. [4]. We refer to this case as

NRSD (non-rotationallysymmetricdispersion).

(ii) Transversely isotropic (rotationally symmetric) dispersion, as introduced in the GOH

model in 2006, see Gasser et al. [27]. For this case the structure tensors (5) have the

special form

Hi = κI + (1− 3κ)M i ⊗ M i, (25)

whereκ ∈ [0, 1/3] is a single dispersion parameter. Equation (25) is obtainedfrom (5) by

takingκ = 1− 2κop, which corresponds toA = κ, B = 1 − 3κ. We refer to this special

case as TID (transverselyisotropicdispersion).

(iii) Perfectly aligned fibers (no dispersion in either plane), as introduced in the HGO model

in 2000, see Holzapfel et al. [26]. For this special case bothconcentration parameters (a,

b) become infinite so thatκop → 1/2. The structure tensors (5) are thenHi = M i ⊗ M i.

This corresponds toA = 0, B = 1 in (5). We refer to this special case as PA (perfect

alignment).

Figure 1 depicts a visualization ofρ(N)N (for just one family of fibers), where the unit vector

N is an arbitrary fiber direction in the reference configuration, for (a) the general case for which

Hi is given by (5), (b) the transversely isotropic dispersion (TID) with Hi given by (25) and (c),

the case of perfect alignment (PA) of collagen fibers.

As mentioned above the fiber dispersions described in (ii) and (iii) are special cases of the

non-rotationally symmetric dispersion model, which is considered to be the reference model.

Subsequently, we use (material and structural) parametersfor the media and adventitia of

healthy abdominal aortas (median values) according to Niestrawska et al. [3]. The material

parameters (c, k1, k2) were determined from biaxial stretching tests and adoptedfrom Table 4

in [3], while the structural parameters (κip, κop, α) were determined from second harmonic
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(a)

(b)

(c)

Figure 1: Visualization of three cases of fiber dispersions defined byρ(N)N, with ρ = ρipρop

according to (1), where the distance from the center to the surface represents the probability of

finding a fiber in the directionN: (a) non-rotationally symmetric dispersion (the general case);

(b) transversely isotropic dispersion; (c) perfectly aligned fibers. The plots have been scaled

differently.

c (kPa) k1 (kPa) k2 (–) κip (–) κop (–) α (◦)

Media 16.08 11.68 7.18 0.208 0.487 6.91

Adventitia 3.77 0.36 45.88 0.232 0.466 77.53

AAA 3.72 2.73 123.52 0.261 0.438 9.05

Table 1: Material parameters (c, k1, k2) from biaxial stretching tests and structural parameters

(κip, κop, α) from second harmonic generation images, for healthy medias and adventitias of

human abdominal aortas (median values), and for one AAA wallsample; taken from Tables 2-5

of Niestrawska et al. [3].

generation images and adopted from Table 2 in [3]. In addition, we also use structural and ma-

terial parameters from one AAA wall sample, and adopt the values from Tables 3 and 5 in [3],

i.e. sample AAA-5. The parameters are summarized in Table 1.For the case of transversely

isotropic dispersion we takeκop = 0.414, 0.406 for the media and adventitia of the healthy

abdominal aorta, respectively, and0.397 for the AAA wall. These values are calculated using

the relationshipκop = 1/2(1 + κip), whereκip is taken from Table 1. This relationship results

from the symmetry of the structure tensor (in-pane and out-of-plane dispersions are symmetric).

From these values it is straightforward to determine the individual dispersion parameterκ and

the corresponding constantsA andB. Finally, for the perfectly aligned fibers we setA = 0,

B = 1 (κop = 1/2). These material and structural parameters are now taken for the subsequent

three examples.
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Axial

Circumferential

M6

M4

α

αe3 = Mn

e2

e1

Figure 2: Cuboid-shaped sample of a healthy media (and a AAA wall) reinforced by two sym-

metric fiber families, denoted byM 4 andM 6, and subjected to equibiaxial extension within the

(e1, e2) plane.

3.2 Planar biaxial extension

On the basis of a planar equibiaxial extension test we study the three different cases of fiber

dispersions, as discussed in the previous section. In particular, we consider samples of a healthy

media and a AAA wall with the dimension20 × 20 × 1.5mm, which resembles the geometry

used for the actually performed biaxial extension experiments documented in [3].

Four hexahedral mixedQ1-P0 elements (constant pressure and trilinear displacement in-

terpolations) are used for the discretization of a cuboid, which is reinforced by two symmetric

fiber families located in the (e1, e2) plane, see Fig. 2. The samples are subjected to equibiaxial

extension within the (e1, e2) plane up to a stretch ofλcirc = λaxial = 1.25, using a displacement-

driven analysis. The analytical solutions are calculated according to [4] usingMATLAB [30] and

compared with the finite element solutions computed by meansof FEAP [29].

3.3 Inflation of residually stressed and pre-stretched aortic segments

Here we study the influence of the fiber dispersion on the mechanical response of residually

stressed and pre-stretched (idealized) aortic segments. In particular, a healthy aorta consisting

of media and adventitia, and an aneurysmatic abdominal aorta are analyzed.

3.3.1 Geometry

The wall thickness and axial length are chosen to be1.5mm, whereas the initial inner radius

Ri is 10mm. For the healthy aortic segment the thickness ratio of media/adventitia is chosen
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A

A

A

B

C

C

Step 3

D

p = 120mmHg

C

B

A

End of step 2

3

1

2 ri

Step 1

C

D

A

B

Ri

One eighth of the
aortic segment

Step 2

3

1

2 D

λz = 1.0675

C

B

A

Figure 3: Three steps performed during the simulation of a residually stressed and pre-stressed

(cylindrical) aortic segment. Due to symmetry one eighth ofthe segment is simulated. First, the

opening angle of180◦ (90◦ because of symmetry) of the segment with inner radiusRi is closed;

second, an axial pre-stretch ofλz = 1.0675 is applied to obtain the inner radiusri; third, the

aortic segment is pressurized with an inner pressurep up to120mmHg.

following the experimental findings of Schriefl et al. [2] andNiestrawska et al. [3], i.e.70%

of the wall thickness is occupied by the media, and30% by the adventitia. The AAA segment

is modeled as one single layer with1.5mm wall thickness. The initial (stress-free) geometry

is a cylindrical segment cut open with an opening angle of180◦ (defined according to Fig. 3 in

[26]), which is slightly smaller than the opening angles reported for healthy abdominal aortas

(Holzapfel et al. [31]; Greenwald [32]). For a better comparison of the material responses

between healthy and diseased segments, and as there are no experimental data available on

opening angles for aneurysmatic aortas, the same opening angle is chosen for both cases.
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3.3.2 Finite element model

The geometry is discretized by one element in the axial direction, 70 elements in the circum-

ferential direction and10 in the radial direction. For the healthy aortic segment7 elements are

used for the media in the radial direction, and3 for the adventitia.

Figure 3 shows the steps performed during the simulation. Due to symmetry, only one

eighth of the aortic segment is simulated, therefore, the opening angle is180◦/2 = 90◦. In

step 1 the segment is closed to form a quarter of the segment byconstraining surfaceA in the

2 direction and surfaceB in both the1 and2 directions, and by applying theSPIN command in

FEAP to surfaceB. This command rotates the selected nodes around the center and respective

to a defined axis of rotation. Simultaneously, the lower surfaceD is restricted in the3 direction.

Then, the upper and lower surfacesC andD are restricted in the3 direction andA andB are

constrained in the2 direction only. In step 2 the aortic segment is stretched by an axial pre-

stretchλz of 1.0675, achieved by a displacement-driven loading on surfaceC (the pre-stretch is

calculated for the corresponding age following the approach proposed by Horn et al. [33]). At

the end of step 2 the inner radiusri is taken for the normalization of subsequent plots. In step 3

(the last step) the boundary conditions are left unchanged with respect to step 2, and the aortic

segment is inflated with an inner pressurep of 120mmHg using a pressure boundary loading

(pressure loads depend on the deformation).

3.4 Inflation of an idealized AAA geometry

The final example underlines the importance of using accurate fiber dispersions in AAA simu-

lations. We are utilizing an idealized AAA geometry to studythe effects of fiber dispersions on

the mechanical AAA response in a repeatable way using a mathematical function for the AAA

shape; therefore, a patient-specific geometry is deliberately not used. In this example we use

again the material and structural parameters from Section 3.1, and, in addition, we analyze a

fourth case, namely isotropic fiber dispersion which is represented by a uniform dispersion in

each plane so thatρip = ρop = 1, where the structure tensor is simply(1/3)I . Hence, we have

no preferred direction so thatκ = 1/3 in (25), withA = 1/3 andB = 0 in (5).

3.4.1 Geometry

The idealized geometry of the AAA segment is generated usingthe toolkit CUBIT [34] and

MATLAB [30]. The initial AAA thickness is chosen to be the same as in the example of Sec-

tion 3.3, i.e.1.5mm. The (total) lengthL of the AAA model is160mm, while the AAA shape,
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i.e. the change in the radiusR, is defined by a ‘parabolic-exponential shape’ function proposed

by Elger et al. [5], and utilized in, e.g., Rodrı́guez et al. [24]. Thus,

R(Z) = Ra +

(

Ran − Ra − c3
Z2

Ra

)

exp

(

−c2
∣

∣

∣

∣

Z

Ra

∣

∣

∣

∣

c1
)

, (26)

whereZ denotes the axial coordinate,Ra is the radius of the healthy aorta (for the analyses

we useRa = 15mm),Ran is the maximum radius of the aneurysm (atZ = 0), c1 = 0.5 is a

constant andc2 andc3 are defined as

c2 =
4.605

(0.5Lan/Ra)
c1
, c3 =

Ran −Ra

Ra(0.8Lan/Ra)
2
, (27)

whereLan is the length of the aneurysm (Rodrı́guez et al. [24]). For a sketch of one eighth of

the AAA geometry see Fig. 4. Following [24] we us the dimensionless geometrical parameters

FR =
Ran

Ra

, FL =
Lan

Ran

, (28)

whereFR is the ratio between the AAA radius and the radius of the healthy aorta, andFL is the

ratio between the length of the aneurysmLan, and the maximum AAA radius; we useFR = 2.5

andFL = 2.8.

3.4.2 Finite element model

The 3D geometry is discretized withCUBIT, and the analysis is performed withFEAP using

1 488 hexahedral mixedQ1-P0 elements. An inner pressure of16 kPa (∼ 120mmHg) is ap-

plied to simulate the mean blood pressure. Symmetric boundary conditions are employed al-

lowing the simulation of only one eighth of the idealized AAAgeometry, which reduces the

computational time significantly. The axial direction is restricted on both outlets, see Fig. 4.

3.4.3 Definition of fiber orientation

In order to include the fiber orientation, the local circumferential, axial and radial vectors of a

finite element, sayelocal1 , elocal2 , elocal3 , need to be identified. This task is straightforward for a

cylindrical geometry but it is more elaborate for a AAA geometry, where the local axial direc-

tion varies as well. We include the fiber dispersion by using alocal coordinate system for each

individual finite element. Three nodes on the upper (top) surface and three nodes on the lower

(bottom) surface of an individual element are used to define two planes. Hence, two orthogonal

vectors to these planes can be identified, i.e.etop3 andebottom3 , see Fig. 5. Consequently, we
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Figure 4: One eighth of the idealized AAA geometry and applied boundary conditions in (a)

along the directions1 and2, and (b) along the direction3; L is the (total) length of the AAA

model,Lan is the length of the aneurysmatic part,Ra is the radius of the healthy aorta (at

Z = 0), Ran is the maximum radius of the aneurysm (atZ = L/2), whileZ denotes the local

axial coordinate, see Elger et al. (27).

define the local radial (unit) vector as

elocal3 =
etop3 + ebottom3

|| etop3 + ebottom3 ||
. (29)

Subsequently, the local circumferential vectorelocal1 is calculated by using the cross product of

the global axial vectore2 and the calculated local radial vectorelocal3 , i.e.

elocal1 = e2 × elocal3 . (30)

Finally, the local axial vectorelocal2 is calculated as

elocal2 = elocal3 × elocal1 . (31)

By utilizing the local coordinate system the mean fiber directions, as introduced in Section 2.2,

are then determined as

M 4 = cosαelocal1 + sinαelocal2 , M 6 = cosαelocal1 − sinαelocal2 , (32)

andMn = elocal3 .
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Figure 5: Local vectorselocal1 , elocal2 , elocal3 required for the definition of the local fiber orientations

within an individual finite element.

4 Simulation Results and Discussion

This section documents the numerical results of the systematically performed simulations of the

three representative examples according to Section 3, and it provides short discussions.

4.1 Planar biaxial extension

Figure 6 displays plots for the Cauchy stress (σcirc, σaxial) versus the related stretch (λcirc, λaxial)

for a sample of the healthy media and one for the AAA wall considering the fiber dispersions

NRSD, TID and PA. The numerical (FE) and the analytical results coincide very well, which

indicates the correct implementation of the material modelinto FEAP [29]. As can be seen, the

fiber dispersion has a significant influence on the mechanicalbehavior of the samples.

Images indicate that collagen fibers exhibit a very small out-of-plane dispersion for the

healthy media but a significant in-plane dispersion (Schriefl et al. [35]; Niestrawska et al. [3]).

TID assumes too little in-plane fibers leading to a weaker material response in both circumfer-

ential and axial direction compared with NRSD, see Fig. 6(a). If PA is used (withα = 6.91◦)

then too many fibers reinforce the circumferential direction, therefore, a PA of fibers overesti-

mates the stiffness in the circumferential direction and underestimates it in the axial direction

when compared with NRSD. The nonlinear stiffening in the axial direction can only be cap-

tured with the use of NRSD. Table 2 summarizes the Cauchy stresses (in kPa) at1.15 and1.20

stretch. Stresses in the circumferential direction at1.20 stretch for PA of fibers are overesti-
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Figure 6: Planar equibiaxial extension of a cuboid-shaped sample to examine the difference

in the mechanical behavior due to non-rotationally symmetric dispersion (NRSD), transversely

isotropic dispersion (TID) and perfect alignment (PA) of fibers. Analytical and numerical (FE)

solutions are compared: (a) healthy media, (b) AAA wall.

mated by52% compared with NRSD, whereas the axial Cauchy stress is underestimated by

56%. The TID underestimates both circumferential and axial Cauchy stresses by62% and45%,

respectively.

A similar tendency can be seen for the AAA sample, although the out-of-plane dispersion

of fibers is (much) higher for AAAs compared with healthy tissues. Especially when stresses

are compared at stretches of1.05 and 1.10 the differences become clear, see Table 2. The

analysis based on PA of fibers shows a faster stiffness when compared with TID and NRSD. At

λcirc = 1.05 the related stress is already327% higher compared with NRSD, and atλcirc = 1.10

the circumferential Cauchy stress is about45 times higher for PA with respect to NRSD.
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HEALTHY MEDIA

Circumferential Axial

Stretchλ 1.15 1.20 1.15 1.20

41.06 92.92 19.50 35.23 NRSD

Stressσ 21.68 35.39 13.84 19.37 TID

56.36 141.10 12.25 15.57 PA

AAA WALL

Circumferential Axial

Stretchλ 1.15 1.20 1.15 1.20

1.99 19.54 1.31 6.84 NRSD

Stressσ 1.42 4.47 1.13 2.49 TID

6.51 879.9 1.14 10.87 PA

Table 2: Cauchy stressesσ (in kPa) at two stretchesλ (in the circumferential and axial direc-

tions) of the equibiaxially loaded cuboid-shaped sample for NRSD, TID and PA of fibers, for

the healthy media and the AAA wall.

4.2 Inflation of residually stressed and pre-stretched aortic segments

Figure 7 illustrates the thickness change of the aortic wallwith respect to the inner pressure

p for the healthy aortic and AAA segments. Initial thickness,at p = 0, is with respect to the

configuration ‘end of step 2’, as marked in Fig. 3. The closingof the open segments results

in different wall thicknesses before inflation. For the AAA segment the wall thicknesses at

p = 0 are quite dependent on the used fiber-reinforcement (see Fig. 7(b)), because the AAA

segment is much stiffer than the healthy aortic segment. As can be seen, the choice of the fiber

dispersion is strongly influencing the results. For both investigated segments the analyses with

PA of fibers provide (by far) the stiffest response, resulting in a5.6% smaller wall thickness at

120mmHg when compared with NRSD for the AAA segment. On the otherhand the segments

with TID show the most compliant responses, while the mechanical responses with NRSD are

in between. The difference of the material behavior betweenthe two segments (healthy aorta

versus AAA) is as pronounced as already shown in Section 4.1.

Figure 8 depicts 3D plots of the circumferential and axial Cauchy stresses versus the inner

pressure and the normalized radius for the AAA segment, and compares the influence of the

three different dispersion assumptions. The current radius is here normalized with the inner ra-

diusri, as depicted in the configuration ‘end of step 2’ of Fig. 3. Especially, the circumferential
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Figure 7: FE results of wall thickness versus inner pressurefor (a) the healthy aortic segment

and (b) the AAA wall using three different fiber dispersions:non-rotationally symmetric dis-

persion (NRSD), transversely isotropic dispersion (TID),perfect alignment (PA) of fibers.
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Figure 8: FE results of circumferential and axial Cauchy stresses versus normalized radius and

inner pressure for the AAA segment with three different fiberdispersions: non-rotationally

symmetric dispersion (NRSD), transversely isotropic dispersion (TID), perfect alignment (PA)

of fibers.

and axial Cauchy stresses analyzed on the basis of PA of fibersare significantly different with

respect to the other two fiber dispersions, with a peak circumferential (Cauchy) stress of over

300 kPa.

Figure 9 depicts the distributions of the circumferential Cauchy stresses with respect to the

geometry at120mmHg. Clearly, wall thicknesses and radii differ between the healthy and

aneurysmatic segments, and also between the different fiberdispersions.
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Figure 9: FE results of the circumferential Cauchy stress distributions (in kPa) at120mmHg for

(a) the healthy aortic segment and (b) the AAA segment using three different fiber dispersions:

non-rotationally symmetric dispersion (NRSD), transversely isotropic dispersion (TID), perfect

alignment (PA) of fibers. Note the different scales for the stress in (a) and (b).

4.3 Inflation of an idealized AAA geometry

Figure 10 shows circumferential and axial Cauchy stresses versus the (current) inner radius

for different fiber dispersions up to120mmHg for (a) the cylindrical segment (healthy aorta)

at the smallest radius (atZ = L/2), and (b) at the maximum radius of the bulged AAA seg-

ment (atZ = 0). All simulations except for the one which considers isotropic dispersion show

compressive axial stresses in the cylindrical (healthy) part of the aorta, which occur due to the

boundary conditions. In addition, the circumferential stresses are higher with isotropic disper-

sion, labeled as ISO, as they are with NRSD and TID. The cylindrical segment with the smallest

radius and the maximum radius of the bulged AAA segment (withISO) exhibits the largest ra-

dial extension (with a value of53.54mm at120mmHg), not having enough fibers located in

the circumferential direction to prevent excessive extension due to the applied pressure. TID

exhibits a more compliant behavior in the diseased region (with respect to NRSD) with a max-

imal circumferential stress of760.7 kPa, whereas NRSD reaches674.2 kPa at a maximal inner
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Figure 10: Circumferential and axial Cauchy stresses versus (current) inner radius up to

120mmHg for (a) the cylindrical segment (healthy aorta) at the smallest radius (atZ = L/2)

and (b) at the maximum radius of the bulged AAA segment (atZ = 0). Three different fiber dis-

persions are investigated: non-rotationally symmetric dispersion (NRSD), transversely isotropic

dispersion (TID), isotropic (ISO).

radius of42.9mm. Note that no solutions for the AAA with PA of fibers can be displayed, as

this case showed numerical instabilities at higher pressure levels in the neck region. This is

most likely due to the significant differences in stiffness between the compliant ground matrix

and the (relatively) stiff fibers. As there is no fiber dispersion and the fibers are located close

to the circumferential direction numerical instabilitiesoccur, which may arise due to the used

isochoric-volumetric split of the strain-energy function(see, e.g., Helfenstein et al. [36]).

Figure 11 shows circumferential and axial Cauchy stresses as a function of the radiusr

normalized withRan for different assumptions of fiber dispersions. The analysis on the basis of

an isotropic dispersion predicts axial stresses almost twice as high as for TID and NRSD. The

prediction of circumferential stresses obtained on the basis of TID is higher than those using

NRSD throughout the wall thickness.

Figure 12(a) shows contour plots of the circumferential Cauchy stress for the three simu-

lations at120mmHg. The scale of the stress is the same for all simulations.In Fig. 12(b) the

stress scale is changed so that the location of the maximal stress is visible in the ISO stress plot.

All three analyses reveal that the peak wall stress is located at the luminal side of the AAA. The

peak circumferential stress (which was almost identical with the maximal principal stresses)

occurs at the maximum diameter except for ISO, where the maximum stress is located at the

transition zone (compare with Fig. 12), hence an isotropic model is inappropriate for this type
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Figure 11: Circumferential and axial Cauchy stresses versus normalized radiusr/Ran for three

different assumptions of fiber dispersions: non-rotationally symmetric dispersion (NRSD),

transversely isotropic dispersion (TID), isotropic (ISO).
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Figure 12: Contour plots of the circumferential Cauchy stress (in kPa) on the luminal side at

120mmHg: (a) three different assumptions of fiber dispersions (using the same scale), i.e. non-

rotationally symmetric dispersion (NRSD), transversely isotropic dispersion (TID), isotropic

(ISO); (b) stress plot for the case ISO with a stress scale which makes the location of the peak

wall stress in the transitional zone visible.

of analysis. The stress distributions between the cases NRSD and TID are not as pronounced as

with respect to ISO, because AAA tissues exhibit a rather large out-of-plane dispersion, closer

to a rotationally symmetric dispersion, than it is the case for healthy aortas.

Previous studies detected peak wall stresses at inflection points and a pronounced influence

of asymmetry on the location of the peak wall stress (Vorp et al. [6]; Doyle et al. [39, 40];

Rodrı́guez et al. [24]). Interestingly, in the present example only the isotropic model exhibits

peak wall stresses at the inflection point. Rodrı́guez et al.[25] demonstrated that an anisotropic
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model yields much higher wall stresses when compared with anisotropic model; the authors

also discussed the influence of fiber dispersion. However, the models the authors used are not

comparable, as they fitted their models to different data sets, using different fitting procedures.

The present simulation of an idealized AAA geometry shows twice as high maximal stresses

for the isotropic case compared to the anisotropic cases. Asthe used structural and material

parameters are not comparable with the ones used by Rodrı́guez et al. [25] the differences in

the findings highlight the influence of parameters and model assumptions on stress magnitudes

and locations.

5 Conclusion

The influence of different fiber dispersions on the mechanical response of aortic tissues in health

and disease has not yet been studied on the basis of the recentconstitutive model of Holzapfel

et al. [4]. In the present study we have performed a systematic analysis using three repre-

sentative numerical examples. Magnitudes and distributions of stresses and deformations were

presented and discussed. We have used structural and mechanical data from human aortic sam-

ples (healthy media/adventitia and AAA), recently documented by Niestrawska et al. [3].

Simulations performed with data from healthy aortas show a (more) gradual stiffening,

whereas the simulations with AAA data predict a very compliant response at low stretches,

then a kind of ‘stiffening point’ at which a rapid stiffeningof the material response occurs. For

that stiffening the collagen micro-structure is mainly responsible. Therefore, for AAA tissues it

is even more important to consider the corresponding fiber dispersion. In all three examples it is

visible that structural and material data from healthy aortic tissues yield a (completely) different

material response when compared with AAA tissue. Consequently, data from healthy tissues

should not be used for the prediction of peak wall stresses inAAAs, or vice versa.

All simulations show a rather remarkable influence of the fiber dispersion on the magnitudes

and distributions of stresses and deformations. The most severe difference can be appreciated

in the example analyzing the inflation of an idealized AAA geometry. For example, the peak

circumferential stress is more than twice as high with isotropic dispersion compared with non-

rotationally symmetric dispersion, and even the related location of the peak stress is different.

The computational study indicates that small changes in thefiber dispersion result in a rather

different tissue behavior. Hence, as long as structural parameters are available they should be

considered in the analysis, especially as the computational time is about the same for differ-

ent arterial micro-structures. Clearly, it is not sufficient to use phenomenological models to

22



understand disease progression.

Future studies should focus on the inclusion of new imaging data of the micro-structure.

Intermediate stages of AAA formation should also be studiedon, e.g., mouse models to provide

data for more detailed micro-structural modeling and analyses. Another key research topic is

certainly the collection of structural datain vivo, which would help to establish more realistic

rupture criteria, and to better understand collagen reorientation during disease progression.
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