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Abstract 

In this paper, the plastic model of ordinary state‐based peridynamics is established. The size and 
shape of plastic zone around crack tips with the different inclination angles are simulated using 
ordinary state‐based peridynamics. Comparison of the size and shape of plastic zone around the 
crack tips obtained from peridynamic solution and analytic solution is made. It is found that the 
relative errors between the analytical and peridynamic solution are very little. Therefore, it is feasible 
to predict the plastic zone around crack tips using ordinary state‐based peridynamics. 

1 INTRODUCTION 

Fracture is one of the main damage forms in rock engineering and mechanical 

engineering. Especially, initiation and propagation of cracks are a hot issue in rock 

engineering. Actually, rocks can be divided into brittle rocks and ductile rocks (or hard 

rocks and soft rocks). Although the plastic zones around crack tips are quite small in the 

brittle rocks, the plastic zones around crack tips should not be ignored in ductile rocks, 

which has significant influence on crack propagation. In this study, the plastic zones 

around crack tips in ductile rock are focused. For the propagation of cracks, the size of 

plastic zone near the crack tip is considered as a measure of rock resistance against 

the driving force, and it plays an important role in determining initiation and propagation 

of cracks.1-7 Therefore, it is important to know the exact size and shape of plastic zone 

around crack tips in rocks under loading. The earliest theoretical works on plastic zone 

shape around crack tips were provided by Irwin8 and Dugdale.9 Harmain and 

Provan10 also predicted plastic zone shape around the tips of a mode I crack in 

isotropic materials using Tresca criterion under plane stress and strain conditions. 

Banks and Garlick11 and Guerra‐Rosa et al12 analytically predicted the plastic zone 

boundary or locus under plane stress and plane strain conditions using the Mises yield 

criterion. Based on Mises and Tresca yield criterion, Benrahou et al13estimated the size 

of the plastic zone around the tips of mode I crack using the finite element method. 

Based on the unified strength theory, the unified solution of the shapes and sizes of 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Zhou%2C+XP
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Shou%2C+YD
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Berto%2C+F
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0009
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0011
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0012
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0013


plastic zone around modes I crack tips under small‐scale yielding was obtained by 

Qiang et al14 and Zhang et al,15 respectively. Gao et al16 studied the plastic zone 

around crack tips under various loading conditions and obtained some characteristics of 

the plastic zone around crack tips. They found that the plastic zones around crack tips 

present “butterfly‐like” shape and the size of the plastic zone is largest for pure mode I 

crack. By using Griffith's plate complete linear elastic stress field, Sousa et 

al17 improved estimates of plastic zone around crack tip. Camas et al18 presented a 

novel methodology combining the strengths of both finite element modelling and image 

correlation. All these researches are mainly based on the Tresca, Mises, and the unified 

strength criteria; these criteria are available for the metal materials. However, it is well 

known that the above failure criteria is not suitable for rocks.19-22 It is also well known 

that the Mohr‐Coulomb criterion is considered to reasonably model the strength 

properties of isotropic rocks. Therefore, the Mohr‐Coulomb criterion is introduced to 

derive the analytic solution of the plastic zone near crack tip in rocks in this paper. 

Peridynamics, which is non‐local, was introduced by Silling23-25 in an attempt to deal 

with the discontinuities; it uses displacements rather than displacement derivatives in its 

formulation. Basically, the peridynamic theory is a reformation of the motion in solid 

mechanics that is well used to model bodies with cracks. The peridynamic theory uses 

spatial integral equations to analyse a discontinuity. This stands in contrast to the partial 

differential equations used in the classical formulation, which is not defined at 

discontinuities. The peridynamic governing equations are defined at fracture surfaces. 

Additionally, material damage is part of peridynamic constitutive laws. These attributions 

permit initiation and propagation of cracks to be modelled, with arbitrary parts, without 

the need for special crack growth treatment. This is because the model treats all forces 

between particles in a continuum as they act across a finite distance, in contrast with 

the fundamental assumption in the classical theory that all forces internal to a body 

result from contact. Peridynamic theory has been successfully applied to rock 

engineering. Rabczuk and Ren26presented a peridynamics formulation for quasi‐static 

fracture and contact in rocks. Lee et al27-29 obtained the crack coalescence 

morphology in rock‐like material under compression using peridynamic theory. 

Peridynamic theory is divided into bond‐based peridynamic theory and state‐based 

peridynamic theory by Silling et al,25 and state‐based peridynamic theory is divided into 

ordinary state‐based peridynamics and non‐ordinary state‐based peridynamics. When 

the force density vectors are parallel to the relative position vector and force density 

vectors of a bond has unequal magnitudes, it is called ordinary state‐based 
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peridynamics. When the force density vectors are not parallel to the relative position 

vector, it is called non‐ordinary state‐based peridynamics. A non‐local ordinary state‐

based plasticity model for peridynamics is put forward by Mitchell et al.30 In ordinary 

state‐based peridynamics, module state, which represents the linearization of an 

ordinary state‐based constitutive model, is introduced. Ordinary state‐based 

peridynamics can not only be used to model the propagation and coalescence process 

but also simulate the alternation of the radius of plastic zone at the crack tips. In this 

paper, the estimation of the plastic zone near the crack tips in rocks is done using the 

ordinary state‐based peridynamics, and it is compared with the analytical solutions of 

plastic zone around crack tip in rocks under tensile loads. 

The paper is organized as follows: In Section 2, the plasticity model of the ordinary 

state‐based peridynamics is introduced. Analytical solutions of plastic zone near crack 

tips under tensile loading condition are obtained using Mohr‐Coulomb criterion in 

Section 3. The comparisons between the numerical results and analytical solution are 

made; the numerical prediction of the plastic zone in the multiple cracks is done in 

Section 4. Conclusions are then drawn in Section 5. 

2 THE PLASTIC MODEL OF ORDINARY STATE‐
BASED PERIDYNAMICS 

2.1 The theory of the plastic model of ordinary state‐based 
peridynamics 

An ordinary state‐based peridynamic theory is introduced; its basic equation is given as 

follows25: 

(1) 

The above equation is the peridynamics representation of Newton's second law for the 

Lagrangian point x and defines the internal force vector L(x, t). The 

function b(x, t) denotes a body force per unit volume.  is a vector force 

state function and is somewhat analogous to stress tensor in local continuum 

mechanics in the sense that it represents the material response due to deformations. 

The force state function can be expressed as follows: 

(2) 
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where  is the scalar state of the force state and  is the direction vector state of the 
force state. 

A key gradient in the peridynamics constitutive model for plasticity is the decomposition 

of the scalar extension state into dilation and deviatoric parts, as well as the additive 

decomposition of deviatoric extension state into elastic part ede and plastic parts edp, its 

expressions are written as follows: 

(3) 

Therefore, the isotropic elastic constitutive model in a two dimension condition is written 

using the additive decomposition as follows25: 

(4) 

where  is the co‐isotropic part of  and  is the co‐deviatoric part of , p =  − kθ is the 
peridynamic pressure, k is the bulk modulus, θ is the volumetric strain,  is the 
reference position scalar state field, m is the weighted volume, and ω is the influence 
function. 

A rate form of the above equation in two dimension is given as follows: 

(5) 

where , the above relations follow from the fact that there exists an elastic 
stored energy functional W as the following form25; 

(6) 

The strategy is to define a yield surface in Sd, the space of co‐deviatoric force states: 

(7) 

where Sd is a subspace of S. 

To use the elastic constitutive relation for plasticity calculation, a scalar valued 

function f, which is called the yield function, is used to define a set of allowable scalar 

deviatoric force states  as follows: 

(8) 

where ψ0 is a positive constant, which represents the yield point of the material, ψ is a 
function on f and Sd. 
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Note that f does not include hardening. This form of f is analogous to local perfect 

plasticity. The plastic flow rule is defined as follows: 

(9) 

where ∇dψ is Frechet derivative25 of ψ ∈ S on Sd, λ is the so‐called consistency 
parameter, the key idea is that ∇dψ produces functions that have no dilation. 

Given , the problem is to find ; this approach to integration is extension 

state driven and is analogous to the strain‐driven approach used in local plasticity. 

At step n, corresponding to time tn, the scalar deviatoric extension state  and the 

deviatoric plastic extension state  are denoted as follows: 

(10) 

Using the flow rule given in Equation 9 and the constitutive model for td, a trial value for 

the deviatoric force state  is defined and computed as follows30: 

(11) 

where Δλ = λΔt. 

Given , the yield function  is used to determine if the step is elastic or 

incrementally plastic. 

If , then the loading/unloading conditions are automatically satisfied 

with Δλ = 0, this leads to the following: 

(12) 

(13) 

If , then the step is incrementally plastic and Δλ > 0. In this case, for the yield 

function f defined by  and ω = 1, and using Equation 11, the deviatoric 

force state at the end of the step is obtained as follows: 

(14) 

Therefore, the value of the yield function at the end of the step is given by the following: 

https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0025
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-disp-0009
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-bib-0030
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-disp-0011


(15) 

Setting the above equal to zero yields a value for Δλ as follows: 

(16) 

The deviatoric force and plastic states are updated as follows: 

(17) 

The approach is corresponding to a state of pure shear at a point. This will be induced 

by a prescribed infinitesimal displacement field. A displacement field induced by pure 

shear is given by the following: 

(18) 

where γ is shear strain and  denotes the coordinate axis unit vector in the a direction. A 
point in the undeformed configuration in two dimension is located by the 
triplet (a, b) which is relative to the centre of a circle. Ultimately, integral will be done on 
a sphere of radius δ. 

The scalar deformation state is written as a function30 of γ: 

(19) 

The scalar extension state becomes as follows: 

(20) 

Note that (ξ, θ) are spherical coordinates. θ should not be considered as the dilation; 

using the above scalar extension state, it can be shown that the dilation is zero. 

Furthermore, since the dilation is zero, the scalar extension state and deviatoric 

extension state are identical. 

To evaluate the yield condition within ordinary state‐based peridynamics, the 

quantity ‖ed‖2must be evaluated. This is given by integrating over a circle of radius δ, 

this value is expressed as follows: 

(21) 
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Given the deviatoric extension state ed in Equation 21, the associated scalar force state 

is deviatoric and is given by the following: 

(22) 

This value is substituted into the yield functional; the following expression is obtained as 

follows: 

(23) 

where γy denotes shear strain at material yield and a value of  was used for the 
weighted volume. 

A yield stress corresponding to a state of pure shear is identified and defined as follows: 

(24) 

To understand the value of Ey under conditions of uniaxial tension, effective stress σe is 

considered; the effective stress is expressed using the second invariant J2 but can be 

written in terms of the stress tensor components σij and its principle values {σ1, σ2, σ3}, 

then σe can be expressed as follows: 

(25) 

The yield function is f(σe, Ey) = 0, then it is written as follows: 

(26) 

When yield stress is measured under uniaxial stress, σ1 ≠ 0, σ2 = σ3 = 0, namely, 

(27) 

2.2 Discretization and numerical implementation 
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In discrete system, each material point contains the deformation information. The 

velocities and displacements for each peridynamic material point xi in the media are, 

respectively, given by the following: 

(28) 

(29) 

Then the integration in Equation 1 can be expressed using Riemann sums over the total 

number of particles within the horizon Hx. Therefore, the plastic model of the ordinary 

state‐based peridynamic governing equation for the given PD particle can be 

approximated as follows: 

(30) 

Damage of a peridynamic material particle xi can be locally given in terms of the ratio of 

amount of broken bonds to the total amount of interaction in one horizon as 

(31) 

where μ(xi, t) is a scalar factor representing the broken of bond 

(32) 

3 ANALYTICAL SOLUTION OF PLASTIC ZONE 
NEAR CRACK TIPS UNDER TENSILE LOADS 

Estimation of the plastic zone near crack tips under small‐scale yielding (SSY) is one of 

the important topics in elastic‐plastic fracture mechanics. It is known as Irwin's plastic 

zone correction model; the shape and size of yielding zone were derived from the 

Huber‐von Mises criterion. Irwin31 further extended his model for plane‐strain condition 

by enhancing the yield stress by a factor of . Broke32 presented his estimation using 

the Tresca criterion. The above‐mentioned models are all based on the SSY condition 

and are constructed with the assumptions in the linear elastic fracture mechanics. They 

yield reasonably good estimations for certain materials such as metals having equal 

tensile and compressive strength. However, these criteria will not be suitable for the 

rock‐like materials; if the material of rock and soil is regarded as an ideal plasticity, 
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Mohr‐Coulomb criterion is fit to estimate the plastic zone near crack tips under SSY. 

The Mohr‐Coulomb criterion is expressed as follows: 

(33) 

where σ1 and σ3 is, respectively, the maximum and minimum principle stress, c is 
cohesive force, and ϕ is internal friction angle. 

By virtue of linear elastic fracture mechanics, the 2D stress field in the vicinity of the 

mode I crack tip can be described as follows33: 

(34) 

where KI is stress intensity factor for mode I cracks; σx,σy are the normal stresses in x‐ 
and y‐direction, respectively; and τxy is the shear stress in the xy‐direction. Position 
vector is expressed in polar coordinate (r, θ) measured from the crack tip. 

The stress components in Equation 34 can be expressed in terms of the principal 

stresses σi. 

For two‐dimensional plane problem, the principal stresses are obtained as follows: 

(35) 

(36) 

in which ν is Poisson's ratio. 

It is assumed that σ1 ≥ σ2 ≥ σ3, by substituting Equation 34 into Equations 35 and 36, the 

resulting stresses are obtained as follows: 

a. Under plane stress condition, the following expression is written: 

(37a) 

(37b) 

2. Under plane strain condition, the following expression is obtained: 
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(38) 

For plane stress condition, substituting Equation 37 into Equation 33, the formulate of 

shape and size of plastic zone near mode I crack tips can be obtained as follows: 

(39) 

For plane strain condition, substituting Equation 38 into Equation 33, the formulate of 

shape and size of plastic zone near mode I crack tips can be expressed as follows: 

(40) 

4 COMPARISON BETWEEN PERIDYNAMIC 
SOLUTION AND ANALYTICAL SOLUTION OF 
PLASTIC ZONE AROUND CRACK TIPS 

4.1 Prediction of plastic zone around a horizontal crack tips 
subjected to uniaxial tension 

There is a rectangular rock sample with the length of 0.10 m and width of 0.05 m. The 

rectangular rock sample is divided into 200 × 100 = 20 000 discrete nodes. The grid 

space between adjacent two points is Δx = 5 × 10−4 m. The calculation parameters are 

listed as follows: δ = 3Δx, s0 = 0.082, Young's modulus is E = 100 GPa, the mass 

density ρ is 2200 kg/m3, Poisson's ratio v is 0.30, c = 6 MPa, and ϕ = 40o. Based on the 

previous studies in peridynamics,34 the horizon size δ = 3Δx is recommended to study 

mechanical behaviours of cracks. Moreover, as stated by Cheng et al,35 when the ratio 

of δ/Δx is larger than 3 times, the horizon size has no significant influence on cracking 

behaviours. Thus, in this study, the ratio of δ/Δx is taken as three. Because dynamic 

analysis is used, the recommended time step 5.33 × 10−8 seconds is specified. Its 

geometric configuration is plotted in Figure 1. When time step arrives at 450, radius of 

plastic zone near the crack tip is plotted in Figure 2. 
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Figure 1 
Open in figure viewerPowerPoint 
The geometric configuration 

 
Figure 2 
Open in figure viewerPowerPoint 
The numerical results of the plastic zone near the crack tips obtained from peridynamics 
[Colour figure can be viewed at wileyonlinelibrary.com] 

Comparison of the plastic zone radius obtained from peridynamic and analytic solution 

is plotted in Figure 3. It can be observed from Figure 3 that the relative error between 

peridynamic solution and the analytical solution is very little. For example, the relative 

error is 1.82% when θ = 30°; the relative error is 2.47% when θ = 120°. Therefore, the 

radius of the plastic zone obtained from peridynamic solution is in good agreement with 
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that obtained from the analytical solution. It is feasible to evaluate the plastic zone 

radius around crack tips by using peridynamics. 

 
Figure 3 
Open in figure viewerPowerPoint 
Comparison of the plastic zone radius obtained from peridynamic and analytical 
solutions [Colour figure can be viewed at wileyonlinelibrary.com] 

4.2 Prediction of plastic zone around crack tips with the 
inclination angle of 45° 

There is a rectangular rock sample with the length of 0.10 m and width of 0.05 m. The 

rectangular rock sample is divided into 200 × 100 = 20 000 discrete nodes. The grid 

space between adjacent two points is Δx = 5 × 10−4 m. The calculation parameters are 

listed as follows: δ = 3Δx, s0 = 0.082, Young's modulus is E = 100GPa, the mass 

density ρ is 2200 kg/m3, Poisson's ratio ν is 0.30, c = 6 MPa, and ϕ = 40°. Because 

dynamic analysis is used, the recommended time step 5.33 × 10−8 seconds is specified. 

Its geometric configuration is plotted in Figure 4. When time step arrives at 450, plastic 

zone radius near the crack tips is plotted in Figure 5. 
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Figure 4 
Open in figure viewerPowerPoint 
The geometric configure of the crack with the inclination angle of 45° 

 
Figure 5 
Open in figure viewerPowerPoint 
Peridynamic simulation of plastic zone around crack tips with the inclination angle 
of 45°[Colour figure can be viewed at wileyonlinelibrary.com] 

Comparison of the plastic zone radius obtained from peridynamic and analytic solution 

is plotted in Figure 6. It can be found from Figure 6 that the relative error between the 

analytical and peridynamic solution is very little. For example, the relative error is 

−3.64% when θ = 30°; the relative error is −2.46% when θ = 120°. Therefore, the value 
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of the radius of the plastic zone obtained from peridynamic solution is in good 

agreement with that obtained from the analytical solution. 

 
Figure 6 
Open in figure viewerPowerPoint 
Comparison of plastic zone radius near crack tips with the inclination angle 
of 45° obtained from peridynamic and analytic solutions [Colour figure can be viewed 
at wileyonlinelibrary.com] 

4.3 Prediction of plastic zone around crack tips with the 
inclination angle of 30° 

The physical and geometric parameters are the same as the above examples. Because 

dynamic analysis is used, the recommended time step 5.33 × 10−8 seconds is specified. 

Its geometric configuration is plotted in Figure 7. When time step arrives at 400, the 

plastic zone radius near the crack tips is plotted in Figure 8. 
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Figure 7 
Open in figure viewerPowerPoint 
The geometric configure of the crack with the inclination angle of 30° 

 
Figure 8 
Open in figure viewerPowerPoint 
Peridynamic simulation of plastic zone around crack tips with the inclination angle 
of 30°[Colour figure can be viewed at wileyonlinelibrary.com] 

Comparison of the plastic zone radius obtained from peridynamic and analytical solution 

is plotted in Figure 9. It can be found from Figure 9 that the relative error between the 

analytical and peridynamic solution is very little. For example, the relative error is 

−2.70% when θ = 30°; the relative error is 1.11% when θ = 120°. Therefore, the value of 
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the radius of the plastic zone from peridynamic solution is in good agreement with that 

from the analytical solution. 

 
Figure 9 
Open in figure viewerPowerPoint 
Comparison of plastic zone radius near the crack tips with the inclination angle 
of 30°obtained from peridynamic and analytical solutions [Colour figure can be viewed 
at wileyonlinelibrary.com] 

4.4 Prediction of plastic zones around two parallel crack tips 
with the inclination angle of 45° 

The physical and geometric parameters are the same as the above example. Because 

dynamic analysis is used, the recommended time step 5.33 × 10−8 seconds is specified. 

Its geometric configuration is plotted in Figure 10. When time step arrives at 400, plastic 

zone radius near the crack tips is plotted in Figure 11. Comparison of the plastic zone 

radius around the inner tips of two parallel cracks and one crack is plotted in Figure 12. 
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Figure 10 
Open in figure viewerPowerPoint 
The geometric configure of two parallel cracks with the inclination angle of 45° 

 
Figure 11 
Open in figure viewerPowerPoint 
Peridynamic simulation of plastic zone near the tips of two parallel cracks with the 
inclination angle of 45° [Colour figure can be viewed at wileyonlinelibrary.com] 
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Figure 12 
Open in figure viewerPowerPoint 
Comparison of the plastic zone radius near the inner tips of two parallel cracks and the 
tips of single crack [Colour figure can be viewed at wileyonlinelibrary.com] 

Peridynamic simulation of plastic zone is plotted in Figure 11. It can be observed from 

Figure 12 that the plastic zone radius near the inner tip of two parallel cracks is bigger 

than that near the tip of one crack. The main reason is that the interaction of the cracks 

leads to the strong amplification effects. It can also be found from Figure 11 that 

coalescence of the plastic zones near the crack tips occurs under uniaxial tension. 

Comparing the plastic zone radius near the outer tip of two parallel cracks and the tip of 

single crack, it can be seen from Figure 13 that the plastic zone radius near the tip of 

single crack is approximately equal to that around the outer tip of two parallel cracks. 
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Figure 13 
Open in figure viewerPowerPoint 
Comparison of the plastic zone radius near the outer tips of two parallel cracks and the 
tips of single crack [Colour figure can be viewed at wileyonlinelibrary.com] 

4.5 Prediction of plastic zones near 3 parallel crack tips with the 
inclination angle of 135° 

The physical and geometric parameters are the same as the former section 4.2. There 

are 3 parallel cracks with the angle of inclination of 135° in the sample; the length of the 

cracks is 0.01 m, and the horizontal spacing between the cracks is 0.005 m. Its 

geometric configuration is plotted in Figure 14. The recommended time step is 

5.33 × 10−8 seconds. When time step arrives at 220, plastic zones around the crack tips 

are plotted in Figure 15. Comparison of the plastic zone radius near the inner tip of 2 

parallel cracks, 3 parallel cracks, and single crack with the inclination angle 135° is 

plotted in Figure 15. 
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Figure 14 
Open in figure viewerPowerPoint 
The geometric configure with 3 parallel cracks 

 
Figure 15 
Open in figure viewerPowerPoint 
Peridynamic simulation of plastic zone radius near the tips of 3 parallel cracks with the 
inclination angle of 135° [Colour figure can be viewed at wileyonlinelibrary.com] 

Peridynamic simulation of plastic zone around the tips of 3 parallel cracks is plotted in 

Figure 15. It can be observed from Figure 16 that the plastic zone radius near the outer 

tip of crack ① in array of 3 parallel cracks is approximately equal to that in array of two 

parallel cracks and single crack. It is also found from Figure 17 that the plastic zone 

radius near inner tip of crack ① in array of 3 parallel cracks is the biggest and the 
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plastic zone radius near the tip of single crack is the smallest. Moreover, it can be seen 

from Figure 18 that the plastic zone radius near inner tip of crack ② in array of 3 

parallel cracks is the biggest and the plastic zone radius near outer tip of crack ① in 

array of 3 parallel cracks are the smallest. The main reason is that the interaction of the 

cracks leads to the strong amplification effects. 

 
Figure 16 
Open in figure viewerPowerPoint 
Comparison of the plastic zone radius near the outer tip of 2 parallel cracks, 3 parallel 
cracks, and single crack with the inclination angle of 135° [Colour figure can be viewed 
at wileyonlinelibrary.com] 

https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760#ffe12760-fig-0018
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12760
https://onlinelibrary.wiley.com/action/downloadFigures?id=ffe12760-fig-0016&doi=10.1111%2Fffe.12760
http://wileyonlinelibrary.com/
https://wol-prod-cdn.literatumonline.com/cms/attachment/c70127c5-8c23-4e2b-9cf5-0e6fe579696d/ffe12760-fig-0016-m.jpg


 
Figure 17 
Open in figure viewerPowerPoint 
Comparison of the plastic zone radius near the inner tip of the crack ① in array of 2 and 
3 parallel cracks and single crack with the inclination angle of 135° [Colour figure can be 
viewed at wileyonlinelibrary.com] 

 
Figure 18 
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Open in figure viewerPowerPoint 
Comparison of the plastic zone radius near the inner tip of crack ② in array of 2 and 3 
parallel cracks and single crack with the inclination angle of 135° [Colour figure can be 
viewed at wileyonlinelibrary.com] 

4.6 Prediction of plastic zones around circular crack 

There is a rectangular rock sample with the length of 0.10 m and width of 0.05 m 

containing a circular crack with the radius of 0.005 m. The rectangular rock sample is 

divided into 200 × 100 = 20 000 discrete nodes. The grid space between adjacent two 

points is Δx = 5 × 10−4 m. The calculation parameters are listed as 

follows: δ = 3Δx, s0 = 0.082, Young's modulus is E = 100GPa, the mass density ρ is 

2200 kg/m3, and Poisson's ratio ν is 0.30. Because dynamic analysis is used, the 

recommended time step 5.33 × 10−8 seconds is specified. Its geometric configuration is 

plotted in Figure 19. When time step arrives at 370, radius of plastic zone around 

circular crack is plotted in Figure 20. It can be observed from Figure 20 that the plastic 

zone around circular crack in the plate under the uniaxial tension is symmetric. 

 
Figure 19 
Open in figure viewerPowerPoint 
The geometric configure of the rock sample with a circular crack 
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Figure 20 
Open in figure viewerPowerPoint 
Peridynamic simulation of plastic zone around a circular crack [Colour figure can be 
viewed at wileyonlinelibrary.com] 

5 CONCLUSIONS 

The plastic model of ordinary state‐based peridynamics is introduced in this paper. The 

radius of plastic zone near the tips of cracks with the different inclination angles is 

simulated using ordinary state‐based peridynamics. Comparison between the plastic 

zone radius near the crack tips obtained from peridynamic numerical solution and 

analytical solution is made. It is found that the relative error between the peridynamic 

and analytical solution is very little. Therefore, it is feasible to predict the plastic zone 

near crack tips in rocks using ordinary state‐based peridynamics. In the future work, 

numerical convergence, ie, δ‐convergence and m‐convergence, of the plastic zone 

around the crack tips will be investigated. Moreover, the strain hardening plastic model 

and strain softening plastic model will be implemented into the ordinary state‐based 

peridynamics, and the corresponding characteristics of plastic zones around crack tips 

in rocks will be analysed. 
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