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Abstract: In this paper, a partially stirred stochastic reactor model is presented as an alternative for the modeling of 17 

biomass pyrolysis and gasification. Instead of solving transport equations in all spatial dimensions as in CFD 18 

simulations, the description of state variables and mixing processes is based on a probability density function, making 19 

this approach computationally efficient. The virtual stochastic particles, an ensemble of flow elements consisting of 20 

porous solid biomass particles and surrounding gas, mimic the turbulent exchange of heat and mass in practical 21 

systems without the computationally expensive resolution of spatial dimensions. Each stochastic particle includes 22 

solid phase, pore gas and bulk gas interaction. The reactor model is coupled with a chemical mechanism for both 23 

surface and gas phase reactions. A Monte Carlo algorithm with operator splitting is employed to obtain the numerical 24 

solution. Modeling an entrained flow gasification reactor demonstrates the applicability of the model for biomass 25 

fast pyrolysis and gasification. The results are compared with published experiments and detailed CFD simulations. 26 

The stochastic reactor model is able to predict all major species in the product gas composition very well for only a 27 

fraction of the computational time as needed for comprehensive CFD. 28 

 29 
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1  Introduction 32 

 33 

Biomass gains increasing attention as a renewable alternative to fossil fuels, as it enables a sustainable and efficiently 34 

implementable pathway for heat and power generation as well as secondary biofuel production. Direct combustion 35 

of biomass is a common option for production of heat and power. However, integrated biorefinery concepts leading 36 

to multiple products is the anticipated key solution for an economically viable future bio-economy [1]. Biochar (or 37 

biocarbon), the carbonaceous solid product from biomass pyrolysis (and gasification)may for example replace fossil 38 

carbon carriers in a number of industrial applications such as in metallurgical processes. The gaseous and liquid 39 

products may serve as a feedstock for the production of liquid fuels and chemicals. 40 
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 41 

The first steps in pyrolysis and gasification are drying and devolatilization. Water vapor is first released, followed by 42 

permanent gases (such as CO, CO2, H2 and CH4) and condensable gases (tars) while carbonaceous solid (char) 43 

remains. These primary products of pyrolysis may undergo further conversion if the residence time is sufficiently 44 

long. Tars may polymerize and crack, decreasing the amount of functional groups and thereby forming secondary 45 

(and tertiary) tars of higher aromaticity, while releasing more gas (and solid). In addition, the gaseous and solid 46 

products may undergo further conversion reactions. Even though pyrolysis has been used since ancient times for the 47 

production of charcoal, the details of the elementary chemical processes, reactions, intermediates and products are 48 

very complex and remain largely unknown. For example, a common understanding of even the first kinetic step 49 

(devolatilization) is yet not established. Kinetic parameters differ largely and are under constant evaluation, and the 50 

proposed models are typically only valid for restricted conditions [2]–[8]. 51 

 52 

Much effort has been devoted both experimentally and theoretically to reveal these details allowing optimization of 53 

pyrolysis processes for modern industrial purposes. Product yield distribution, feedstock variability, control of 54 

temperatures, heating rates and material flows are among the critical issues important for the efficiency of these 55 

processes [9], [10].  A common approach to understand the challenges involved is model development to simulate 56 

processes in detail. Modeling of thermochemical biomass conversion should however strictly speaking involve the 57 

coupling of both the complex chemical kinetics as well as that of turbulent transport of energy, mass and momentum, 58 

which occur during the process in a multi-phase environment. Modeling efforts began in the 1940s [11] and have 59 

since produced ever more complex descriptions of both physical and chemical phenomena.  60 

 61 

For a realistic description of practical systems, in which the characteristic time scales of mixing can be of the same 62 

order of magnitude as the time scales of chemical kinetics, both the rate limiting effects of chemical kinetics and 63 

physical mixing have to be taken into account. This is the subject for large detailed studies employing Eulerian or 64 

Eulerian-Lagrangian type simulations published in literature recently where dynamics, gaseous kinetics and solid 65 

particle reactions are included, revealing many details of the multi-phase flows for different biomass conversion 66 

systems (e.g. [12]–[15]). Ranzi et al. ([16], [17]) have also presented comprehensive models that account for physical 67 

processes and detailed chemical kinetics on both the fuel particle and the reactor level. Such multi-scale numerical 68 

simulations require however significant computing time. Hence, simplifying assumptions are often necessary. 69 

Descriptions of different levels of modeling approaches for biomass pyrolysis can be found elsewhere, e.g. in [7], 70 

[18] or [19]. A review of models for biomass gasification is given e.g. in [20]. The reader is referred to these sources 71 

for further details on general modelling approaches. Here we will focus on models based on the stirred reactor 72 

approach, which has been widely used in the combustion community to simulate stationary systems, however not as 73 

well established for gasification and pyrolysis of solid fuels.  74 

 75 

In perfectly mixed conditions, the rate of the thermochemical conversion is only controlled by chemical kinetics, 76 

while the mixing process can be regarded as infinitely fast and its influence therefore be neglected. These assumptions 77 

lead to the well-stirred or perfectly stirred reactor model (PSR). The focus is therefore on kinetic modeling, often 78 
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limited to the gas phase kinetics of biomass conversion [21], [22]. A more detailed treatment of biomass pyrolysis is 79 

proposed by Lee et al. [23]. They combine a thermodynamic model for biomass conversion with a PSR model for 80 

the gaseous products. Septien et al. [24] modeled biomass gasification using a single fuel particle representation, 81 

hence without fuel particle interactions, but coupled with a detailed chemical mechanism for both heterogeneous and 82 

homogenous reactions. Similar approaches are also available in commercial tools including solid and fluid interaction 83 

(e.g. [25]), however turbulent mixing effects are usually neglected [20].  84 

 85 

An equally idealizing approach is the assumption of fast chemical kinetics, resulting in a process that is mostly 86 

controlled by mixing of the reactants [26]. This is enabled by partial stirring in the simplified reactor, i.e. accounting 87 

for inhomogeneities e.g. through a joint composition probability density function (PDF). In earlier works a stirred 88 

reactor was presented by Spielman and Levenspiel including mixing, reactions and through-flow, based on a Monte 89 

Carlo simulation of a coalescing system [27]. In combustion research these models have received increased attention 90 

to efficiently tackle turbulent mixing effects which have been shown to be important for many aspects of the efficient 91 

conversion of the fuel such as kinetic rates, soot formation, extinction phenomena and emission control (e.g. [28]). 92 

These models are bound by two idealizing limiting regimes; the aforementioned perfectly stirred reactor (PSR) with 93 

infinitely fast mixing in both axial and radial directions, and the (tubular) plug flow reactor (PFR) with perfect mixing 94 

in radial direction, but where the reactants do not mix along the flow axis. Imperfectly mixed conditions are accounted 95 

for in partially stirred reactor models (PaSR) with mixing effects in all directions, and the partially stirred plug flow 96 

reactor (PaSPFR) with finite radial mixing [29], [30].  97 

 98 

In this work, we demonstrate that simplifying complex turbulent mixing and thermal conversion processes in a 99 

partially stirred stochastic reactor allows detailed modeling of the multi-phase nature of biomass conversion. State 100 

variables are thereby not determined by solving the three dimensional Navier-Stokes equations as in computational 101 

fluid dynamics (CFD) simulations, but based on probability density functions (PDF) of the physical quantities. Only 102 

a one-dimensional flow, as in PFR is considered. The PDFs describe the probability of a certain variable to have a 103 

given value in time, as for example in a bell-shaped Gaussian distribution. The spatial information is lost, but replaced 104 

by a reactor model, which assumes exchange of heat and mass between an ensemble of virtual, so-called stochastic 105 

particles, resembling a mixing process. The strength of the stochastic reactor approach is its inclusion of turbulent 106 

mixing effects at low computational cost compared to CFD, which can be of the order hours versus days. This allows 107 

to couple a relatively detailed chemical mechanism with a complete reactor setup while maintaining feasible 108 

computational time. Such stochastic reactor models have been used to describe turbulent homogeneous combustion 109 

with great success (e.g. [30]–[33]), but have yet not been explored for their applicability to model heterogenouos 110 

conversion of solid fuels such as pyrolysis and gasification of biomass where a multi-phase treatment of the flow has 111 

to be taken into account.   112 

 113 

The aim of the present work is to extend a novel stochastic reactor approach, which allows for reactions between gas 114 

and solid phases to account for all necessary steps of biomass conversion. It thereby offers a tool to describe heat and 115 

mass transfer within and between different phases, the mixing of reactants in the reactor, and the chemical kinetics 116 
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of drying, devolatilization, char conversion and gas phase reactions. To evaluate the accuracy of the stochastic reactor 117 

approach, pyrolysis and gasification experiments from literature have been modelled to determine the product gas 118 

composition under varying conditions [34]. The results of the simulation are compared with the experimental 119 

measurements as well as with the results from a more comprehensive CFD simulation of the same experiment 120 

previously published in literature [35].  121 

 122 

The paper is organized as follows: The stochastic reactor model is described in detail in section 2.1, section 2.2 123 

describes the kinetic model, which has been coupled with the reactor model. Section 2.3. gives a brief description of 124 

the experimental setup that has been used to validate the model for biomass conversion. In section 3.1, the model 125 

predictions are compared against the product gas composition of biomass pyrolysis and gasification. Section 3.2 126 

shows some features of the stochastic modeling approach. Finally, concluding remarks are presented in section 4.  127 

 128 

2  Material and Methods 129 

 130 

2.1 Computational Modeling 131 

 132 

In this study, the LOGEsoft gasification module [36] is extended to include all steps of thermal conversion of solid 133 

fuels in a simplified tubular reactor. In this zero dimensional stochastic reactor model, the state variables which are 134 

heterogeneously distributed in the reactor are described and modelled with probability density functions. The model 135 

is made suitable for biomass pyrolysis and/or gasification through proper treatment of the gas-solid phase interaction 136 

for biomass conversion through drying, devolatilization, char reactions and gas phase reactions. 137 

 138 

The software introduces both a network of partially stirred reactor (PaSR network) as well as a partially stirred plug 139 

flow reactor (PaSPFR). For the network, the reactor is divided into a number of cells (also referred to as 140 

compartments), each of which is a partially stirred reactor (Figure 1 left). Each cell is filled with a certain amount of 141 

virtual stochastic particles, an ensemble of numerical particles composed of a given composition of solid phase, bulk 142 

and pore gas, with a distribution of states according to a specified distribution profile. The stochastic particles 143 

themselves are each considered homogeneous, but mix stochastically with each other and exchange heat and mass 144 

within the cell. The more inhomogeneous a mixture is, the more stochastic particles are required for an accurate 145 

description of the system. In- and outflow of solid and gaseous species are also considered between the cells as Figure 146 

1 indicates, hence in this approach finite mixing is accounted for in both radial and axial direction. 147 

 148 

For the PaSPFR, only a plug (or disk cell) is considered as it is transported along the length of the reactor (Figure 1 149 

right). This plug is a partially stirred reactor with an initial biomass-to-gas ratio, meaning no additional in-and outflow 150 

is considered, only evolution of the plug in time. Since there is no in- and outflow this approach accounts for finite 151 

mixing only in radial direction. As for the PaSR, the plug (cell) is discretized into a number of stochastic particles, 152 

each with a specific composition of solid phase, bulk and pore gas distributed based on a PDF. Transport equations 153 
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are solved for each stochastic particle. For the present case, the PaSPFR setup was chosen, as it gives a more accurate 154 

representation of the setup of the experimental drop tube reactor used for validation where constant bulk flow in one 155 

direction is dominant with little turbulent mixing in axial direction. This will be outlined in more detail in section 156 

2.3. 157 

 158 

 159 

 160 

 161 

 162 

 163 

Figure 1 Series of partially stirred reactors (left) and partially stirred plug flow reactor (right) 164 

 165 

Stochastic model and turbulent mixing 166 

The stochastic reactor model is based on the description of local quantities of chemical species mass fractions and 167 

temperature as random variables, ϕ1,… ϕS+1 , with their sample space realization ψ1,… ψS+1 , where S is number of 168 

chemical species in the reaction mechanism. The adopted formulation of the time evolution of their joint scalar mass 169 

density function (MDF) Fϕ is expressed as [36], [37]: 170 

 171 

1
( , ) (( ( ) ) ( , t)) ( ( , ))       

 
   i in

i

d d
F t Q F F F t mixing term

dt d
     (1) 172 

 173 

The equation describes the rate of change of both solid and gas species mass and energy (first term on the left hand 174 

side) due to chemical reactions and heat transfer interaction with the wall (second term) and cell in- and outflow 175 

(third term). Qi represents the source terms for variable i (both species and temperature) and will be discussed in 176 
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more detail in the next section. The third term on the left hand side of the equation, which accounts for cell in- and 177 

outflow, is disregarded when modeling the reactor as a PaSPFR as discussed in the previous section. 178 

The mixing term (right hand side (RHS) in equation (1)) accounts for the turbulent mixing in the reactor. The 179 

coalescence/dispersal model (C/D model) [36], [38] is used, where out of the total number of stochastic particles, 180 

particle pairs mix randomly to their mean value according to: 181 

 182 

 ( ( , ) F ( ) ( ) ( , ))m

mix

C
mixing term F t d F t


     




               (2) 183 

 184 

where Cϕ and βm are model constants in accordance to [36], [38] and τmix is the mixing time and considered a user 185 

defined parameter. Cϕ is a proportionality constant and Cϕ/τ becomes a measure of the scalar mixing intensity. A slow 186 

mixing process is described by a long mixing time, making the overall mixing term small. For equation (1), this 187 

implies that the mixing process contributes little to the value of the MDF. Consequently, a fast mixing process has a 188 

large influence on the value of the process variables, achieving almost homogeneous conditions in the reactor. 189 

 190 

The effect of heterogeneity of the stochastic reactor approach becomes more apparent the more stochastic particles 191 

are used. This does not only affect the mixing process (equation 2), but also the heat transfer distribution over the 192 

stochastic particles. Overall, a Nusselt-number approach is applied to calculate the total heat transfer, which is then 193 

randomly distributed over the stochastic particles. A model parameter Ch is used to describe the fluctuation intensity 194 

of heat transfer between a stochastic particle and the reactor wall: 195 

 196 




i

n w
n

h

T T
h

C
              (3) 197 

 198 

Ch influences the residence time of stochastic particles in the wall boundary layer. Long residence times (small Ch) 199 

result in high heat transfer. For Ch=1 each particle is cooled to the wall temperature, which is the maximum possible 200 

heat transfer. High values for Ch result in an equal distribution of the total heat flux over all stochastic particles. 201 

In order to obtain a solution for equation (1) a Monte Carlo method with an operator splitting technique is employed. 202 

The stochastic reactor approach including a description of the numerical algorithm has been presented in earlier 203 

works by co-authors and further details can be found in [37]. 204 

Biomass conversion 205 

 206 

As the biomass is converted, its mass ms changes according to the reaction rate ωj,s of the solid phase reactions: 207 

 208 

, j,

1

n
s

s total s

i

dm
A

dt




                (4) 209 

 210 
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As a result, the initial particle diameter ds decreases as the conversion progresses: 211 

 212 

2
1 3
3

6
( )

3



s s s

s s

dd m dm

dt n dt
            (5) 213 

 214 

The solid matter is assigned an initial porosity ε, which is also subject to change over time: 215 

 216 

,

,

1,

(1 ) 


 


  

sn
s total

j s

is total S

Ad

dt V
          (6) 217 

 218 

The pores are filled with pore gas mp from solid fuel surface reactions, the mass of which depends on the conversion 219 

rate of the solid and the exchange between pore and surrounding bulk gas (driven by a difference in concentration ci 220 

and controlled by a mass transfer coefficient km) as represented by the first and second terms in the following 221 

equation: 222 

 223 

s, j, , , , ,

1 1

( )
g gn n

p

total s s total j m j j g j p

i j

dm
A A W k c c

dt


 

             (7) 224 

 225 

Devolatilized gases from the solid are first released into the pores. The mass of the bulk gas thus depends only on the 226 

exchange with the pore gas: 227 

 228 

, , , ,

1

( )


  
gn

g

s total j m j j g j p

j

dm
A W k c c

dt
          (8) 229 

 230 

The chemical composition is calculated for each stochastic particle in the cell (the disk, in the case of the PaSPFR) 231 

and each time step. The temporal change in species mass fractions of the solid phase Yi,s is expressed as: 232 

 233 

, , , ,

, ,

1, ,

1 1

(1 ) 1
 

   

 
 


sn

i s s total i s s total

i s j s

js s total s s total

dY A Y A

dt V V
         (9) 234 

 235 

The first term on the RHS of equation (9) is the consumption of the solid species due to devolatilization, drying or 236 

chemical reaction. The second term ensures mass conservation as the consumption of solid results in a change of 237 

mass fraction.  238 

The rate of change of pore gas species mass fractions is described as:  239 

 240 
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, ,

, , , , , , , , , , j,

1 1,

1
( ( ) ( ))

(1 )

g gn n

i p s total

i p i s i p j s i m i i g i p i p j m j j g p

j jp S s total

dY A
Y W k c c Y W k c c

dt V
  

    

      


                 (10) 241 

 242 

The change depends on the gas phase reactions in the pores (first term on the RHS), the reaction rate in the solid 243 

phase (releasing gases into the pores, second and third term on the RHS), and the mass exchange between the pore 244 

and the bulk gas (fourth and fifth term on the RHS). 245 

Finally, the bulk gas species mass fractions depend on the reaction rate in the gas phase as well as the mass exchange 246 

with the pore gas: 247 

 248 

, , ,

, , , , , , ,p

1

1
( ) ( )

 

    
gn

i g s total s total

i g i m i i p i g i j m j j g j

jg g g

dY A A
W k c c Y W k c c

dt m m
                 (11) 249 

 250 

Regarding the temperature evolution of the bulk gas phase, this is calculated as: 251 

 252 

,

, , ,

1 1

1
( ( ) ( )) 

  


     

g gn n

g s total

i i j m j j p j p g s g

i jp g p g

dT A
h W k c h h T T

dt C C m
                  (12) 253 

 254 

where the contributions are from the heat of reaction of gas phase reactions (first term on the RHS), the heat transfer 255 

due to mass exchange with the pore gas (second term) and the heat transfer between the solid and the gas (third term), 256 

respectively. The heat transfer to the wall is treated with a stochastic jump process as part of the operator splitting 257 

method, which was explained in the previous chapter. 258 

The solid phase and the pore gas are assumed to have the same temperature. This temperature is considered uniform, 259 

so temperature gradients within a particle are disregarded: 260 

 261 

, 2

, , 2
1, , , ,

,

, , , ,

1, ,

1 1
( 3 )

6

              + ( ( ) ( ) )




 









   

   





g

g

n

s p pyr s s
i p i p s

ip s s p s s s total s total

n

s total

j m j j g j g j p s g rad

jp s s total s

dT H dm m dd
h n d

dt C C V dt V dt

A
W k c h h T T q

C V

                                           (13) 262 

 263 

The influences on the temperature are from the gas phase reactions in the pores (first term on the RHS), the heat 264 

released/consumed from the pyrolyzing solid (second and third term), the heat transfer due to mass diffusion between 265 

pore and bulk phase (fourth term), the heat transfer between the solid and the gas and radiant heat transfer between 266 

the reactor wall and the biomass, which is influenced by the properties (temperature T and emissivity ε) of both: 267 

 268 

4 4(T )  rad s w s wq T                       (14) 269 

 270 

2.2 Chemical Kinetics 271 
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 272 

In the current set-up a relatively simple chemical mechanism was coupled with the stochastic reactor model. The 273 

chemical mechanism corresponds to the one used in a CFD simulation by Ku et al. [35] on the same experiment as 274 

used here for validation purposes. This way, the performance of the simple stochastic reactor model can be directly 275 

compared to the performance and predictability of the complex CFD simulation. However, it is important to note that 276 

these choices are user defined and more detailed and rigorous mechanisms will be implemented for future 277 

applications and kinetic studies. In [35] the wood is described as a lumped species, which decomposes in a one-step 278 

reaction into gases and char during pyrolysis. Both the produced gases and char may subsequently undergo secondary 279 

gas phase and surface reactions. Tar formation is disregarded due to the relatively high temperature. The drying 280 

process is modelled in a separate reaction as the initial water is considered an independent species from the biomass. 281 

Ash is considered as an inert species, as oxidation and catalytic effects are neglected.  282 

Drying 283 

Biomass may contain a significant amount of water, the drying of which takes place as an initial step during pyrolysis 284 

and therefore can influence the conversion process. The drying process is treated as a heterogeneous reaction, the 285 

rate of which is determined by an Arrhenius-type law: 286 

 287 

2 2 2

aE

RT
H O H O H OA e c W



                        (R1)288 

        289 

This is a common way to describe the drying process with a number of kinetic parameters available in the literature. 290 

In the present case, a frequency factor of A=5.13x106 s-1 and an activation energy of E=87.9 kJ/mol (suggested by 291 

[39]) were used.  292 

Devolatilization 293 

In the validating experiment, beech wood sawdust particles with a representative diameter of 310 μm were used as 294 

will be described in more detail in section 2.3. Based on the fuel composition shown in Table 1, a generic sum formula 295 

of the wood composition can be written as C42H64O28. It is assumed that the biomass devolatilizes into the main gas 296 

components CO, CO2, H2 and CH4, which are the main components measured in the experiments. Further details will 297 

therefore be not validated. The relative distribution between these components, given in Table 2, was assumed in 298 

[35] based on the elementary composition considerations, and adopted for this work in order to enable the direct 299 

comparison between the statistical approach proposed and the numerical modeling approach presented in [35].   300 

 301 

Table 1 Beech wood composition (as received basis) [34] 302 

Moisture 9.04 wt%  

Ash 0.61 wt%  

Volatile matter 76.70 wt%  

C 45.05 wt%  

H 5.76 wt%  
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O 39.41 wt%  

 303 

Table 2 Volatile matter composition [35] 304 

CO 37.5 wt% 

CO2 41.1 wt% 

H2 2.9 wt% 

CH4 18.2 wt% 

 305 

The resulting devolatilization reaction is formulated as: 306 

42 64 28 2 2 411.6  + 8.2  + 12.46  + 9.77  + 12.43 ( ) C H O CO CO H CH C s      (R2) 307 

 308 

Gas phase reactions 309 

 310 

Secondary reactions in the pore and bulk gas are described using five global reactions, shown in Table 3. References 311 

to the kinetic parameters for each reaction can be found in [35]. 312 

 313 

Table 3 Secondary gas phase reactions [35] 314 

4 2 2 22 2   CH O CO H O   
3

13 1

4 2

130

5.16 10 [ ][ ]exp( )
  



kJ

K m molk T CH O
kmol s RT

  
(R3) 

4 2 23   CH H O CO H   
3

6

4 2

126

7.0 10 [ ][ ]exp( )  


kJ

m molk CH H O
kmol s RT

 
(R4) 

2 2 20.5  H O H O   
3

9

2 2

109

2.2 10 [ ][ ]exp( )  


kJ

m molk H O
kmol s RT

 
(R5) 

2 20.5  CO O CO   
3

10 0.5 0.5

2 2

126

1.0 10 [CO][ ] [H O] exp( )  


kJ

m molk O
kmol s RT

 
(R6) 

2 2 2  CO H O CO H  

3
3

2

12.6

2.78 10 [CO][H O]exp( )  


forw

kJ

m molk
kmol s RT

 

3
4

2 2

46.6

9.59 10 [CO ][H ]exp( )  


rev

kJ

m molk
kmol s RT

 

(R7) 

 315 

 316 
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Char conversion 317 

The solid products from the devolatilization process are ash and char. In the present study, ash is assumed to be inert 318 

and char is considered as pure carbon, according to reaction (R2). As in [35], the char may undergo an oxidation, 319 

following partial oxidation, heterogeneous watergas and Boudouard reactions: 320 

 321 

20.5 C O CO                        (R8) 322 

2 2 C CO CO                        (R9) 323 

2 2  C H O CO H                      (R10) 324 

 325 

The reaction rate of these surface reactions is determined using the kinetic/diffusion-limited rate model, first proposed 326 

by Baum and Street [40] and has been widely used in previous numerical studies on coal combustion (see for example 327 

review by Williams et al. [41]). The rate of char conversion is influenced by both kinetics and diffusion and is 328 

determined for each of the three char conversion reactions: 329 

 330 

, ,

,






   



c i c i

s ox

c i

dm D
A p

dt D
                      (13) 331 

 332 

The kinetic rate constant of each char conversion reaction ωc,i is calculated using an Arrhenius equation, the 333 

parameters of which can be found in Table 4. As for the gas phase, the heterogeneous reactions and their kinetic 334 

values correspond to those suggested in [35]. 335 

 336 

The diffusion rate constant D is described as 337 

0.75

1

( )
2



 

s

s

T T

D C
d

 ,                      (14) 338 

 339 

where C1 is a model constant. The char conversion rate (equation (13)) is then incorporated into the conservation 340 

equation of both the solid phase and the gas phase as source terms.  341 

  342 

 343 

Table 4 Reaction constants for char oxidation [35] 344 

Reaction Pre-exponential factor [s/m] Activation energy [J/mol] 

R8 32.51 10   
47.48 10   

R9 13.0 10  
52.0 10   

R10 32.0 10  
51.96 10   

 345 

 346 
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 347 

 348 

 349 

 350 

2.3 Experimental Setup 351 

 352 

The pyrolysis and gasification experiments were previously carried out by Qin et al. at the Technical University of 353 

Denmark [34]. Beech wood sawdust (with a representative particle diameter of 310 μm) is fed into a laboratory-scale 354 

drop-tube reactor, the length and diameter of which are 2 m and 0.08 m, respectively. The reactor is electrically 355 

heated to a temperature between 1000 °C and 1400 °C. Carrier gas for the fuel is either nitrogen or air. In addition, 356 

air and/or steam are supplied into the reactor as the main gas. 357 

 Figure 2 shows the general setup of the reactor. The influence of several process parameters, among which reactor 358 

temperature, steam/carbon ratio and air ratio, on the gas production rate has been determined. More detailed 359 

information on the experimental setup can be found in the literature [34].   360 

 361 

 362 

Figure 2 Reactor setup (adapted from [34]) 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 
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 371 

 372 

 373 

 374 

3  Results  375 

 376 

3.1 Applicability of the model for biomass pyrolysis and gasification 377 

 378 

Table 5 shows a list of simulated experiments using the stochastic reactor model. The labels follow the definition in 379 

[35] and [34]. In addition to the main gas flow given in Table 5, a carrier gas was used with a volumetric flow rate 380 

of 10 l/min (norm conditions) for all cases. For the pyrolysis cases P1, P2 and P3, the carrier gas was pure nitrogen. 381 

For the gasification cases G1 to G11, air (23 wt% O2 and 77 wt% N2) was used. Cases P1, P2 and P3 are considered 382 

pyrolysis cases also in [34], referring to the lack of air in the reactor. Accordingly, the excess air ratio is zero for 383 

these cases. However, steam is added in P2 and P3, serving as a gasification medium. The residence time of the 384 

stochastic particles in the reactor results from the geometrical dimensions and the initial conditions of the reactor. 385 

The computational time needed to achieve the results (last column in Table 5) was determined using a 3 GHz 386 

processor, 64 GB RAM, running on one core only, with 10 stochastic particles and an adaptive time stepping 387 

procedure. Note that the CFD simulations used for comparison have computational times typically of the order of 388 

several hundred CPU hours. 389 

 390 

Table 5 List of test cases 391 

Parameter 

Case 

(according 

to [28] / 

[30]) 

T [°C] 

Fuel 

feeding 

rate 

[g/min] 

Excess 

air ratio 

λ 

S/C 

ratio 

Main gas flow 

rates [g/min] 
Calculated 

residence 

time [s] 

Computational 

time [min] 
Air Steam 

Steam/Carbon 

ratio (molar) 

P1 / wP1 1400 12.8 0 0 0 0 3.93 2.4 

P2 / wP2 1400 12.8 0 0.5 0 4.3 3.57 2.7 

P3 / wP3 1400 12.8 0 1.0 0 8.6 2.68 2.4 

Reactor 

temperature 

G1 / wT5 1000 12.8 0.3 0.5 6.9 4.3 3.99 3.4 

G2 / wT4 1100 12.8 0.3 0.5 6.9 4.3 3.68 3.2 

G3 / wT3 1200 12.8 0.3 0.5 6.9 4.3 3.42 3.9 

G4 / wT2 1300 12.8 0.3 0.5 6.9 4.3 3.18 3.1 

G5 / wT1 1400 12.8 0.3 0.5 6.9 4.3 2.97 3.7 

Steam carbon 

ratio (molar) 

G6 / wH3 1400 12.8 0.3 0 6.9 0 3.37 2.6 

G7 / wH2 1400 12.8 0.3 0.5 6.9 4.3 2.97 3.2 

G8 / wH1 1400 12.8 0.3 1.0 6.9 8.6 2.58 2.3 

Excess air 

ratio 

G9 / wL3 1400 15.3 0.25 0.5 6.9 5.2 2.64 3.7 

G10 / wL2 1400 12.8 0.3 0.5 6.9 4.3 2.97 2.5 

G11 / wL1 1400 10.9 0.35 0.5 6.9 3.7 3.09 4.4 
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 392 

The effect of the steam/carbon ratio on the gas production rate for wood pyrolysis and steam gasification without 393 

oxygen addition (cases P1, P2 and P3) is shown in Figure 3. In addition to the results obtained by the stochastic 394 

model, the experimental measurements [34] as well as the predictions from the CFD simulation [35] are shown. 395 

 396 

 397 

Figure 3 Effect of the steam/carbon ratio on gas production rates for wood pyrolysis (cases P1, P2 and P3 in Table 5) 398 

 399 

It can be seen that the gas production rates of H2 and CO2 are quite accurately predicted by the stochastic model. The 400 

production of CO is slightly under-predicted, especially at a steam/carbon ratio of one. In the case of pure pyrolysis, 401 

the methane production rate is significantly overestimated by both the stochastic reactor model as well as the CFD 402 

simulation. However, as the total amount of methane produced is comparably little, a small error may lead to a fairly 403 

large deviation in the production rate. In addition, the very simple kinetic model assumes that only one hydrocarbon 404 

species, CH4, is formed. Other species that are formed under real conditions are therefore summed up in the model’s 405 

methane production rate, leading to the observed over-prediction.     406 

 407 

The effect of the reactor temperature on the gas production rates in the case of gasification is shown in Figure 4. The 408 

stochastic reactor model captures the overall effect of temperature on all the product gases well. Hydrogen production 409 
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is over-predicted by the stochastic model for the lowest reactor temperature of 1000 °C. Its rate of increase for rising 410 

temperatures is lower than for the CFD simulation and the experiment, resulting in a very good agreement at higher 411 

temperatures for the stochastic model. A similar trend can be observed for CO, albeit not as significant as well as for 412 

the prediction of the CO2 production rate, which as for H2 is very well predicted for higher reactor temperatures. In 413 

all three cases compared to the CFD, the representation of the experimental results are equally good for both modeling 414 

approaches. Methane production is however under-predicted by the stochastic model. Similar to H2, the lowest 415 

reactor temperature gives the largest deviation from the experimental measurement. At the highest temperature, the 416 

model performs better. As for the pyrolysis cases, the total amount of methane however is quite small leading to a 417 

higher degree of error as discussed above. 418 

 419 

Figure 4 Effect of the reactor temperature on gas production rates for wood gasification (cases G1 to G5) 420 

 421 

The influence of the molar steam/carbon ratio and the excess air ratio on the gas production rate of wood gasification 422 

are shown in Figure 5. For these cases, no information on the methane production rate was available in [34]. The 423 

amount of all three gases that were considered, is predicted very accurately by the stochastic reactor model. Note 424 

also that experimental errors are not readily available for these data points. An uncertainty of about 10 % was 425 
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determined for comparable experiments [42]. Hence, for the results shown in Figure 5, it cannot be concluded which 426 

of the simulation approaches outperforms the other as they are equally close to the experimental results. 427 

 428 

 429 

 430 

 431 

Figure 5 Left: Effect of the molar steam/carbon on gas production rates for wood gasification (cases G6 to G8); Right: Effect 

of the excess air ratio on gas production rates for wood gasification (cases G9 to G11) 
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 432 

 433 

3.2 General performance of the stochastic model 434 

 435 

As discussed in section 2 the description of heterogeneity in the system is covered by the implemented PDF approach 436 

of the stochastic particles and turbulent mixing. The effect of the stochastic reactor on heterogeneity is studied using 437 

the settings of case G6/wT1 (Table 5). In order to decrease the influence of fast kinetics, the reactor temperature was 438 

lowered (1200 K) and the wood particle diameter increased (310x10-5 m). A number of 100 stochastic particles was 439 

used to emphasize the distribution of physical quantities throughout the simulations. The case was modeled with a 440 

given model constant defining the wall heat transfer (Ch=40). Figure 6 (top) shows the gas temperature distribution 441 

over all 100 stochastic particles for this case at a reactor length of 0.15 m. For this given case the fluctuations of gas 442 

temperature in the reactor range over approximately 15 K scattered around a mean value with a significant number 443 

of outliers (similar results are found for solid and pore gas temperatures, not shown here). This behavior in the 444 

temperature will have a direct effect on the species distribution over the particles. Figure 6 (bottom) shows the mass 445 

fraction of CO in all particles for the same stochastic constant.  The mass fractions of other species behave in the 446 

same manner. This clearly reveals that the stochastic reactor approach very efficiently captures the variations in 447 

composition that develops in such reactors due to mixing, affecting the predictability of the final product yield 448 

distribution. It will be important to establish the sensitivity of certain model constants on the final results and this 449 

will be the subject for future studies. 450 
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 451 

Figure 6 Gas temperature (top) and CO mass fraction (bottom) at a reactor length of 0.15 m (dashed lines indicate the moving 452 
average with a period of 2) 453 
 454 

 455 

4  Conclusion 456 

 457 

A stochastic reactor model for a PaSPFR has been used to model an experimental series on biomass pyrolysis and 458 

gasification, performed in a drop tube reactor at high temperatures (1000-1400 °C). The influence of reactor 459 

temperature, steam/carbon-ratio and air ratio on the production rate of the gas components H2, CO, CO2 and CH4 has 460 

been determined. The performance of the stochastic model is directly compared to CFD model predictions employing 461 

the same kinetic model on the same experimental setup with very good agreement for most conditions. For low 462 

reactor temperatures, the prediction of hydrogen and methane shows a significant deviation from the experimental 463 

results of wood gasification. These cases are matter of future investigations. Methane is also under-predicted for one 464 

of the pyrolysis cases for both CFD and SRM calculations. In most cases however, the product gas composition is 465 

predicted with good accuracy by the stochastic approach, comparable to the CFD simulation, suggesting that the 466 

observed deviations can be attributed to the rather simple chemical model employed in both modelling approaches, 467 

especially for the gas phase reactions, rather than the simplified reactor model.  468 

 469 
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The strength of the stochastic reactor approach is the description of main properties and processes by a probability 470 

density function instead of continuously resolving transport equations in all spatial dimensions. This makes the 471 

approach computationally efficient by decreasing the computational time from several hundred CPU hours to less 472 

than 5 minutes compared to CFD. This is appealing for situations where large systems are under investigation or 473 

when many different conditions are to be studied. It is shown that by defining the stochastic properties of the model 474 

appropriately, a sophisticated description of the physical properties is possible. The model can be coupled with a 475 

more detailed chemical mechanism, as will be the subject of future work. Future work also includes the 476 

implementation of a more comprehensive treatment of the physical particle size evolution, which is important in 477 

many applications. It therefore also offers a suitable and efficient tool for the development and validation of kinetic 478 

models for biomass conversion processes, before such models are applied in CFD. 479 

 480 
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 491 

Nomenclature 492 

A surface area [m2] 

A frequency factor, pre-exponential factor [unit dependent on reaction] 

c species concentration [mol/m3] 

C1 mass diffusion rate constant [s/K0,75] 

Ch model constant [-] 

Cp heat capacity [J/(kgK)] 

Cϕ mixing constant [-] 

d particle diameter [m] 

D diffusion rate constant [s/m] 

E activation energy [kJ/mol] 

Fϕ mass density function [-] 

h specific enthalpy [J/kg] 

H specific heat [J/kg] 

hn heat transfer fluctuation [K] 

k reaction rate (mole-based) [kmol/(m3s)] 

km mass transfer coefficient [m/s] 

m mass [kg] 

n number, numbered item (non-specific) [-] 

p pressure [N/m2] 
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Qi source term function [-] 

qrad radiation term [J/(m2s)] 

t time [s] 

T temperature [K] 

V volume [m3] 

W molecular mass [kg/mol] 

Y species mass fraction [-] 

α heat transfer coefficient [W/(m2K)] 

β porosity source factor [-] 

βm mixing constant [-] 

ε porosity [-] 

ε emissivity [-] 

ρ density [kg/m3] 

σ Stefan Boltzmann constant [W/(m2K4)] 

τ time step size [s] 

τmix mixing time [s] 

ϕ random variable [unit depending on the variable] 

ψ realization of any random variable [unit depending on the variable] 

ω reaction rate, chemical source term [kg/(m2s)] or [kg/(m3s)], depending 

on the subscript 

   

Subscripts 493 

s solid phase 

g bulk gas phase 

p pore gas phase 

i, j Species i, j 

m mass 

w wall 

rad radiant, due to radiation 

pyr pyrolysis 

c, char char 

par particle 

∞ surrounding 

total total, referring to an entity 
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