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Abstract 

The aim of the study was to indentify driving variables that contributed to energy use in a low 

energy office building by integrating building energy management system (BEMS) and energy 

use data. To take a further step towards zero emission buildings, it is necessary to identify what 

contributes the most to building energy use. Further, the idea was to encourage a smart use of 

BEMS data for energy use analysis. Principal component regression and partial least squares 

regression were used for the data analysis. Databases of 76 and 41 variables respectively, which 

included occupancy level, control signals, and water and air temperatures, were used to explain 

heating, electricity, and fan energy use. Variable contributions to the principal components were 

used to simplify the model and to find the most important variables. In this way, energy use was 

defined indirectly by using available variables in BEMS. The approach was tested on a low 

energy office building. The results showed that important variables were different for different 

months in the case of heating energy use. The total electricity and fan electricity use could be 

defined with the same variables in different months. The total electricity use could be defined by 

using occupancy level and input fan signals. The suggested approach could be used by building 

operators to identify opportunities for decreasing energy use and for energy use estimation when 

data are lost due to data transmission issues or other problems. A relationship between building 

information and energy use was established. 
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1. Introduction 

The zero emission concept ‘‘represents a shift from the traditional industrial model in 

which wastes are considered the norm, to integrated technologies utilizing everything. It 

advocates an industrial transformation whereby businesses emulate the sustainable cycles found 

in nature and where society minimizes the load it imposes on the natural resource base and learns 

to do more with what the earth produces’’ as pointed out in [1, 2]. Further, in the work of Ulgiati 

et al. [1] it is emphasized that Zero Emission Strategies for the industry are significantly 

dependent on information for optimum use of resources, and therefore, the cost of generating, 

testing, disseminating, and storing information is of paramount importance for sustainability [1]. 

Even though use of information to achieve a zero emission building is necessary, it is still not 

completely utilized in everyday building design and operation practice. Therefore, the aim of the 

study was to encourage a smart use of building energy management system (BEMS) data by 

relating BEMS information to building energy use. 

One of the smart grid concept’s features is increased use of digital information and 

control technology to improve the reliability, security, and overall efficiency of the electric 

system [3]. Further, the smart grid concept should provide consumers with timely information 

and control options. 

Intelligent and advanced use of BEMS for energy efficiency and improvement in thermal 

comfort has been highly recognized, but still not fully utilized. For example, significant 

improvements in building comfort, tenant productivity, and the reduction in the labor due to 

implementation of information monitoring and diagnostic system are reported in [4]. An 

intelligent decision support model for assessing energy-saving measures by using BEMS 

information is reported in [5]. There are many studies and research work that are reporting 

advanced use of BEMS either for the entire building or HVAC components [6-9]. In general, 

much data are available in BEMS that should be better utilized for energy efficiency and 

improvement in thermal comfort. 

Different methods are available to analyze and handle data organized into databases, like 

regression methods, probabilistic methods, neutral networks, and data mining techniques. They 

are used for both prediction, and fault detection and diagnosis in HVAC. For example, data 

mining method is used to predict total building energy demand in [10] and to identify residential 

load in the smart grid context in [11]. A probabilistic approach combined with the free-running 
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concept temperature are used to describe dynamic behavior by steady-state concepts and predict 

building energy use in [12]. Principal component regression (PCR) and partial least squares 

regression (PLSR) present the application of principal component analysis (PCA) in linear 

models. Successful application of the PCA for fault detection and diagnosis of sensor problems 

in HVAC is shown in [13-15]. Further, PCA has been used for estimating trends in building 

heating and cooling load [16] and to analyze electricity consumption in residential dwellings [17] 

and office buildings [18]. Finally, PCA and PLS are used to identify significant variables of 

high-rise office building energy use [19] and multifamily buildings [20]. PCA and PLSR 

implementation for model predictive controller for condition monitoring is presented in [21]. 

PCA can be used to recover faulty data as shown in [22]. Since PCA has been widely applied for 

different applications, it was also suggested to in this study. 

In this study, databases for prediction of heating energy use and electricity use were 

developed with BEMS data. Even though BEMS data differ in nature, temperature, control 

signals, pressures, etc., they can be correlated. For example, in office buildings at mid-day, 

outdoor temperature is usually higher, equipment is turned ON, and occupancy level is higher, 

while during night-time the situation is usually the opposite. In addition, BEMS data are 

correlated to time. Therefore, it could be useful to decouple data and establish new variables that 

would be uncorrelated. These new uncorrelated variables should be used to define building 

energy use. PCA may also be used to analyze time series, if variables of time are included as 

predictor variables [23]. 

This paper consists of four parts. The first part briefly introduces PLSR and PCR 

methods. Building description and predictor databases are introduced in the second part. Results 

including method comparison, model scaling, and defining driving variables, are given in the 

third part of the paper. In the fourth part of the paper, the suggested method was validated to 

recover energy use data that could be lost due to data transmission problems. 

 

2. Methodology 
PLSR and PCR are both methods to model a response variable when there are a large 

number of predictor variables, and those predictors are highly correlated or even collinear. Both 

methods construct new predictor variables, known as principal components (PCs), as linear 

combinations of the original predictor variables. 
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2.1. Principal components regression  
In principal component regression, the predictor variables are first transformed to PCs. 

Further, these principal components are regressed against the original responses [23]. If 𝑋 is the 

predictor matrix and 𝑦 is the response vector, PCs of original predictors can be expressed as: 

𝑧 = 𝑥𝑥                                                                 (1) 

 

where 𝑈′𝑈 = 𝐼. To perform PCR, transformed original predictors into PCs are used to express 

response as: 

𝑦 = 𝑧𝑏𝑧                                                                (2) 

 

where 𝑏𝑧 denotes the regression coefficients obtained by using PCs. The regression coefficients 

relating the PCs to the responses will have minimum standard errors since the predictors are 

uncorrelated and, for the same reason, the regression coefficients will be uncorrelated [23]. 

In practical problems, as studied here, it can be more convenient to relate the responses to 

the original variables as follows: 

𝑦 = 𝑧𝑏𝑧 = 𝑥𝑥𝑏𝑧                                                          (3) 

since 𝑧 = 𝑥𝑥, and therefore: 

𝑏 = 𝑈𝑏𝑧                                                               (4) 

 

where 𝑏 denotes the regression coefficients for the original variables. 

 

2.2. Partial least squares regression 
PLSR is another attempt to obtain components in a manner that directly reflects the 

relationship between the predictor and the response. The use of PLSR is useful in any application 

that has multiple predictors. PLSR takes into account the case of single-response variable and 

multiple responses. The PLSR technique operates in the same way as PCR in that a set of vectors 

are obtained from the predictor variables. PLSR is different from PCR because it immediately 

relates to the responses and reduces variability among the predictors. The estimation of the next 

vector takes that relationship into account. Simultaneously, a set of vectors for the responses is 
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also being obtained that takes this relationship into account. The procedure for PLSR is 

considerably more complicated than PCR [23]. 

If 𝑋 is the predictor matrix of size 𝑛 × 𝑝 and 𝑌 is the response matrix of size 𝑛 × 𝑞. The 

principal feature of the PLSR technique is that two operations will be carried out together: 

𝑋 = 𝑇𝑇 + 𝐸    (𝑇,𝐸 𝑎𝑎𝑎 𝑛 × 𝑘,𝑃 𝑖𝑖 𝑘 × 𝑝)                                      (5) 

𝑌 = 𝑈𝑈 + 𝐹∗    (𝑈,𝐹∗ 𝑎𝑎𝑎 𝑛 × 𝑘,𝑄 𝑖𝑖 𝑘 × 𝑞)                                   (6) 

 

𝑘 ≤ 𝑝 is the number of vectors associated with 𝑋. 𝐸 is the matrix of residuals of 𝑋 at the kth 

stage. 𝐹∗ is an intermediate step in obtaining the residuals for 𝑌 at kth stage. The matrices 𝑃 and 

𝑄 are the characteristic vectors. The matrices 𝑇 and 𝑈 are referred as “X-scores” and “Y-scores”, 

respectively. In PLSR, a prediction equation is formed by replacing 𝑈 by 𝑇𝐵 (𝐵 is 𝑘 × 𝑘), thus 

producing: 

𝑌 = 𝑇𝑇𝑇 + 𝐹                                                           (7) 

 

In this study, PCR and PLSR equations, as given in Eq. (4) and (7) respectively, were 

used to relate BEMS data to building energy use. BEMS data were used as original predictor 

variables, while energy use data were response or target variables. In addition to BEMS data, 

date and time were introduced into the predictor databases. 

To decrease the number of variables and find the most influencing, the PLS weights and 

PC loadings were used. The PLS weights are the linear combinations of the original variables 

that define the PCs in the PLSR. Actually, they describe how strongly each component in the 

PLSR depends on the original variables. Similarly, the PC loadings describe how strongly each 

component in the PCR depends on the original variables. 

 

3. Database and building description 
The suggested approach was tested on a low energy office building in Trondheim, 

Norway, with a heated area of 16 200 m2. The ventilation system consisted of eight variable air 

volume systems, with a maximum air volume from 12 500 m3/h to 22 000 m3/h. Heating was 

provided by radiators, while cooling of IT rooms was provided by fan-coils. Heating energy for 

ventilation, space heating, and domestic hot water was supplied by district heating and heat 

pumps. There were two heat pumps installed. One of the heat pumps was providing part of the 
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heating energy for ventilation in the winter period, while in the summer period the evaporator of 

the heat pump provided cooling for ventilation. The second heat pump was a cooling plant which 

provided cooling for IT rooms, while the condenser heat was utilized to support heating. 

Available data from BEMS were used as predictor variables, while the heating energy 

use, the total electricity use, and the electricity for fans were used as target variables. BEMS data 

that were used for the predictor variable databases are given in Table 1. Only variables for the 

first air handling unit (AHU) are presented in Table 1, since the variables for the seven 

remaining AHUs were the same, although with different values. 

 

Table 1. Database description predictor variables 
Variable name Description Value range Application 
Day Day of week 1 for working, 2 for nonworking H*,El*,Fan* 

Hour Hour 0 – 1, sin(π ∙ Hour 24⁄ ) H*,El*,Fan* 
Tout Outdoor temperature -20 – 30 oC H*,El*,Fan* 
Tin_R4031 Indoor temperature in the 4th floor office 

18 – 23 oC 
H*,El*,Fan* 

Tin_R4010 Indoor temperature in the 4th floor office H*,El*,Fan* 
Tin_R4099 Indoor temperature in the 4th floor office H*,El*,Fan* 
OCC_R4031 Occupancy level in the 4th floor office 0.5 (not occupied), 1 – 1.5 

(bypass), 3 (occupied) 

H*,El*,Fan* 
OCC_R4010 Occupancy level in the 4th floor office H*,El*,Fan* 
OCC_R4099 Occupancy level in the 4th floor office H*,El*,Fan* 
320.SB40 Valve position in the main branch 0 – 100 % H* 
320.RT40 Supply temperature in the main branch 30 – 70 oC H* 
320.RT50 Return temperature in the main branch 30 – 60 oC H* 
320.02.RT40 Supply temperature in floor heating 20 – 35 oC H* 
320.02.RT50 Return temperature in floor heating 20 – 30 oC H* 
320.03.SB40 Valve position for snow melting 0 – 100 % H* 
320.03.RT40 Supply temperature for snow melting 20 – 35 oC H* 
320.03.RT50 Return temperature for snow melting 15 – 25 oC H* 
320.04.SB40 Valve position in the radiator branch 0 – 100 % H* 
320.04.RT40 Supply temperature in the radiator branch 30 – 70 oC H* 
320.04.RT50 Return temperature in the radiator branch 25 – 55 oC H* 
36.01.LK Valve position at heating/cooling coil 0 – 100 % H* 
36.01.LV Valve position at heating coil 0 – 100 % H* 
36.01.RT55 Return temp. after LV AHU 20 – 50 oC H* 
36.01.LX01 Input signal for recovery wheel 0 – 100 % H*,El*,Fan* 
36.01.JV40 Input signal for supply fan 0 – 100 % H*,El*,Fan* 
36.01.JV50 Input signal for exhaust fan 0 – 100 % H*,El*,Fan* 
36.01.RT40 Supply air temperature 16 – 24 oC H*,El*,Fan* 
H – heating energy use, El – electricity use, Fan – fan electricity use 

 

The BEMS of the analyzed building had only a history on control and measurements 

(temperature, pressure, el. signals, etc.), while energy monitoring was transferred to an energy 

service company. Monitoring of the energy consumption in the energy service database was done 
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on an hourly basis. Therefore, the data in Table 1 were calculated as hourly mean values. The 

target variables, the heating energy use and the total electricity use, were measured by the energy 

provider’s equipment and transferred to the energy service company’s database. The target 

variable named “fan electricity use” is the total electricity use in the eight AHUs. This fan 

electricity use included electricity for two fans (supply and exhaust), heat recovery wheel, and 

auxiliary devices in each AHU. Electricity use of the entire AHU was measured on an hourly 

basis and transferred to the energy service company. There was no possibility to separate fan 

electricity use. Therefore, available BEMS signals were related to the AHU electricity use to find 

driving variables. 

 

4. Results 
Two introduced methods, PLSR and PCR, for modeling of the target variables were 

compared. Beside method effectiveness comparison, models based on the entire database and 10 

variables were compared. Model scaling from a model based on the database to a model based 

on 10 variables was performed based on the predictor variable contribution to PCs. The model 

scaling was used to indentify driving variables. Finally, regression models and model 

coefficients are presented. The energy use data for three months, March, July, and November 

were analyzed, since for these three months the energy use data and databases were obtained. 

 

4.1. PLSR versus PCR regression models 
The database of the predictor variables for heating energy use consisted of 76 variables as 

presented in Table 1. The database of the predictor variables for electricity and fan electricity use 

consisted of 41 variables. The same database for electricity and fan electricity use was 

implemented. Use of the entire databases to calculate target variables could be demanding and 

requires specific computer programs to perform the calculation. A smaller database of predictor 

multi-variables could be simple for practical use and presentation of influential parameters on 

energy use. To introduce the approach for decreasing the number of variables gradually, method 

effectiveness are presented first. The method effectiveness was estimated by using the model 

accuracy. Similar method for determining the number of PCs and simplifying the model by using 

variance of reconstruction error is proposed in [24]. Accuracies for the heating energy use model 

for both regression methods and different amount of data are presented in Figure 1. In Figure 1, 
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accuracy is presented by coefficient of variation of the root mean squared error (CV(RMSE)), 

which was estimated by using 10-fold cross validation. 

 

 
Figure 1. Accuracy of the heating energy use model for different amount of data and different 

methods 
 

In Figure 1, the model accuracies are presented as a function of the number of used PCs 

to model the target variable. Models are declared to be calibrated if they produce CV(RMSE) 

within ±30% when using hourly data [25]. This means, that the models developed by using the 

entire database in Figure 1 have acceptable accuracy when four PCs were used, while the models 

described with 10 variables produced acceptable accuracy already with two PCs. In Figure 1, it is 

also possible to notice that the 10 variable models had faster improvement than the models based 

on the database. This faster improvement of the simpler models indicated that there were 

redundancy and mutual correlation among the variables in the database. In Figure 1, when 

comparing the regression methods, it is possible to notice that PLSR has a faster improvement 

than PCR, either by using the entire database or 10 variables. This result was expected, since in 

the PLSR method PCs are obtained by directly reflecting the relationship between the predictor 

and the response [23]. In the PCR method, the PCs explain only variation in the predictor 

variables, with no regard to the target variables. Since the PLSR method gave a faster model 

improvement with a better accuracy, it will be used further in the study. Model accuracies for the 

electricity and the fan electricity use are displayed in Figures 2 and 3, respectively. 
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Figure 2. Accuracy of the electricity use model for different amount of data obtained using PLSR 
 

 
Figure 3. Accuracy of the fan electricity use model for different amount of data obtained using 

PLSR 
 

 Results in Figures 2 and 3 show that acceptable model accuracies were achieved when 

using both the entire database and the 10 variables. The high accuracy of the total electricity use 

model in Figure 2 indicates that the 41 variables in Table 1 could be highly related to the 

electricity use. Among the 41 variables in Table 1, 24 variables were the AHU electrical input 

signals. Even though the database in Table 1 provided more data related to the building 

ventilation system, the achieved accuracy of the total electricity use model in Figure 2 was 

higher than the accuracy of the fan electricity use model in Figure 3. There were two possible 

reasons for this issue. The first one might be due to different type of energy measurements for 

the total electricity use and the electricity use for AHUs (in the text named fan electricity use as 

explained in Section 3). The total electricity use was measured by the energy provider, while the 

electricity for AHUs was measured by the energy service company. Further, even thought AHU 
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measurement was labeled to measure electricity for AHUs, it might happen that the measurement 

included additional users, like light in technical room, electricity for control devices, etc. 

However, the variables in Table 1 did not explain these additional users and auxiliary devices. 

In Figures 1, 2, and 3 it was shown that the models with 10 variables could achieve 

acceptable accuracy and even faster improvement due to decreased redundancy. These 10 

variables were chosen based on partial least squares (PLS) weights. The original variable 

relations to PLS weights are explained in the next section. 

 

4.2. Model scaling and defining driving variables 
To simplify the models based on the databases and to find the most influencing variables, 

values of PLS weights for the first four PCs were used. 97 % of the model variance was 

explained in the first four PCs for the heating energy use model. 99 % of the model variance was 

explained in the first four PCs for the electricity use model. Therefore, the first four PCs were 

assumed to be sufficient for this analysis. The procedure of defining the driving variables 

consists of two parts. First, matrices of the original variables defined in Table 1 were normalized. 

Afterwards, the first 10 variables that had highest contribution to the first four PCs were chosen 

as the model important or driving variables. The same procedure was repeated for each target 

variable. To prove that the first 10 variables chosen in this way were important variables, 

contribution percentage to the model was also calculated. 

PLS weights on the first four PCs for the heating energy use, the total electricity use, and 

the fan electricity use are displayed in Figures 4, 5 and 6, respectively. If the PLS weights of an 

observed variable have higher values, then that variable has high a contribution to PCs. 

Consequently, it can be concluded that the observed variable contributes more to the target 

variable. In Figure 4, 5, and 6 the driving variables for the energy use in November are shown. 
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Figure 4. PLS weights of 10 important variables for heating energy use model 

 

By using the procedure for model scaling and finding driving variables based on PLS 

weights, it was found that the most important variables of the heating energy use are outdoor 

temperature, control parameters and temperatures in the substation, and some of the ventilation 

parameters. These ventilation parameters were related to the AHUs that were mostly in use. In 

Figure 4, PLS weights of the different variables on the first and second PC had quite similar 

values, while on the third and fourth PLS weights were quite different. Therefore, the values of 

PLS weights on the third and fourth PC could explain the variable importance. Based on that, it 

is possible to conclude that the heating energy use was influenced by the operation parameters 

rather than by the outdoor temperature. 

 

 
Figure 5. PLS weights of 10 important variables for electricity use model 
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 Results in Figure 5 show variables that could explain the total electricity use in 

November. Among the 10 variables, occupancy level, indoor temperature, and parameters of the 

fourth AHU were variables that could explain the electricity use well. The fourth AHU was 

supplying the most typically occupied part of the building. Results in Figure 5 shows that the 

occupancy level could be included in the electricity use model. In this model, occupancy level 

and indoor temperature had significant contribution already on the second and third PC. Negative 

values of PLS weights of the occupancy level and indoor temperature should not imply directly 

negative influence on the target variable, because the original variable matrix was normalized. In 

the case of the normalized original variable matrix, values of PLS weights should indicate 

variable importance to the model. 

 

 
Figure 6. PLS weights of 10 important variables for fan electricity use model 

 

Results in Figure 6 show that, except for the input signal to the recovery wheel of the first 

AHU at the third PC, the most contributing variables to the AHU electricity use were the input 

signals to the supply and exhaust fans. This indicated that the electricity use of AHUs could be 

explained by the fan use. Consequently, it can be concluded that the electricity use for the AHUs 

could be decreased by influencing the fans. 

To prove importance of the 10 variables chosen as driving variables, the contribution 

percentage to the target variable was calculated. In Figure 7, the contribution percentage for the 

total electricity use in November is displayed. 
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Figure 7. Contribution percentage of the 10 most important variables to the electricity use 

 

If arbitrarily predictor variables would be chosen to explain target variable, their 

contribution percentage would not be uniform over time as in Figure 7, even though the model 

could achieve acceptable accuracy. Uniformity of the contribution percentage means that 

contribution percentage in Figure 7 had similar values for working days and different but similar 

values for weekends. During three days in November, 15th, 16th, and 26th, BEMS historical data 

were lost except for the seventh AHU. However, variance in the input signal of the exhaust fan 

in the seventh AHU was enough to explain the total electricity use in November. Results in 

Figure 7 show that BEMS data could be used for better understanding and explaining building 

energy use. 

 

4.3. Regression models 
Regression models and model coefficients of the target variables are presented in this 

section. Firstly, model comparison based on the database and 10 variables is presented. 

Afterwards, model coefficients for the regression models with 10 variables are presented. The 

model coefficients are given for March, July, and November. Comparisons of the heating energy 

models are displayed in Figures 8 and 9, while comparison of the electricity use model in 

November is displayed in Figure 10. 
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Figure 8. PLSR models of the heating energy use 

 

 
Figure 9. Comparison of the PLSR models based on database and 10 variables 

 

 Results in Figures 8 and 9 compared both models for the heating energy use, with the 

entire database and with 10 variables, with the measured data. Both models with the entire 

database and with 10 variables were developed by using 10 PCs. In Figures 8 and 9, it is possible 

to notice a small difference between the models and the measurements. As shown in Figure 1, 

the accuracy of the heating energy use model with the database was higher when modeled with 

10 PCs. Specifically, CV(RMSE) was 13.3 % for the model based on the database, and 
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CV(RMSE) was 16.1 % for the model based on 10 variables. The small difference between 

models and acceptable accuracy of the model with 10 variables indicated that use of the model 

with 10 variables might be acceptable in practice and for indentifying driving variables. 

 

 
Figure 10. PLSR models of the electricity use 

 

 In Figure 10, both models with the entire database and with 10 variables were developed 

by using 10 PCs. Results in Figure 10 confirmed results on the accuracy of the electricity use 

model from Figure 2, where it was shown that CV(RMSE) was 16 % for the model based on the 

database, and CV(RMSE) was 17.2 % for the model based on 10 variables. The acceptable 

model accuracy indicated that these driving variables from BEMS could be used to explain 

building energy use and as an additional energy estimation tool. 

To directly utilize BEMS data for building energy use, as explained in the previous text, 

it is necessary to have available model coefficients. The model coefficients were estimated 

directly from BEMS training data, with no data normalization. After several tests, it was found 

that the heating energy use model with 10 variables required different driving variables in 

different months. The electricity use and the fan electricity use model could be explained with 

the same variables in different months. The model coefficients for the heating energy use model 

are given in Table 2, while the model coefficients for the electricity use model and the fan 

electricity use model are displayed in Figures 11 and 12. 



16 
 

 

Table 2. PLS model coefficients for the heating energy use model with 10 variables 
Month 

March July November 
Variables Value Variables Value Variables Value 
 -15.1207  0.1956  -149.9317 
Tout -0.2682 Day 0.0186 Tout 0.0264 
320.SB40 2.1546 Hour 0.0165 320.SB40 1.8980 
320.04.SB40 0.1079 Tout -0.2106 320.RT40 3.6985 
320.04.RT40 5.3074 Tin_R4031 -0.0050 320.04.RT40 0.5511 
320.04.RT50 -5.1055 Tin_4010 0.0320 320.04.RT50 -1.8820 
320.03.SB40 3.6336 Tin_4099 0.0288 320.02.RT40 3.6833 
320.03.RT40 0.8551 OCC_R4031 -0.0050 36.03.LK 0.8813 
320.03.RT50 -0.4869 OCC_R4010 0.0320 36.04.LK -0.0032 
36.02.LK 0.5160 OCC_R4099 0.0288 36.06.LK 0.6239 
36.02.LV 0.5160 36.01.LX01 -0.0004 36.07.LV 0.5708 
CV(RSME) (%) 15.84 CV(RSME) (%) 154.94 CV(RSME) (%) 16.14 
 

In Table 2, the original variables with corresponding coefficients for the heating energy 

use model for three months are given. Also, the model accuracies are presented in Table 2. As 

mentioned before, models are declared to be calibrated if they produces CV(RMSE) within 

±30% when using hourly data [25]. In Table 2, the PLSR model for the heating energy use in 

July had five times worse accuracy than allowed. By using the entire database, better model 

accuracy was not possible to achieve. Therefore, it can be concluded that the available 76 

variables were not capable to describe the heating energy in July. Unfortunately, hot tap water 

data were not available in the BEMS history. Use of these data might improve the model in July. 

 Unlike the heating energy use model, both the models for electricity use and fan 

electricity use could be explained with the same variables in different months, as shown in 

Figures 11 and 12. Model accuracy for both models in each month was acceptable. Specifically, 

for the electricity use model CV(RSME) was 23.2% for March, 11.3% for July, and 17.2% for 

November. For the fan electricity use, CV(RSME) was 26% for March, 22.9% for July, and 

28.5% for November. 
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Figure 11. PLSR model coefficients for electricity use model with 10 variables 

 

 

Figure 12. PLSR model coefficients for fan electricity use model with 10 variables 
 

 One of the reasons for the different coefficients for the different months could be 

explained by a different building use during the year. The analyzed building was in use since 

September 2009, and analyzed data were from 2010. The number of occupants from March to 

November 2010 increased about 60%. Another reason could be operation adjustment, since the 

building was still new. However, these different regression coefficients for the different months 

indicated that the regression models should be updated on a monthly basis. 
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5. Verification and data recovery 
The developed approach for using BEMS data to explain the building energy use was 

verified on a data recovery problem. In the work of Hao et al. [22] with data recovery is meant 

replacing faulty data using PCA. In this study, the suggested approach implied recovering the 

energy use data that were lost due to data transmission problems. In the work of Sjorgen et al. 

[26], the problem of missing data on the monthly building total energy use is solved by using 

consumption profiles. Energy use data from BEMS or energy provider are used by energy 

service companies for energy efficiency improvements. Such data can be corrupted or partially 

lost after data transmission. However, energy service companies usually do not implement any 

robust method to correct data, yet use simple data interpolation or do not correct data. The 

developed approach in this study could be used for the purpose of data recovery. To validate the 

suggested approach, three methods for data recovering were compared: data recovering based on 

PCR, data recovering based on PLSR, and simple data recovering. Simple data recovering means 

that lost data are replaced by the column's mean, if the energy use data on an hourly basis are 

organized like: columns represent hours during the day (from 1 to 24) and rows are day of 

month. 

For the validation purpose, hourly data for November were separated into two groups: 

training and recovering data. The training data were used to develop model coefficients that were 

used afterwards on the recovering data. Regarding the target variable or the energy use data, one 

part of the data was used for training, while the other was treated as lost data due to transmission 

problem. Robustness of the suggested approach was proven by increasing the number of lost 

data. In Figures 13 and 14 are displayed estimation error of the heating energy use and the 

electricity use, respectively. Error in the energy use estimation was calculated by comparing real 

energy use with the recovered energy use for November, when the total heating energy use was 

90 980 kWh and the total electricity use was 78 725 kWh. 
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Figure 13. Error in the heating energy use estimation due to implementation of different data 
recovering methods 

 

Results in Figure 13 show that the PLSR method gave the best results in data recovering. 

For example, in the case when 120 hours of data (17 %) were lost, and if the data could not be 

recovered, the error in the total heating energy use estimation would be about 28 %. If the simple 

recovering would be implemented, the error in the heating energy estimation would be about 14 

%, while use of the PLSR and BEMS data would produce an error of only 2 %. In Figure 13, it is 

also possible to notice that the error in the heating energy estimation based on the PLSR was not 

increased when the amount of lost data was increased, which proved robustness of the suggested 

approach. 

 

Figure 14. Error in the electricity use estimation due to implementation of different data 
recovering methods 
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Results in Figure 14 show that all three methods were good in data recovering, while 

recovering based on the PCR method gave the best results. The reason that even simple data 

recovering based on mean values gave good results could be explained by the fact that the total 

electricity use had quite periodical values as shown in Figure 10. Results in Figures 13 and 14 

show the importance of energy use and information on energy use. 

 

6. Conclusions 
The study presents a smart approach to utilize BEMS data for energy use estimation and 

identification of driving variables of the energy use. The idea was to relate building information 

with the building energy use. PCR and PLSR were used to relate BEMS data to the building 

energy use. BEMS data were used as original predictor variables, while the heating energy use, 

the electricity use, and the fan electricity use were target variables. To simplify models and find 

the most influencing variables, the values of PLS weights for the first four PCs were used. The 

suggested approach was tested on the low energy office building located in Trondheim. 

The results showed that the heating energy use in the low energy office building was 

influenced by the operation parameters rather than by the outdoor temperature. The total 

electricity use could be explained by using occupancy level, indoor temperature, and some of the 

AHU electrical signals. The AHU electricity use could be explained by using the input electrical 

signals of supply and exhaust fans. However, results indicated that the regression models should 

be updated on a monthly basis. All the simplified regression models with 10 variables had 

acceptable accuracy. This indicated that driving variables obtained by using the suggested 

approach could be used to explain the building energy use. Future work should include variables 

that are easier to obtain or variables easier for occupant’s understanding. 

The suggested approach in this study could be used as the additional virtual energy 

measurement tool, to calibrate energy measurements, and to check the quality of energy 

measurements. Further, this approach could indicate possible reasons of changes in building 

energy use. Current results showed that the PLSR method was more accurate in recovering the 

heating energy use, while PCR was more accurate in recovering the electricity use. The results 

on the method validation showed relationships and importance of data for accurate energy use 
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estimation. For example, 17 % of lost data could imply 28 % error in the heating energy use, 

while use of PLSR and BEMS data would produce an error of only 2 %. 
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