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Abstract

The mooring loads on an aquaculture net cage in current and waves are investigated by dedicated
model tests and numerical simulations. The main purpose is to investigate which physical effects
are dominant for mooring loads, and in this respect, to investigate the validity of different rational
hydrodynamic load models. Also structural and numerical aspects are investigated. The model tests
are performed to provide benchmark data, while the numerical model is used to study the effect and
sensitivity of different load models and parameters.

Compared to a realistic aquaculture plant, the total system is simplified to reduce the complexity.
The system does, however, include all the four main components of an aquaculture plant: net cage,
floater, sinker weights and moorings. The net cage is bottomless, flexible and circular. It is attached
to a circular, elastic floater at the top and has 16 sinker weights at the bottom. The system is nearly
linearly moored with four crow feet mooring lines.

The loads are measured in the four mooring lines. A systematic variation of current only, wave
only as well as combined current and wave conditions is carried out. The numerical simulation
results are first benchmarked towards the experimental data. The mean loads in general dominate
over the dynamic part of the loads in combined current and waves, and they significantly increase
in long and steep waves, relative to current only. Next, a sensitivity study is carried out. A rigid
floater significantly alters the loads in the mooring lines compared to a realistic, elastic floater. The
theoretical model for the wave matters. The mooring loads are rather insensitive to a majority of the
parameters and models, in particular: frequency dependent added mass of the floater and nonlinear
restoring loads. It seems not to be necessary to represent the net cage with a very fine numerical
mesh.

1 Introduction

Numerical and experimental work for assessing both steady and unsteady behaviour of aquaculture net
cages have been presented during the past decades. It is a highly complex, hydroelastic problem with
a large number of moving components where all components behave under mutual influence. There-
fore, the total system with net cage, floater, mooring lines and bottom weights needs to be considered
simultaneously. To facilitate our study, each component is simplified to some extent: the net cage is
bottomless (in reality it has a bottom net to close the cage), the floater consists of only one ring (not
two attached rings, as is mostly used in reality), the sinker weights consist of 16 single point weights
(not bottom weight ring, which is mostly used today), and the moorings are in air and nearly horizon-
tal with linear springs (not submerged and with highly nonlinear properties as in reality). Despite the
simplifications, the system is still complex, and a particular challenge is the large differences in length
scales; the structure is a combination of large- and small-volume bodies. It is not possible to model the
associated hydrodynamic problem directly by first principles (i.e. a Navier-Stokes solver). Therefore,
rational methods are needed.

Our impression of the research on fish cages is that the hydrodynamic part of the problem is of-
ten over-simplified, for instance not considering the shadow effect of a net or properly modelling the
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floater. On the other hand, there are many studies using state-of-the art in structural modelling. It has
no meaning to consider a sophisticated structural analysis and at the same time have an over-simplified
hydrodynamic model. A number of questions are in this respect open as to what factors are important
when modelling fish farms in waves and current. What effects are most significant for a considered
structural response? The main purpose of the present work is to investigate what effects are, and which
are not, dominant with respect to mooring loads. The validity of different rational hydrodynamic load
models is given the main focus. This requires a numerical model which has to be validated. In this work
we have further developed the code presented by Kristiansen and Faltinsen (2012a) to also account for
regular wave loads. The net cage is here modelled by a truss model. We have compared this with the
structural model used by Lader and Fredheim (2006) and Moe et al. (2010) for a net cage in current. The
latter study applied the commercial code ABAQUS. They also applied a 3D truss model, but introduced
sub-elements such that the trusses were allowed to buckle, and their method was therefore more sophis-
ticated. When we used the same hydrodynamic model as them, i.e. Morison’s equation, we got very
similar total horizontal and lift force. Furthermore, the net deformation were similar. The agreement
with experiments was unsatisfactory for large current velocity. When using our hydrodynamic screen
model that accounts for hydrodynamic shadow and Reynolds number effects, the agreement with exper-
iments become satisfactory (Kristiansen and Faltinsen (2012a)). The latter indicates that our structural
model is adequate for our studied problem. In order to study net rupture or snap loads one would maybe
need an improved structural model. However, that is not our objective in this paper. The research part
of the paper is associated with the error analysis. The question is: what effects are most significant for
a considered structural response. In our case, the latter is the mooring loads. It could have been contact
between a net and chains, or deformation of a weight ring. When it comes to the hydrodynamic problem
of the floater, we account for the 3D hydroelastic effects. State-of-the-art uses 2D hydrodynamic strip
theory, which does not reflect the physics from a hydrodynamic point of view. The latter effect has been
investigated in separate studies (Li et al. (2014)). However, in the present study, one question is how
does an appropriate hydrodynamic modelling of the floater affect the mooring loads?

Similar fish cage set-ups have been studied experimentally and numerically by Zhao et al. (2007)
and Huang et al. (2008). They both demonstrate fair agreement between numerical calculations and
experiments for the total mooring line forces. Dong et al. (2010) also considered irregular waves. Xu
et al. (2012) studied numerically multiple net cages in waves. Recently, Zhao et al. (2013) developed a
numerical strategy to study the flow inside and around flexible fish cages by combining a Navier-Stokes
solver with a pressure-drop condition. Two-dimensional studies have also been carried out. A numerical
parameter study of a two-dimensional flexible net sheet exposed to waves and current was carried out by
Lader and Fredheim (2006). A two-dimensional experimental study was carried out by Bardestani and
Faltinsen (2013) with focus on snap loads due to independent motions of the floater and bottom weight
when exposed to waves. More references to relevant works are provided in all the mentioned papers.

Common to previous works is that a stiff floater is used (rigid body), and further, there is a rather lim-
itied number of wave/current conditions. In the present paper we present a systematic set of wave/current
conditions by varying the wave period, wave steepness and current velocity. The floater model has a re-
alistic bending stiffness (it is highly elastic). Dedicated experimental and numerical work is presented.
In particular, we apply the three-dimensional linear potential theory wave load model presented by Li
and Faltinsen (2012) for the elastic floater, and the screen type of load model for the viscous force on the
net presented by Kristiansen and Faltinsen (2012a). This screen model has not previously been applied
to net cages in waves, only steady current cases as documented with good agreement to experimental
drag and lift of flexible net cages therein.

Error analysis is rarely addressed in the published marine literature, but is an important aspect of
scientific investigations. The work provides in our case results and error analyses that are directly useful
for engineering analysis. Furthermore, the paper presents new experimental results.

The present paper is organized as follows. First, a description of the dedicated experiments are
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Figure 1: Experimental set-up. Upper: bird’s eye view. Lower: side view. Tank dimensions are L×B× h =
40m×6.45m×1.5m. A wave maker is located at the far left end of the tank and a parabolic beach at the far right
end. The Cartesian coordinate system is located at the origin of the floater in calm conditions. The elastic floater is
moored by four moorings; front, aft and two side moorings (no springs in the two latter). The × markers indicate
wave gauges of capacitance type.

described in §2. Next, the numerical model of the net cage, floater, and how the equations of motion
for these are coupled is explained in §3. Last, numerical results are compared with the experimentally
obtained data in §4, along with a numerical sensitivity study where the effect of different parameters are
discussed.

2 Experiments

In order to study the system physically and to obtain validation data, we performed dedicated experi-
ments in the Marine Cybernetics laboratory at NTNU during Fall 2011. The tank length is 26m, the tank
width 6.45m and the water depth varies between 1.4 and 1.5m along the tank. The tank is equipped with
a hinged flap type wave maker at one end, and a parabolic beach at the other end. It has a carriage for
towing models. Current was achieved by towing the model by the carriage towards the waves.
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Figure 2: Left: photography from a test with waves and current showing the elastic floater, the net, the mooring
lines and the two accelerometers (front and aft). Middle: photography of the floater (tube for electric cables) and
the net with one of the 32 strips. Middle: Bottom weights (lead sinkers) and the net.

2.1 Model test set-up

We constructed a model test set-up that involved all the major components of a fish farm, while at the
same time keeping the complexity as low as possible. The model test set-up was not intended to represent
a specific full scale site. However, assuming a model test scale of 1:25, full scale values are given in
Table 1 for reference. Froude scaling with geometric similarity is assumed. This is a requirement for
all model tests involving gravity driven water waves. This means that the Reynold’s number cannot be
properly scaled, but the effects are accounted for in the numerical model, as described later. Note that
the presence of sinker weights implies that Froude number is a flow parameter for the pure current case
as well.

The test set-up in the experiments consisted of a single net cage attached to a single circular, elastic
floater, a bottomless net, 16 sinker weights and four near horizontal moorings with crow feet. See
Figure 1. The front and aft mooring were connected to linear springs, pre-tensioned such as to avoid
slack mooring lines during the tests. A list of relevant parameters and dimensions of the model are given
in Table 1. Photos and snapshots from video illustrating the set-up are presented in Figures 2, 3 and 4.
More snapshots for a more complete set of towing velocities in the case of no waves are presented in
(Kristiansen 2013).

The instrumentation consisted of force measurement devices in the four moorings, seven wave
gauges, two vertical accelerometers and two cameras. The position of the instrumentation is illustrated
in Figure 1. Example snapshots from the video are provided in Figure 3. The cameras had a fixed 92
degree wide angle.

2.2 The models

The floater model met the three criteria: (1) a representative bending stiffness EI, (2) a representative
cross-sectional diameter 2c and (3) a representative specific weight m f (kg/m). An electric tube of
extruded type was used. See the middle photo in Figure 2. The uneven surface represents an uncertainty
in the experiments with respect to the environmental loads. The cross-sectional diameter varies between
26mm and 32mm, and the average is approximately 30mm.

Two flexible, bottomless, circular net cages were tested. These were both produced at the SINTEF
Fisheries and Aquaculture flume tank in Hirtshals, Denmark. They consisted of nylon threads, con-
structed in so-called Raschel pattern. The nominal solidity ratios were Sn = 0.26 and 0.32. After testing,
we estimated Sn by using an algorithm analysing photos of the nets to be 0.265 and 0.32.
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Figure 3: Upper row: snapshots from top camera and underwater camera from tests with the Sn = 0.26 solidity
ratio net cage attached to the elastic floater. Two left snapshots: U∞ = 0.1 m/s. Two right snapshots: U∞ = 0.2
m/s. Lower row: from tests with the Sn = 0.32 solidity ratio net cage attached to a stiff floater. From left to right:
U∞ = 0.04, 0.1, 0.2 and 0.3 m/s.

Figure 4: Snapshots from two tests with combined wave and current with U∞ = 0.2 m/s, H/λ = 1/15. There is
approximately T/5s between each of the snapshots. Upper row: T = 1.6s. Lower row: T = 1.0s. The mirror image
that appears of the floater clearly indicates that the floater is partly submerged as the wave passes, in particular in
the lower row (5sec full scale wave period).

2.3 Test conditions

The test matrix is presented in Table 2. Waves in the period range T = 0.5− 1.6s with a step of 0.05s
were tested with three wave height-to-wave length ratios; H/λ = 1/60, 1/30 and 1/15. H is the wave
(trough-to-crest) height and λ the wave length at the water depth of the tank. Wave calibration tests
were carried out before the model was tested. An array of seven wave-gauges (see Figure 1) was used
to measure the wave elevation in the vicinity of the model position. The wave heights H of the first
harmonic component of the measured wave signals were 97 - 99% of the desired, when considering an
average of the seven signals.

The main tests were carried out with net cage with solidity ratio of Sn = 0.26 connected to the elastic
floater. This model was tested both in waves only, combined waves and current, as well as current only.
The model was moored with four moorings with a crow foot arrangement, as illustrated in Figure 1. The
net cage with solidity ratio of Sn = 0.32 was connected to a stiff tube. This model was tested in current
only.
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Table 1: Dimensions in the model tests. The weight of the net cage in water is given in brackets. The
bottom weights were made by lead.

Description Parameter Model scale Full scale
Floater diameter D = 2R 1.5m 37.5m

Net cage diameter D = 2R 1.5m 37.5m
Net depth L 1.3m 32.5m

Cross-sectional diameter of floater 2c 30mm 0.75m
Mass per meter of the floater tube m f 0.127kg/m 79.4kg/m

Floater bending stiffness EI 0.136Nm2 1.33×106 Nm2

Net solidity ratios Sn 0.26 and 0.32 0.26 and 0.32
Diameter of net twines dw ' 0.6−0.8mm -

Length of net twines lw 6mm -
Mass of bottom weights in air Mbw 16×75g 16×1172kg
Spring stiffness (front and aft) ks 44N/m 27.5kN/m

Mass of the net cage Mnet 357g (43g) 5 578kg (672kg)

Table 2: Test matrix showing towing velocity, wave steepness and wave period ranges for each of the
two solidity ratio nets.

Solidity ratio Sn Current U∞ [m/s] Wave steepness H/λ

1/60 1/30 1/15
0.26 0.0 0.5 - 1.6s 0.5 - 1.6s 0.6 - 1.6s

0.1 - 0.5 - 1.6s 0.6 - 1.6s
0.2 - 0.5 - 1.6s 0.6 - 1.6s

0.04 - 0.30 - - -
0.32 0.04 - 0.30 - - -

A selection of the tests with combined waves and current as well as current only were repeated at the
end of the testing campaign. The repeatability was in general satisfactory; the variations in both mean
forces and total forces were less than 3 - 4%. For the force amplitudes, the variations were within 10%.

The carriage velocity was checked with an optical system. It was found to be highly steady, without
jerks, and the velocity was calculated to be within 0.2% of the desired value.

2.4 Reduced data

Examples of time-series of the mooring line tension for current only tests are provided in Figure 5, and
for combined waves and current in Figure 6. Reduced data by means of mean forces, force amplitudes
and total forces in the mooring lines were extracted. These are denoted F̄ , Fa and Ftot, respectively. A
near steady part of the time-series was chosen after the initial transient and until the carriage stopped.
The measure of the force amplitude was taken as Fa =

√
2std(F(t)), where std means standard deviation,

and used throughout this paper. As illustrated in the figures, the loads are different during return of the
carriage. This is due to residual current; current generated when towing the model against the waves.
This is a well-known issue when towing models. A waiting time of 10min between each run was found
necessary and adequate.
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Figure 5: Time-series of the mooring line tension from the 19 towing tests of the model with the net cage with
solitidy ratio Sn = 0.32 attached to the stiff (black) floater in current only. The lowest towing velocity was 0.04m/s,
and the highest 0.3m/s. Also the return is included for illustration purposes; the forces are higher (in absolute
value) upon return. This is due to the residual current caused by the net cage. The mean forces were extracted
approximately from just after the initial over-shoot and until the carriage was stopped.

2.5 Observations and comments

2.5.1 Net shape in still water

The net cage shape in still water was not completely vertical; the diameter at the lower end was approxi-
mately 10% smaller than at the top. This is the result of the sag in the net cage due to the sinker weights,
as seen in other studies also like e.g. Lader and Enerhaug (2005) and Lader et al. (2009). The net cage
was connected at 32 evenly distributed connection points along the floater. The angle of the net cage at
these connection points was observed to be as large as 30-35 degrees relative to the vertical axis at the
connection points. We believe that this had an impact on how the net cage transfers horizontal forces to
the floater. The effect of this is investigated in the numerical sensitivity study in §4.3.

2.5.2 Pulley friction in side moorings

Significant friction in the pulleys of the side moorings prevented reliable measurements of the mean
forces in these mooring lines. This was discovered after the model tests were done. The mean forces
were nearly zero, which is not physical. We therefore do not consider the forces in the side moorings in
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Figure 6: Examples of time-series of tension in the front and aft moorings during an experimental run. T = 1.1 s,
H/λ = 1/15 and U∞ = 0.1 and 0.2 m/s. The pre-tension (14 N) is subtracted, hence the negative tension.

the present paper. The friction in the front and aft moorings were, however, small.

2.5.3 Over-topping of the floater

Waves were observed by visual inspection to over-top the floater in several tests. Some of the massive
over-topping observed for the steepest waves was most probably in part caused by the second order
(Stokes) component of the waves. The observations are summarized in Table 3. Some means that a
rather thin layer of water runs over the front or aft parts of the floater. Spilling means that there is water
clearly over-topping front and aft. Significant means that most of the floater is over-topped. Massive
means that the a major part of the floater was at all times submerged, that is, all parts of the floater
were at some time-interval not submerged, but fully submerged during most of each wave period. It
is expected that appreciable drag was excerted on the front and aft parts of the floater in the cases of
significant and massive over-topping.

2.5.4 Seiching

We observed a slight, underlying oscillation with about 21s period in the mooring line forces in some
of the tests, which is believed to be due to seiching. Seiching refers to the highest resonance period in a
tank. The seiching period of the Marine Cybernetics lab is Tseich = 2Ltank/

√
gh' 20.9 s. Seiching will

always be triggered to some extent in a closed tank. At the mid-part of the tank, it will be experienced
as a slowly varying current. We did not carefully monitor the seiching amplitude through the whole
test series, but it was never observed visually to be larger than 0.5cm. The seiching “current” amplitude
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Table 3: Observations of over-topping. See Table 4 for the relation between λ/D and wave periods T .

H/λ U∞ [m/s] λ/D < 1 1 < λ/D < 2 λ/D > 2
1/60 0 None None None

0 None Some Spilling
1/30 0.1 None Some Spilling

0.2 Some Some Spilling
0 Some Significant Significant

1/15 0.1 Some Significant Massive
0.2 Some Significant Massive
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0

u
w

(z) [m/s]

Figure 7: Water particle velocity profiles uw(z) under a wave as given by linear potential flow theory, for wave
periods T = 0.5, 0.6, .. ,1.6 s at wave steepness H/λ = 1/15. For wave steepnesses of 1/30 and 1/60, uw(z) is
one half and one quarter of that shown, respectively. For reference, in the tests with combined waves and current,
U∞ = 0.1 and 0.2 m/s. The net cage is here represented by a 48×12 grid, and exponentially varying ∆z to better
resolve the wave kinematics. The still water line is located at z = 0, and the water depth is h = 1.5 m.

is then about 0.007 m/s, which is 7% and 3.5% of the two towing velocities of 0.1m/s and 0.2m/s,
respectively.

3 Theory and numerical model

In the numerical model, the motion of the net cage, bottom weights, floater and moorings are solved for
simultaneously. In brief, first, the hydrodynamic forces acting on the net and floater are calculated. Next,
a linear system of equations for the tensions in all the net cage trusses as well as the mooring trusses is
solved for. Once the tensions are obtained, the positions of each net cage, mooring and sinker weight
node, as well as floater modes are time-stepped according to Newton’s second law, using a lumped-mass
approach for the net cage nodes.

The next two sections describe in some detail the theoretical model for the net cage and floater, and
how they are coupled.

3.1 The net cage

In this section we describe the structural model for the net cage and hydrodynamic force model for the
viscous loads on the net cage.
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3.1.1 Truss model

The structural model of the net cage in the present paper is the same as that used by Kristiansen and
Faltinsen (2012a), and originally presented by Marichal (2003). The main particular of this truss model
is that a linear system of equations for the truss tensions is solved each time step. In order to be able
to explain how the floater motion is coupled with the net, a brief recapitulation of the truss model is
provided. The net is assumed inelastic in this explanation, but (linear) elasticity is straight-forward to
include (see Marichal (2003)).

A kinematic constraint on the truss length is imposed; the trusses are required to keep their lengths,
i.e.

ln+1
k = ln

k , (1)

where l means truss length, superscript n denotes time-step number, subscript k denotes truss number
and subscripts i and j refers to nodes. The ends of the truss are given by the nodes xi and x j, such that
ln
k = |xn

j − xn
i |. A first order time-marching scheme is used to evolve the nodes according to Newton’s

second law,

xn+1
j = xn

j +∆t un+1
j , un+1

j = un
j +∆t an

j , (2)

where

M j an
j = fn

j . (3)

∆t means time step size, and u j and a j mean three-dimensional velocity and acceleration vectors of
the floater, respectively. M j is the mass and added mass of the net surrounding the node (lumped mass
model). fn

j is the force acting on the node, consisting of the tensions in the trusses connected in the node,
and the hydrodynamic forces acting on the net surrounding the node. After substituting (2) and (3) into
(1) we obtain an equation which is nonlinear in an

j , and hence in the tension T . The nonlinear terms are
of order (∆t)3. Upon neglecting these higher order terms, we obtain

sk · (an
j −an

i ) =−
1

2lk
|un

j −un
i |2−

1
∆t

sk · (un
j −un

i ), (4)

where sk = (xn
j−xn

i )/lk is the tangential unit vector of truss number k. On the left hand side we substitute
the accelerations with forces according to (3). The known, pre-calculated hydrodynamic forces are
moved to the right hand side, while the unknown tensions are kept on the left hand side. Each truss
provides an equation. With N trusses, we obtain a sparse N×N system of equations, Ax = b, for the
unknown tensions. After the solution has been obtained, the node positions are evolved according to (2)
- (3).

The moorings are treated in the same manner as the net cage; they are modelled as trusses. The
linear springs in the experiments are modelled as linearly elastic trusses.

The nodes of the net cage and mooring trusses that are "located at the floater", i.e. the top-most nodes
of the net cage, are treated differently than explained above. The accelerations an

j in (4) are there given
by the equation of motion for the floater, presented below. Once these accelerations are represented by
the floater motion, all parts of the system is solved for simultaneously. This gives a strong coupling
between the floater, net cage and moorings.

3.1.2 Hydrodynamic screen force model

The hydrodynamic, viscous force acting on the net cage is modelled by the screen type force model
presented by Kristiansen and Faltinsen (2012a). The force model was there validated against model
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tests of circular, flexible net cages in steady current. The screen type force model provided significant
improvements in predicting the drag and lift forces on the net cages relative to those predicted by a
Morison type of force model. We next recapitulate the basic parts of the theory, in order to explain how
the wave is taken into account in addition to the current.

The net is divided into net panels (flat screens), each with an area A, representing a part of the phys-
ical net. Each net panel is assumed to experience viscous normal and tangential forces due a pressure
drop proportional to the local, relative flow velocity squared. Alternatively, the normal and tangential
forces may be decomposed into drag and lift forces. Thus, the load model predicts both global drag and
lift forces on the whole net (not only drag). The instantaneous, relative flow velocity vector Urel is taken
as

Urel = γU∞ +uw−u j, (5)

where U∞ is the ambient current velocity, uw the water particle velocity at the position of the node, and
u j is the velocity of the node. γ = 1 in the front half of the net, while γ = r in the rear half of the net,
where r is a flow reduction coefficient that was proposed by Løland (1991). The reduction factor r is
used to approximately account for the velocity reduction in the turbulent wake behind a net or screen in
steady flow. Note that we assume the wave to be undisturbed on the rear part of the net cage; it is only
the steady part of the flow, i.e. the current, that is reduced by r.

The normal and tangential viscous forces are further assumed to be functions of Sn, Re and θ, where:

• Sn is the solidity ratio of the net (defined as the ratio of the area projected by the screen on a plane
parallel to the screen, to the total area contained within the frame of the screen)

• Re is the Reynold’s number based on the physical twine diameter dw of the net, and an estimated
maximum velocity at the panel, excluding its motion; Re = (γU∞ + uwa)/(1− Sn)ν, where ν is
the dynamic viscosity of water and uwa is the velocity amplitude of an undisturbed water particle
at the initial position of the net node. The term 1−Sn accounts for the flow speed-up in between
the twines. The Reynold’s number is calculated prior to the time marching, and uwa is calculated
at the node position when the net cage is at rest.

• θ is the angle between the panel normal and the instantaneous, relative flow velocity Urel. θ = 0
means that the flow is perpendicular to the net panel.

The screen type force model was developed for steady flow. However, due to the high KC numbers
with respect to the twine diameter, the flow in waves may be assumed quasi-steady, and the force model
is thus considered to be equally applicable to waves.

3.1.3 Incident waves

The wave velocity uw in (5) is computed at the instantaneous position of each net node. Two approaches
may be chosen in the present code; one approach is classical linear potential flow theory, the other
approach is Wheeler stretching. In the former approach, the vertical position at which the wave velocity
is evaluated is taken as max(z,0), such that the wave velocity is constant above z = 0. In the Wheeler
stretching approach, the z−coordinate is stretched relative to the free surface elevation ζ, according to
z→ ((z+ h)/(ζ+ h)− 1)h, where h is the water depth. Simulation results using both approaches are
shown in the sensitivity analysis in §4.3.

Note that there is considerable evidence in the litterature that Wheeler stretching does not real-
istically represent the kinematics under a wave. This is seen from comparisons with experimentally
obtained velocity fields; see for instance (Stansberg, Gudmestad, and Haver 2008) and (Choi 2005).
According to their comparisons, linear wave theory predicts the kinematics rather well under both wave
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crests and troughs, while Wheeler stretching under-predicts under the wave crest and over-predicts under
the wave trough. It is illustrative, however, to include Wheeler stretching in the sensitive study, since it
is rather widely used.

3.2 The elastic floater

The floater is assumed to be circular, i.e. a torus, and floating half-submerged when it is at rest. The
Earth-fixed coordinate system is shown in Figures 1 and 8. The vertical z−axis coincides with the torus
axis at rest, is positive upwards, and zero in the mean water line. The current and waves are assumed
to be along the x−axis, and there is thus no sway motion. The motion of the floater, (x f ,y f ,z f ), is
assumed to be a combination of surge as well as perturbations around its originally circular shape in
the horizontal plane, as well as purturbations in the vertical direction. We represent both the lateral and
vertical perturbations by modal theory (Fourier series), and express them as

x f (β, t) = b1(t)+ v(β, t)cosβ, y f (β, t) = v(β, t)sinβ, z f (β, t) =
∞

∑
n=0

an(t)cosnβ, (6)

where

v(β, t) =
∞

∑
n=2

bn(t)cosnβ (7)

is the lateral (radial) motion. a0 represents heave, a1 pitch, a2 the first vertical elastic mode etc. b1
represents surge, b2 the first horizontal mode (ovalization) etc. β is explained in Figure 8.

The radial and vertical structural response is assumed to obey the following beam equations,

m
∂2v
∂t2 +EI

(
∂4v
∂s4 +

1
R2

∂2v
∂s2

)
− ∂

∂s

(
Tax

∂v
∂s

)
= fr(s, t),

m
∂2z f

∂t2 +EI
∂4z f

∂s4 −
∂

∂s

(
Tax

∂z f

∂s

)
= fz(s, t),

(8)

where m [kg/m] is the floater mass per unit length, EI the structural bending stiffness, ∂/∂s = R−1∂/∂β,
and Tax the axial stiffness. fr and fz [N/m] are the radial and vertical forces per unit length of the floater,
respectively, and include wave excitation force, added mass and damping forces, restoring forces, forces
from the net cage and moorings, and drag on the floater;

fr = f FK
r + f diffr.

r + f added mass, damping
r + f drag

r + f net cage
r + f moorings

r ,

fz = f FK
z + f diffr.

z + f added mass, damping
z + f restoring

z + f net cage
z + f moorings

z .
(9)

The Froude-Kriloff forces and diffraction forces constitutes the wave excitation forces on the floater.
The forces from the net cage and moorings are both transferred to the floater via trusses.

The equation of motion for surge can not be represented by a beam equation, and is therefore treated
separately as a rigid body mode,

(M+A11) b̈1 +B11 ḃ1 = F1(t), (10)

where M = 2πRm is the total structural mass of the floater, A11 and B11 are the frequency dependent
added mass and damping coefficients in surge, and F1 is the surge excitation force, consisting of wave
excitation, drag on the floater, net cage and mooring forces integrated along the floater.

The expressions (6) - (7) are inserted into (8), and these equations are multiplied by cosnβ and
integrated from 0 to 2π in order to decouple the modes. The equations of motion for each mode weight
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an(t) and bn(t) are then obtained. This is carried out in detail by Li and Faltinsen (2012), where the
(linear) generalized wave excitation forces are given analytically. A summary is presented next. The
incident deep-water wave potential is given as

ϕ0 =
gζa

ω
ei(kx−ωet)ekz, (11)

where i is the imaginary unit, ζa is the amplitude of the incoming, regular wave, g the constant of gravity,
ω the circular frequency, ωe = ω+ kU∞ the meeting circular frequency as the model is towed against
the waves and k = ω2/g the wave number. The wave is assumed to propagate along the positive x−axis.
We assume long wave theory, that is, the waves are much longer than the cross-sectional diameter of the
floater, i.e. λ/c� 1, where λ = 2π/k is the wave length. The equations of motion for the vertical modes
are then given by(

m+a(n)33

)
än +b(n)33 ȧn +

(
2ρgc+

EI
R4 n4

)
an =

1
αn

[
(1−0.25πkc)2ρgc−

(
ω

2 a(n)33 + iωb(n)33

)]
ζa Jn(kR)ℜ(in+1e−iωt)+ f gen

z,n ,

(12)

where Jn are Bessel functions of the first kind, a(n)33 and b(n)33 are added mass and damping coefficients,
respectively, and the generalized forces are given by

f gen
z,n =

1
αnπ

∫ 2π

0
fz(s, t)cosnθ dθ. (13)

Similarly for the radial motion. α0 = 2, and αn = 1 for n≥ 1. For lateral modes, n≥ 2. In equation (12)
the second last term on the left hand side, 2ρgcan, is the linear restoring force. This may be replaced
by a nonlinear restoring force, as discussed below. The first and second terms on the right hand side
represent the linear Froude-Kriloff and restoring forces, respectively. It is possible to model nonlinear
hydrostatic and Froude-Kriloff forces, as also described below. The last term, the generalized force,
consists of the axial stiffness, net cage and mooring forces. The radial generalized force further includes
the drag force.

3.2.1 Nonlinear Froude-Kriloff and restoring forces

The Froude-Kriloff force is that acting from the incoming wave as though the wave was undisturbed and
the body does not move. We assume long wave-length theory as above, and then have that the nonlinear
dynamic Froude-Kriloff and hydrostatic forces are given by

f nonlin. FK
r = ρAsub r̈w, (14)

f nonlin. FK
z = ρAsub z̈w +ρg

(
Asub−0.5πc2) , (15)

where r̈w and z̈w are the radial and vertical undisturbed wave particle accelerations at the centre axis
of the floater, respectively. Asub is the instantaneously submerged area, which is found based on the
difference between the undisturbed incident wave and the local vertical position of the floater.

There are appreciable local diffraction effects which are highly nonlinear in nature due to the locally
small-volume character of the structure, see for instance (Kristiansen and Faltinsen 2009). One may dis-
cuss whether nonlinear Froude-Kriloff and hydrostatic forces actually represent a more accurate model
of the physics, since these scattering effects as well as the flow caused by the torus (floater) velocity are
not accounted for.

Note that the diffraction force (the second term on the right hand side of (12)) is based on long wave-
length theory, and is expressed by the added mass and damping coefficients. Since these coefficients are
solutions to the steady-state, linear problem, a nonlinear diffraction force is not obtained.
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Figure 8: Left: birds-eye view of the floater. Right: cross-section cut of the floater which illustrates over-topping
with resulting cross-flow drag in the direction of n f . The cross-flow velocity is given by uc = Urel ·n f .

3.2.2 Drag on the floater

We apply the drag term in Morison’s equation to model the drag force on the floater in the horizontal
plane, given by

f drag
r (β, t) = 0.5ρC f

D dr ur|ur|, (16)

where dr(β, t) = ζ− z f + c is the relative submergence, and ur(β, t) is the local, undisturbed, relative
cross-flow velocity on the floater; ur = Urel ·n f (see Figure 8). Here, n f = (cosβ,sinβ,0) is the two-
dimensional unit normal vector of the floater when undisturbed (circular shape).

A drag coefficient C f
D = 1.0 is taken as our nominal guess. We believe that, in reality, the viscous drag

on the floater may not be modelled to a high degree of precision using a Morison type of formulation
for this problem, as we do here. In case of no over-topping, the free-surface acts as a splitter plate,
whereby C f

D should be lower. For a circular cylinder with splitter plate a representative value for the
drag coefficient is 0.6. For high sea-states the floater goes in-and-out of water, and the drag coefficient
could be be higher than 1.0. Further, C f

D depends on the Keulegan-Carpenter number KC as well as the
ratio between the wave particle amplitude and current velocity uwa/U∞ in the case of combined waves
and current. The KC number is defined as

KC =
uwaT

2c
, (17)

where uwa is the amplitude of the undisturbed water particle velocity at z = 0 as given by linear potential
flow theory. Relevant values of these two, and other, parameters for the present study are listed in Table
4.

It is not practical to account for these variations of C f
D; an attempt would be questionable. We

choose to investigate the sensitivity of the floater behaviour with respect to a C f
D by performing several

simulations with different values of C f
D in order to study the effect of the drag on the mooring loads.

3.2.3 Axial stiffness

The axial tension Tax is treated in a simplified manner. This allows for simplification of calculations,
rather than solving the structural problem by a finite element model. The simplified calculation proce-
dure is explained in detail in the Appendix. In summary, Tax is assumed to be piecewise constant along
the floater, divided in eight sections defined by the crow-foot mooring arrangement. In calm conditions,
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Table 4: Relevant dimensional and non-dimensional parameters describing the test conditions. H is
given only for the 1/15 wave steepness. In the coloumns that presents uwa/U∞, U∞ = 0.1 m/s.

T [s] H [m] λ/D uwa/U∞ KC
1 : 25 1 : 1 1 : 25 1 : 1 1/60 1/30 1/15 1/60 1/30 1/15
0.5 2.5 0.026 0.65 0.26 0.41 0.82 1.63 1.4 2.7 5.4
0.6 3.0 0.037 0.94 0.37 0.49 0.98 1.96 2.0 3.9 7.8
0.7 3.5 0.051 1.27 0.51 0.57 1.14 2.29 2.7 5.3 10.7
0.8 4.0 0.067 1.66 0.67 0.65 1.31 2.61 3.5 7.0 13.9
0.9 4.5 0.084 2.11 0.84 0.74 1.47 2.94 4.4 8.8 17.6
1.0 5.0 0.104 2.60 1.04 0.82 1.63 3.27 5.4 10.9 21.8
1.1 5.5 0.126 3.15 1.26 0.90 1.80 3.59 6.6 13.2 26.4
1.2 6.0 0.150 3.74 1.50 0.98 1.96 3.92 7.8 15.7 31.4
1.3 6.5 0.176 4.39 1.76 1.06 2.12 4.25 9.2 18.4 36.8
1.4 7.0 0.204 5.10 2.04 1.14 2.29 4.57 10.7 21.3 42.7
1.5 7.5 0.234 5.85 2.34 1.23 2.45 4.90 12.3 24.5 49.0
1.6 8.0 0.266 6.66 2.66 1.31 2.61 5.23 13.9 27.9 55.8

the set-up is symmetric, and the values are found in static conditions from the pre-tensions in the moor-
ings. In case of current, the steady current forces from the net is included in the calculation by adding to
the pre-tension in the moorings as obtained from simulations. The time-varying line tensions in case of
waves are not accounted for in the simplified model.

The axial terms in the beam equations (8) do not decouple, as the other terms do due to orthogonality
of the cosines. The axial terms do not decouple because they are integrated piecewise. For the vertical
motion, the term representing the axial stiffness in (13) is

1
αnπ

∫ 2π

0

∂

∂s

(
Tax

∂v
∂s

)
cosnθ dθ =

∞

∑
m=0

dmn am, (18)

where

dmn =

(
m2

αnπR2

8

∑
i=1

Tax,i

∫
θi

θi−1

cosmθcosnθ dθ

)
, (19)

and αn was explained below (13). Similar expressions are obtained for the radial motion.

3.2.4 Equation of motion for the floater

Substituting (12) into the last equation in (6), the generalized vertical equation of motion of the floater
becomes

z̈ f (β, t) =−
∞

∑
n=0

[
b(n)33 ȧn +

(
2ρgc+

EI
R4 n4

)
an +

∞

∑
m=0

dmnam−
1

αnπ
f gen
z,n

]
cosnβ

m+a(n)33

−
∞

∑
n=0

[
1

αn

[
(1−0.25πkc)2ρgc+

(
ω

2 a(n)33 + iωb(n)33

)]
ζa Jn(kR)ℜ(in+1e−iωt)

]
cosnβ

m+a(n)33

,

(20)

and similarly for the horizontal directions. The acceleration z̈ f in expression (20) is next substituted into
a j in the kinematic condition (4). The generalized forces, f gen

z,n and f gen
r,n , include the truss tensions and

remain on the left hand side of (4). The remaining terms in (20) are known, and moved to the right
hand side of (4). This serves to include the floater motions in the linear system of equations for the truss
tensions, and the floater, net and moorings are thus solved for simultaneously.
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The series must in practice be truncated to sums of Nz modes in the vertical direction and Nr modes
in the radial direction.

3.2.5 Comments regarding accuracy and computational time

Although the system is sparse, we were not successful in solving by iterative methods; it seems that a
high degree of precision in the solution is required, otherwise the solution becomes non-smooth (spikes
in the truss tensions), and the simulations then easily become unstable and break down. A direct solution
is required. The consequence is a computational time of O{N3}, where N is the number of trusses. This
leads to rather long computational times if a high spatial resolution is used. Using NH×NV = 24×8 grid,
however, gives relatively fast computations (2 - 5 minutes running 30 - 80 wave periods on a 2.4GHz
laptop). A 48×12 grid results in slow computations (2 - 3 hours). Most numerical simulations presented
in the next section is run with a 24×8 grid.

The truncation error of O{(∆t)2} in the truss model is in practice very small, since rather small
time-steps are needed for stability reasons. From numerical experiments we find that the maximum
allowed time-step ∆tmax is inversely proportional to the smallest truss length. Above this limit, the
simulation breaks down immediately (after only a very few time-steps). In the majority of the the
present simulations (with 24×8 grid), the minimum truss length is approximately 0.05 m, and the time-
step is in the range 2−5×10−4 s. If we run simulations with regular waves with wave period T = 1 s,
lasting for instance 50 wave periods, this means the number of time-steps will be approximately 100.000
- 250.000, with the corresponding computational times indicated above.

4 Results with numerical sensitivity study

In this last section we present results from the numerical computations and the experiments. The main
focus is on the forces in the front and aft mooring lines (see Figure 1). Results from cases with current
only are presented in §4.1. Nominal results in the cases with combined current and waves are presented
and discussed in §4.2. The sensitivity study is presented in §4.3.

4.1 Current only

Mooring line tensions as obtained from the experiments and numerical simulations from current only
tests are presented in Figure 9. The results were also reported in (Kristiansen and Faltinsen 2012b), but
included here for completeness. From the right figure, we see that the repeatability in the experiments
was rather satisfactory. In particular, the trends are captured.

The different curves are explained in the caption. Note that for the case represented by triangles in
the left part of the figure, the presented drag, which is the sum of the forces measured in the front and
aft mooring lines, is lower than in the case represented by circles (no spring in the front mooring line),
due to the fact that some drag force is absorbed in the side moorings. In the remaining part of the text,
it is the set-up with spring in the front mooring line (triangles) which has been used.

4.2 Combined waves and current - Nominal results

In this section we present front and aft mooring line tensions, floater motions and excitation forces on
the floater, as predicted by the nominal simulations. The mooring line tensions are compared with the
experimental data.

Examples of time-series of mooring line tensions in the front and aft moorings are provided in Figure
10 for two selected simulations. The figure shows qualitatively the same as for the experiments in Figure
6; there is, for instance, a clear increase in the mean force when the wave enters. The first one-third of

16



0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

Sn = 0.26

W
ith

ou
t s

pr
in

g 
in

 fr
on

t m
oo

rin
g 

(N
ea

r t
ot

al
 d

ra
g)

→

With spring in fro
nt m

ooring

→

Sn = 0.26

W
ith

ou
t s

pr
in

g 
in

 fr
on

t m
oo

rin
g 

(N
ea

r t
ot

al
 d

ra
g)

→

With spring in fro
nt m

ooring

→

Sn = 0.26

W
ith

ou
t s

pr
in

g 
in

 fr
on

t m
oo

rin
g 

(N
ea

r t
ot

al
 d

ra
g)

→

With spring in fro
nt m

ooring

→

W
ith

ou
t s

pr
in

g 
in

 fr
on

t m
oo

rin
g 

(N
ea

r t
ot

al
 d

ra
g)

→

With spring in fro
nt m

ooring

→

W
ith

ou
t s

pr
in

g 
in

 fr
on

t m
oo

rin
g 

(N
ea

r t
ot

al
 d

ra
g)

→

With spring in fro
nt m

ooring

→

W
ith

ou
t s

pr
in

g 
in

 fr
on

t m
oo

rin
g 

(N
ea

r t
ot

al
 d

ra
g)

→

With spring in fro
nt m

ooring

→

D
ra

g 
[N

]

0.05 0.1 0.15 0.2 0.25 0.3
In

el
as

tic
 fl

oa
te

r (
To

ta
l d

ra
g)

→

In
el

as
tic

 fl
oa

te
r (

To
ta

l d
ra

g)

→

In
el

as
tic

 fl
oa

te
r (

To
ta

l d
ra

g)

→

Sn = 0.32

In
el

as
tic

 fl
oa

te
r (

To
ta

l d
ra

g)

→

Sn = 0.32

In
el

as
tic

 fl
oa

te
r (

To
ta

l d
ra

g)

→

Sn = 0.32

In
el

as
tic

 fl
oa

te
r (

To
ta

l d
ra

g)

→

PSfrag replaementsmN/mWavesCenter lineFrontAftmTowing speed mmg4.39m30 deg0.25m2.0mAelerometersPulleyFore ring frontFore ring aftElasti �oaterMooring lines
U∞[m/s℄U∞[m/s℄

Figure 9: The mean force (drag) decuced from the front and aft mooring lines in current only. Filled symbols:
experimental results. Triangular and circular symbols for Sn = 0.26 denote experiments with and without a spring
in the front mooring line, respectively (elastic floater and four mooring lines in both cases). The filled symbols for
Sn = 0.32 denote experiments with the stiff floater moored only front and aft. Open symbols: present simulations,
where circles represent 32×12 mesh, diamonds 48×18 mesh and x-symbols 64×24 mesh.

the simulation was run with current only. xoff was taken as the mean position of the floater at the end
of this stage. Next, waves were ramped up over 3 periods. The last 10 periods were used for data
extraction, as indicated in the figure. The mean force is taken as the mean value within this interval,
and the force amplitude taken as Fa =

√
2σF , where σF means standard deviation of the force time-

series in the steady time-window. The total force is the sum of the mean force and the force amplitude.
This is consistent with the reduced data analysis of the experiments, and gives to our understanding a
representative value for the dynamic part of the forces, although the formula is strictly speaking correct
only for pure harmonic signals.

Snapshots showing the floater, net cage, moorings and sinker weights are provided in Figure 11.
The (linear) wave is included in the top row. In the lower row, the model is illustrated from different
angles. The exponential refinement of the mesh towards the upper end of the net cage is illustrated. We
mention that for this wave condition, and longer waves, the floater basically follows the waves, although
over-topping occurs in the model tests, as discussed earlier (see Table 3). For much shorter waves, the
floater is "too stiff" to follow the wave profile.

4.2.1 Mooring line tension

Comparisons are provided in Figures 12 and 13. We chose to present the results with fixed values on
the vertical axis, although some details become unclear. This is to illustrate the trends with increasing
current velocity. More detailed views of the mean and total forces are provided for the wave only cases
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Figure 10: Examples of time-series of the front and aft mooring line tension from numerical simulations with the
present code. The pre-tension is subtracted. Two different current velocities: 0.1m/s and 0.2m/s. Left: T = 1s and
H/λ = 1/15. Right: T = 1.5s and H/λ = 1/15.

in Figure 14. Note that we present the absolute forces; the aft moorings are actually relaxed (negative)
relative to the pre-tension of 14N.

Overall, the agreement is fair. The simulations are in general conservative, except for the force
amplitudes in some conditions. Discrepancies up to 25% are observed for some cases (U∞ = 0.1m/s),
but it is in general significantly less. Importantly, the trends are captured by the simulations. Our main
observations are as follows:

• The trends and magnitudes of the mooring forces in the front and aft moorings are very similar.

• The mean forces in general dominate over the dynamic part in the cases with current.

• The mean forces increase nearly linearly with λ/D.

• The force amplitudes increase nearly linearly with λ/D ? 1.5.

• The force amplitudes trends and magnitude are not significantly affected by current.

• The total mooring forces are less affected by the wave steepness when the current velocity is high.

• The total mooring forces in case of waves only with the highest steepness case, H/λ = 1/15, are
as high as those caused by the medium current of 0.1m/s . Similarly the forces in medium current
and longest and steepest wave condition is as high as those in the highest current of 0.2m/s with
no waves.

• In the case with 0.1m/s current, the total mooring force is more than doubled in the case of the
longest, steepest waves, relative to current only. For instance, the experiments predict an increase
from approximately 3N to 7N in the front mooring line. This corresponds in full scale to 47kN to
109kN, assuming a model test scale of 1:25 (Froude scaling is assumed).

Considering the wave only case, we see from the three Figures 12 - 14 that the agreement between
the simulations and experiments rather good for the lowest steepness wave case, H/λ = 1/60. This
applies to both the mean force, force amplitude and total forces. For the higher steepness cases, the
mean forces are significantly over-predicted. We have not succeeded in explaining this, as discussed
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Figure 11: Upper row: Snapshots for different time-steps from present numerical simulations with NH ×NV =
24× 8. Towing velocity U∞ = 0.2m/s, wave period T = 1.25s and wave steepness H/λ = 1/15. The upper
left snapshot illustrates the steady shape due to current before the wave is started in the simulation. Lower row:
Snapshots for different views for the case presented in the upper right snapshot.

somewhat more in the sensitivity study further below. Concerning the good agreement for the lowest
wave steepnesses, we make two comments. First, we find it reassuring that mean forces as low as 0.1N
are captured in the experiments, which indicates good quality of the measurements. Secondly, it serves
as a validation of the simulation model; the theory and implementation seem to hold for small "linear"
waves and motions. This holds even though the net cage does have an appreciable contribution to the
forces on the floater, as discussed next.

4.2.2 Excitation forces on the floater

The floater is acted upon directly by wave forces, tension forces from the net cage and tension forces
from the mooring lines. The two former terms are considered as excitation forces. In the present work,
the forces that act directly on the floater from the waves consist of those predicted by linear potential
flow theory as well as quadratic drag, as discussed in §3.2. In the upper part of Figures 15 and 16 we
present the excitation forces on the floater for the first two horizontal modes, surge and ovalization.
Two terms are included in the figure: one is that predicted by the linear potential flow theory (drag not
included), the other is that from the net cage. The drag forces on the floater are not included, although
they are not insignificant for the longest, steepest waves. The same scaling is taken for each sub-figure
for direct comparison.

Our main observations are as follows:

• The two contributions are of similar magnitude for the wave conditions λ/D > 1.3, while that
from the net cage dominates for longer waves.

• This is in particular obvious for the cases with combined waves and current (ref. Figure 16)

• For the longest wave, λ/D ' 3.2, the force in surge from the net cage is about 3-4 and 7-8 times
that directly from the waves (as predicted by linear potential flow theory) for H/λ = 1/30 and
H/λ = 1/15, respectively.

.
In the lower part of Figures 15 and 16 we present the phasing between the two force contributions.

The phasing is taken relative to the linear potential theory load, so that for instance 120 deg means that
the force from the net cage is 120 behind the other. In order to make the plots more clear to read, we
have removed those data points that corresponds to the wave lengths where the excitation forces are at
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Figure 12: Comparison of mean forces, force amplitudes and total forces in the front mooring line from the present
model tests (symbols) and present nominal numerical calculations (solid curves).

a minimum in the upper plots, for which the phasing appears to be rather arbitrary. For surge, the phase
difference is mainly between 150deg and 210deg. We interpret this such that the net cage opposes the
motion of the floater which seems basically to be induced by the waves directly. We mean that, even
though the net cage is directly acted upon by the wave itself, it seems to be the floater that "drives" the
motion. For sinusoidally varying wave kinematics, acceleration is 90 deg ahead of velocity. Since the
potential flow forces acting on the floater are proportional to the wave particle accelerations, while the
viscous forces acting on the net cage are proportional to the wave particle velocities, it is expected that
the motion of the floater must be the "driving force", so our observations are reasonable.

4.2.3 Floater motions

The floater motions for the first four modes as predicted by the nominal simulations are provided in
Figure 17 for the first four horizontal modes b1−b4 and vertical modes a1−a4. Equal axes are chosen
in order to illustrate the relative contributions to the elastic floater motion. For the horizontal motion,
surge and ovalization dominates. The first elastic mode also contributes, but higher modes are nearly
negligible with respect to motion of the floater. For the vertical motion, heave and pitch dominates, but
higher (elastic) modes also contribute significantly. The latter is in accordance with observations in the
experiments by Li et al. (2014).
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Figure 13: Same as in Figure 12, but for the aft mooring line.

4.3 Numerical sensitivity study

The different parameters that are varied are listed in Table 5. In total, there are 32 variations. The param-
eters are divided into three categories: load modelling, structural modelling and numerical parameters.
In order to quantify the significance of the different parameters, and try to identify important ones, we
present condensed results in Figures 18 and 19. In Figure 18, each bar represents the percentagewise
difference of the total mooring line tension with respect to the nominal value, averaged over all the tested
wave periods. As seen from the figures, each parameter has different impact on the mooring line tension
for each of the seven different cases (each case is one combination of current speed and wave steepness).
This provides rather detailed information about the effect of each parameter on each of the seven cases.

In Figure 19 each bar represents the mean of the absolute value of the condensed data presented in
Figure 18. We have chosen to present in detail the effect of those parameters that impose more than 5%
difference. These are marked by an x in Table 5. The detailed results are presented in Figures 20 - 23.
One general observation is that the mean forces are more sensitive to parameter variations than the force
amplitudes. More detailed discussions are presented in the following.

4.3.1 Load modelling

In Figure 20 load parameters are varied. From Figure 19, Wheeler stretching seems to have the largest
effect of the load parameters. As seen from the more detailed Figure 18 and Figure 20, it has the largest
effect on wave only cases. It has less effect on the cases with combined waves and current. Note
that, as mentioned in §3.1.3, Wheeler stretching is not a physically correct wave model, and can not be
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Figure 14: Comparison of mean and total forces in the front and aft mooring lines for zero current cases only
(zoom of upper left and lower left sub-figures of Figures 12 and 13).

recommended. The presented results indicate merely that modelling of the incoming wave kinematics,
i.e. the velocity for the quadratic drag on the net, is of importance. Nonlinear Froude Kriloff and
restoring forces also has an effect, but our results do not indicate an improvement over the nominal
results. The wake reduction factor r does have influence in the cases with combined current and waves.
This is consistent with the sensitivity study presented by Kristiansen and Faltinsen (2012a).

The mooring loads do not seem to be sensitive to the offset, xoff (see also the discussion in relation
to Figures 15 and 16). It thus seem that the total system is not very sensitive to phasing between the
viscous forces on the net cage, and the wave forces on the floater. In general, the effect of drag on the
floater is quite moderate. Modelling the three-dimensional, frequency-dependent added mass does not
seem to be important for the mooring loads.

4.3.2 Structural modelling

In Figure 21 structural parameters are varied. Varying the cross-sectional diameter of the floater, 2c, has
a direct effect on the wave excitation forces. Note that, in these simulations, also the bottom weights are
adjusted to account for the change in buoyancy in order to keep the floater semi submerged. The effect
that we see is probably significantly affected by this. A larger bottom weight will result in higher drag
in current, due to less deformation of the net cage. We see that the effect is rather modest in the wave
only cases. Increasing the bending stiffness of the floater, EI, with a factor of 25, has a significant effect
on the mean and total forces in the cases with combined current and waves. The reason for choosing the
factor 25 was inspired by the fact that if one geometrically scale the model, using the same material as in
full scale, the model will be too stiff by a factor equal to the model scale, which in our case is taken to be
1:25. In the cases with the highest current, U∞ = 0.2m/s, the mean and total forces in both the front and
aft mooring lines are approximately halved. The reason is not that the loads are reduced, but rather that
the side moorings absorb the remaining loads. This will not be equally pronounced in a more realistic
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curves: surge [N]. Curves with dots: second mode (ovalization) [N/m]. The phasing is taken relative to the force
from the waves. The same scaling is taken for each sub-figure for comparison purposes.

setting where there is significantly less pre-tension in the moorings. However, this still demonstrates that
modelling the stiffness of the floater correctly in the model tests is of importance. The axial stiffness is
in the present study modelled by the approximate method described in §3.2.3, with piecewise constant
values as listed in Table 6. In the simulations represented by the purple curves in Figure 21, Tax is taken
to be uniformly equal to 10N. Thus, the floater should be slightly more stiff, and more forces should be
absorbed in the side moorings. This is what we observe.

In Figure 22 further structural parameters are varied. Changing the diameter of the net and floater,
D, by 10% changes the total loads by a similar, but slightly smaller amount. According to Figure 19,
the change is about 6 - 7%. This less-than-linear dependency on D is consistent with the sensitivity
presented by Kristiansen and Faltinsen (2012a). Modelling the net cage (unrealistically) too elastic has
a sinificant effect on the mooring loads, in particular in the aft mooring line. The purpose was to try to
model "geometric elasticity" in the net cage. The shape of the net cage, after some initial simulation,
is shown in the upper right corner of Figure 24. We conclude that this way of modelling the geometric
elasticity is obviously wrong. The "nominal" and "initial" shapes are also shown in the figure. Using a
prescribed "initial" shape as described earlier does have some effect, most so on the force amplitudes in
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the case of waves only. However, it does not seem to provide improvement over the nominal, straight-
walled net cage shape. In the cases with combined waves and current, the initial shape seems to have
limited effect.

The mooring loads do not seem to be sensitive to net depth, L, solidity ratio Sn, pre-tension Tp or
mooring line stiffness ks, and neither elasticity of the net twines as long as this is in a sensible range
(EI = 5×108Nm2 is representative for nylon).

4.3.3 Numerical modelling

In Figure 23 numerical parameters are varied. It is clear that modelling the floater as a rigid body has
a pronounced effect on the mooring forces. The effect is similar to using 25 times too stiff floater,
as described above. The same comments thus apply to the present discussion. Using too few modes,
in this case only 4 in both the lateral and vertical directions, has similar, but less pronounced effects.
From the remaining parameter variations with higher density meshes (variation no. 31 and 32), we find
that 8 modes are sufficient for convergence in the present set-up. As we see from Figures 18 and 19,
the variations from nominal values are in the range 3 - 4%. This is also reassuring with respect to the
validity of the present sensitivity study which is carried out with a rather coarse mesh. The meshes are
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Figure 17: Four lowest mode ampliudes as obtained by nominal simulations. Left: horizontal modes. Right:
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illustrated in the lower part of Figure 24.
We would like to emphasize that parameters that are not important to mooring loads, may still be

important for instance for local motion. The present sensitivity study has been concerned with mooring
loads only. Examples are drag on the floater and nonlinearities associated with over-topping. These local
effects may, for instance, be important for snap loads, as investigated e.g. by Bardestani and Faltinsen
(2013).

5 Conclusions

We presented a study on a circular, flexible, bottomless net cage with sinker weights attached to a
circular, elastic floater exposed to waves and current. The floater was nearly horizontally moored with
four mooring lines with crow feet. Dedicated experiments were carried out, and a numerical model
implemented. A representative range of wave periods, wave steepness and current velocities were tested.
Tests with current only, combined current and waves as well as waves only were performed. Mooring
loads were compared. Satisfactory agreement between simulations and experiments was demonstrated.

A number of questions are still open as to what factors are important when modelling fish farms in
waves and current. It is not feasible to solve this hydro-elastic problem from first principles. In particular
for the hydrodynamic loads, rational methods are needed. The main purpose of the present work was to
identify what are the dominating factors, and in this respect, investigate the validity of different rational
hydrodynamic load models. Structural aspects and numerical aspects were also investigated.

In order to do so, a numerical sensitivity study was presented, where in total 32 variations of rational
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Table 5: Parameters that are varied in the sensitivity study. Quantities with subscript 0 means nominal
values, as given in Table 1. Nominal net cage mesh: NH ×NV = 24× 8. Nominal vertical mesh
distribution is exponential (see e.g. Figure 11). Nominal number of modes are Nh = Nv = 8. Right
column indicates which parameters that are investigated in detail in connection with Figures 20 - 23.

No. Explanation >5%
L

oa
ds

1 - Wheeler stretching (§3.1.3) x
2 xoff = 0m Offset wave (§3.1.3)
3 xoff = 1.5m "
4 C f

D = 0 Floater drag (§3.2.2)
5 - Nonlinear FK+rest. (§3.2.1) x
6 r = 0 Reduction factor (§3.1.2) x
7 an

33(0) Floater added mass (§3.2)

St
ru

ct
ur

al

Fl
oa

te
r

8 2c = 0.028m Cross-sectional diameter x
9 2c = 0.032m " x
10 EI = 0.5EI0 Bending stiffness floater
11 EI = 2EI0 "
12 EI = 25EI0 " x
13 Tax = 0N/m Axial stiffness (§3.2.3)
14 Tax = 10N/m "

N
et

15 L = 1.17m Net depth
16 L = 1.43m "
17 D = 1.35m Net and floater diameter x
18 D = 1.65m " x
19 Enet = 5×108Nm2 E−module of net twines
20 Enet = 1×106Nm2 " x
21 Sn = 0.9Sn0 Solidity ratio of the net cage
22 Sn = 1.1Sn0 "
23 - Initial net shape (§2.5.1) x

M
oo

ri
ng

s 24 Tp = 10N Pre-tension moorings
25 Tp = 18N "
26 ks = 40N/m Spring stiffness moorings
27 ks = 48N/m "

N
um

er
ic

al 28 - Vertical meshing uniform
29 Nh = 1, Nv = 2 Rigid body motions x
30 Nh = 4, Nv = 4 Less modes x
31 NH = 32 Mesh resolution
32 NH = 48, NV = 12 "

models and parameters were made. Load models and structural and numerical parameters were varied.
The influence of these was discussed. The study suggested that the mooring loads are not particularly
sensitive to any of the variations. Two examples where the modelling was not reasonable were (1)
modelling the elastic floater as rigid, and (2) applying an unrealistically low stiffness of the nylon in the
net cage. In these cases the mooring loads differed by up to 30% from the nominal loads. The theoretical
model for the wave mattered. For all other parameters, the variations in the mooring loads were within 6
- 7% with respect to the nominal loads. The mooring loads were not sensitive to the wave load model for
the elastic floater. It was not necessary to represent the net cage with a very fine numerical mesh; a rather
coarse mesh was found adequate. The mean forces in general dominated over the force amplitudes in
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Figure 18: Condensed data. Each bar represents the percentagewise difference of the total mooring line tension
with respect to the nominal value, averaged over all the tested wave periods. The numbers on the horizontal axis
refer to variation number as given in Table 5. Upper: front mooring line. Lower: aft mooring line.

the cases with combined current and waves. The relative importance, and phasing between inertia and
viscous loads were discussed.

For future work one should investigate a more complete fish farm set-up, including bottom net, sinker
weight ring, possibly chains connecting the floater and sinker weight ring, two concentric floater rings,
and more realistic moorings with less pre-tension and nonlinear properties. Sensitivity studies should
be carried out, with an extended range of physical parameter variations. Note that, although we did not
identify a set of parameters for which the mooring loads are sensitive, the sum of the uncertainties may
be considerable. We believe that it is necessary to perform sensitivity studies for other set-ups in order
to try to identify sensitive parameters.
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Figure 21: Same as Figure 20. Structural parameters varied. Blue: cross-sectional diameter 2c = 0.028m (8).
Green: 2c = 0.032m (9). Red: EI = 25EI0 (12). Purple: Tax = 10N (14).
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Figure 22: Same as Figure 20. Structural parameters varied. Blue: net and floater diameter D = 1.35m (17).
Green: D = 1.65m (18). Red: Enet = 1×106Nm2 (20). Purple: initial shape not vertical (23), see Figure 24.
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Figure 23: Same as Figure 20. Numerical parameters varied. Blue: no. of modes Nh = 1, Nv = 2 (29). Green: no.
of modes Nh = 4, Nv = 4 (29).
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Figure 24: Examples of net shapes after first time-step of simulations. Upper row: Left: nominal net shape.
Middle: the shape referred to as "Initial" net shape in the sensitivity study. Right: Elastic net. Lower row: net
shapes with different resolutions. Left: nominal resolution, NH×NV = 24×8. Middle: NH×NV = 32×8. Right:
NH ×NV = 48×12. Note that the (appearent) long distance from the bottom of the net to the sinker weights is a
consequence of the modelling of the net, as described in Kristiansen and Faltinsen (2012a).
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Figure 25: Illustration of simplified calculation method for obtaining approximate values of the axial tension Tax.
Note that P2 is the y−component only of the line tension.

Appendix A

5.1 Axial tension in the floater - simplified calculations

The following is based on (Tore Søreide, personal communication 2012). The floater is divided in eight
segments as illustrated in Figure 25. We assume that the axial tension Tax is piecewise constant in each
segment, denoted N1 to N5. Due to symmetry about the x-axis, N6 to N8 are not explicitly needed. qn(s)
and qs(s) represents the normal and tangential forces from the net cage, parametrized by the arc length s
around the floater. The viscous drag on the floater is not included in qn(s) and qs(s) in these calculations;
they are small compared to the tensions due to the net cage.

We define the following geometrical relations:

l sinβ = Rsinθc (21)

a = l cosβ+Rcosθc = R( atanβsinθc + cosθc) (22)

b = a tanβ (23)

Global equilibrum of forces in the x−direction yields

P1 = 2H +P3 +2
∫

π

0
(qs(θ)sinθ+qn(θ)cosθ)R dθ (24)

Global equilibrum of moments around the origin yields

N1R−N5R = Ha− P1−P3

2
b+

∫
π

0
(qs(θ)R dθR (25)
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Global equilibrum of forces in the y−direction yields

N1 +N5 = P2−
P1 +P3

2
tanβ+

∫
π

0
(qs(θ)sinθ−qn(θ)cosθ)R dθ (26)

Combining the above equations and re-arranging terms gives the axial tensions as

N1 =
P2

2
− P1 +P3

4
tanβ+

H
2
( atanβsinθc + cosθc)−

P1−P3

4
(sinθc + tanβcosθc)

+
1
2

∫
π

0
(qs(θ)(1+ cosθ)−qn(θ)sinθ)R dθ

N2 = N1 cosθ2 +
P1

2cosβ
sin(θ2 +β)−

∫
θ2

0
(qs(θ)cos(θ2−θ)−qn(θ)sin(θ2−θ))R dθ

N3 =
P1

2
− P2

2
tanβ−H−

∫
π/2

0
(qs(θ)sinθ+qn(θ)cosθ)R dθ

N4 = N5 cos(π−θ4)+
P3

2cosβ
sin(θ4−β)+

∫
π

θ4

(qs(θ)cos(θ−θ4)−qn(θ)sin(θ−θ4))R dθ

N5 = P2−N1−
P1 +P3

2
tanβ+

∫
π

0
(qs(θ)cosθ−qn(θ)sinθ)R dθ

The procedure we used in our numerical study is as follows. First, N1−N5 are calculated in the
zero-current case. That is, only pre-tension is applied. qn and qs are then zero if the net is hanging
vertically. Next, a simulation with current is run until steady state, and N1−N5 recalculated. These
latter values are used throughout the simulation including both wave and current.

Relevant values of the axial stiffness for the present study as calculated by the above procedure are
provided in Table 6.

Table 6: Values of axial stiffness N1−N5 when a pre-tension of 14N is applied in all four mooring
lines applied in the present study.

U∞ = 0m/s U∞ = 0.1m/s U∞ = 0.2m/s
N1 5.66N 4.38N 3.14N
N2 9.90N 9.83N 9.40N
N3 5.66N 5.24N 4.80N
N4 9.90N 9.24N 8.30N
N5 5.66N 5.38N 5.51N
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