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Highlights 

 

 A correction function is proposed to determine material’s equivalent stress-strain curve 

with any axisymmetric notched tensile specimens.  

 No Bridgman correction is needed. 

 The proposed correction function can be applied to perfectly plastic materials. 

 The proposed correction function can be used to measure the equivalent stress-strain 

curve of each individual material zone in a weldment. 
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Nomenclature 

 

 

a  instantaneous minimum cross-section radius 

0a  initial minimum cross-section radius 

0d   outer diameter of the notched tensile specimen 

E Young’s modulus 

H material zone length in the notch region 

n  material’s hardening exponent 

P  tensile load 

R  instantaneous notch radius 

0R  initial notch radius 

0 0a R   initial notch radius ratio 

  Poisson’s ratio 

0  yield strain 

   average true strain  

p   equivalent plastic strain 

N   true strain at necking for smooth round bar specimen 

maxP  true strain at the maximum tensile load 

0  yield stress 

0.2   0.2% offset yield stress  

T  true stress from smooth round bar specimen 

0.5   yield stress corresponding to 0.5% total strain 

   flow stress 

,e notch  engineering stress from an axisymmetric notched tensile specimen 

eq   von Mises equivalent stress 

,T notch   average true stress from an axisymmetric notched tensile specimen 

   ratio between the average true stress from an axisymmetric notched 

tensile specimen and the material’s equivalent stress at the same strain 
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Abstract 8 

Large deformation analyses of problems such as plastic forming, ductile fracture with finite element 9 

method need a full range of material’s equivalent stress-strain curve or flow stress-strain curve. The 10 

equivalent stress-strain curve determined from the smooth round bar specimen should be corrected after 11 

diffuse necking, since tri-axial stress state occurs in the neck. The well-known Bridgman correction 12 

method is a candidate, however, it is not accurate as the strain increases. Furthermore, it is impossible 13 

to measure the equivalent stress-strain curve of each individual material zone in a weldment with cross 14 

weld tensile tests. To cope with these challenges, a correction function and an associated test procedure 15 

are proposed in this study. With the proposed procedure, the true stress-strain curve from any 16 

axisymmetric notched tensile specimen can be converted to the material’s equivalent stress-strain curve 17 

accurately and no Bridgman correction is needed. The proposed procedure can be applied to both 18 

perfectly plastic and strain hardening materials. The equivalent stress-strain curve of each individual 19 

material zone in a weldment can also be measured with the proposed procedure.  20 

 Keywords: equivalent stress-strain curve; notched tensile specimen; weldment; Bridgman correction; 21 

testing method. 22 

 23 

1. Introduction 24 

Large deformation analyses of problems such as plastic forming [1, 2], ductile fracture [3-7] with finite 25 

element method need a full range of material’s equivalent stress-strain curve or flow stress-strain curve. 26 

For homogeneous materials, the true stress-strain curve can be measured by performing uniaxial tensile 27 

test with smooth round bar specimen or rectangular cross-section specimen [8-12]. However, the 28 

determination of the true stress-strain curve of each individual material zone in a weldment is difficult, 29 

due to the inhomogeneity of the weldment and the unpredictable fracture location on the cross weld 30 

tensile specimen. Zhang, Hauge, Thaulow and Ødegård [13] proposed a method to determine the true 31 

stress-strain curve of a weldment with axisymmetric notched tensile specimen. The true stress-strain 32 

curve from an axisymmetric notched tensile specimen can be converted to the true stress-strain curve of 33 

a smooth round bar specimen by a so-called G factor. The notch can be located either in the base metal, 34 

weld metal or possibly the heat affect zone (HAZ).  35 
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It is worth noting that whether from a smooth round bar specimen [8-10] or by conversion from an 36 

axisymmetric notched tensile specimen [13], the true stress-strain curve deviates from the material’s 37 

equivalent stress-stress curve, since the tri-axial stress state occurs in the localized region after the onset 38 

of diffuse necking [8, 14]. In general, the true stress-strain curve should be corrected. Several approaches 39 

have been proposed for the correction of the initially smooth round bar tensile specimen [15-17]. The 40 

well-known Bridgman correction method [18] is widely referred in the literature. By assuming a uniform 41 

distribution of the equivalent strain in the minimum cross section, Bridgman proposed an analytical 42 

solution of stress distribution in the minimum cross section of a necked specimen. Application of the 43 

Bridgman correction method is expensive since the current notch radius ratio ( the minimum cross 44 

section radius a  over the notch radius R ) a R  should be measured simultaneously during the test [14, 45 

19]. Even with the value of notch radius measured, the equivalent stress-strain curve corrected by the 46 

Bridgman correction method is not accurate when the strain is large [19]. Bao [20] performed numerical 47 

analysis with a smooth round bar specimen and showed that the stress distribution in the minimum cross-48 

section differed significantly to the Bridgman’s analytical solution at the strain 0.29  . The inaccuracy 49 

of the Bridgman correction method attributes to the assumption that the equivalent strain is uniformly 50 

distributed in the minimum cross section. 51 

 52 

An alternative method with more accurate results and lower test cost has been proposed recently to 53 

measure material’s flow stress-strain curve [21]. The authors further studied the axisymmetric notched 54 

tensile specimen with numerical analyses and a special notch geometry with 0 0 2a R   has been 55 

identified. 0a  and 
0R  are the initial minimum cross-section radius and the initial notch radius, 56 

respectively. With this ‘magic’ notched tensile specimen and a smooth round bar specimen, the 57 

equivalent stress-strain curve of the hardening material can be directly derived with a single G factor 58 

and no Bridgman correction is needed. Good agreements between the equivalent stress-strain curves 59 

input for numerical analyses and the G-corrected equivalent stress-strain curves with the ‘magic’ notched 60 

tensile specimen have been observed. Similar with the Bridgman correction method, the proposed 61 

‘magic’ notch method is not accurate for the perfectly plastic or weak hardening material [15]. 62 

 63 

In the present study, a new correction function is proposed to determine the material’s equivalent stress-64 

strain curve with any axisymmetric notched tensile specimens rather than the only ‘magic’ notch. The 65 

proposed correction function depends on the deformation level (the average true strain ), the true strain 66 

corresponding to the maximum tensile load maxP  and the initial notch geometry 0 0a R of the specimen. 67 

Different notch configurations can be used. The proposed correction function herein can also be applied 68 

to perfectly plastic materials. 69 
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 70 

The paper consists of the following sections. In section 2, the axisymmetric notched tensile specimen is 71 

introduced, along with the definitions of the specimen geometry used in this study. Details of the 72 

numerical procedure and materials used are presented in section 3. Results from the numerical analyses, 73 

the influence of notch radius ratio, as well as the derivation of the correction function are presented in 74 

section 4. Verification and application of the proposed correction function are discussed in section 5. 75 

The main conclusions are summarized in section 6.  76 

2. Axisymmetric notched tensile specimen 77 

The axisymmetric notched tensile specimen has a wide range of applications in characterizing material’s 78 

mechanical properties [22-25], especially for the metallic material fracture locus measurement in the 79 

range of stress triaxiality larger than 1/3 [26-28]. In order to conquer the limitations of the conventional 80 

cross weld tensile test, Zhang, Hauge, Thaulow and Ødegård [13] proposed a method to determine the 81 

true stress-strain curve of each individual material zone of weldments with the axisymmetric notched 82 

tensile specimen. The sketch of an axisymmetric notched tensile specimen is shown in Fig. 1. Due to the 83 

existence of a notch on the specimen, the deformation localizes mainly in the notched region under 84 

uniaxial tension. During the tensile testing, the average true strain   is defined by the minimum cross-85 

section area reduction: 86 

 02 ln( )a a     (1) 87 

where a  is the instantaneous minimum cross-section radius, which can be measured by a linear variable 88 

displacement transducer. The true stress 
,T notch  and the engineering stress 

,e notch  from an 89 

axisymmetric notched tensile specimen are calculated by dividing the load P  by the current minimum 90 

cross-section area and the initial minimum cross-section area, respectively. 91 

 
2

,T notch P a   (2) 92 

 
2

, 0e notch P a   (3) 93 

Recent study by the authors [21] showed that the true stress calculated by Eq. (2) with the axisymmetric 94 

notched tensile specimen is independent of the specimen outer diameter 0d  when the geometry condition 95 

0 03.5d a  is fulfilled. In order to measure the equivalent stress-strain curve of each individual material 96 

zone of a weldment, the authors carried out a series of numerical analyses and found that the true stress 97 

from an axisymmetric notched tensile specimen is unique and independent of the material zone length 98 

when 
0a H . When these geometry requirements are fulfilled, the axisymmetric notched tensile 99 

specimen can be characterized by the initial notch radius ratio, 0 0a R . 100 

 101 
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The strategy of the present study is illustrated in Fig. 2. The assumed materials’ equivalent stress-strain 102 

curves are used for numerical analyses first. Then, the true stress-strain curves output from the numerical 103 

analyses are studied to derive the proposed correction function. With the proposed correction function, 104 

the true stress-strain curve from an axisymmetric notched tensile specimen can be converted to the 105 

material’s equivalent stress-strain curve. 106 

 107 

 108 

Fig. 1    Geometry of an axisymmetric notched tensile specimen 109 

 110 

Fig. 2    Layout of the present study: (a) Assumed material’s equivalent stress-strain curve; (b) 111 

Numerical tensile tests with axisymmetric notched tensile specimens, material in red can be 112 

undermatched, overmatched or evenmatched with the base material in yellow; (c) True stress-strain 113 

curve for the notched specimen obtained from Fig. 2 (b). With the proposed correction function, true 114 

stress-strain curve in Fig. 2 (c) can be corrected back to Fig. 2 (a). 115 

(a) (b) 

(c) 
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3. Numerical procedure 116 

3.1 Finite element model 117 

A series of numerical analyses of axisymmetric notched tensile specimens with 0 0a R  varying from 118 

0.25 to 3 have been performed with Abaqus/standard 6.14. 0 6a   mm is used for all the notched tensile 119 

specimens, with 
0R varying from 2 to 24 mm. The outer diameter is 24 mm, which meets the geometry 120 

requirement: 
0 03.5d a . Axisymmetric model has been used with the element type CAX4R. Large 121 

deformation is accounted. A typical finite element meshes is shown in Fig. 3 for the axisymmetric 122 

notched tensile specimen with 
0 0 0.5a R  . Average mesh size in the notch center is 0.5×0.5 mm and 123 

relative coarse meshes are used in the remaining part. Symmetric boundary condition is applied in the 124 

minimum cross-section. The specimen is loaded under displacement control. 125 

 126 

 Fig. 3    Mesh of the axisymmetric notched tensile specimen with 
0 0 0.5a R  . 127 

3.2  Materials 128 

The flow stress-strain curves of the materials used in this study are assumed to follow a power law 129 

hardening rule [29]: 130 

 0

0

 = 1

n
p

 


 
 

 
 

  (4) 131 

where  , 
p are the flow stress and the equivalent plastic strain, respectively. 0 0E  describes the 132 

elastic behavior of the material. The yield stress 
0 400MPa  , the Young’s modulus 200 E GPa , 133 
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and corresponding yield strain 0 0.002   have been used together with the Poisson’s ratio 0.3  , for 134 

all the numerical analyses. Hardening of the material is characterized by a single hardening exponent n . 135 

In this study, numerical analyses with hardening exponents ranging from 0 to 0.2 have been investigated, 136 

representing most engineering materials. For a given hardening exponent n , the flow stress-strain curve 137 

can be converted to the equivalent stress-strain curve by Eq. (5): 138 

 

p

p

,                 0

 
,             0

eq

p

eq

E

E

    


    

   



   


  (5) 139 

In the following sections, material’s equivalent stress-strain curve is calculated by converting the 140 

corresponding flow stress-strain curve by Eq. (5). By combining different hardening exponents and 141 

initial notch radius ratios ( 0 0a R ), in total 30 analyses have been performed to derive the correction 142 

function in section 4. 143 

4. Derivation of the correction function 144 

4.1  Normalized 
,T notch   and 

,e notch   curves from numerical analyses 145 

The true stress-strain curves (
,T notch  ) calculated by Eq. (2) for the axisymmetric notched tensile 146 

specimens are normalized by the yield stress and are presented in Fig. 4 for the perfectly plastic material 147 

and Fig. 5 for hardening materials. The corresponding materials’ equivalent stress-strain curves are also 148 

presented. 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

Fig. 4    Normalized 
,T notch   curves of the axisymmetric notched tensile specimens for the perfectly 162 

plastic material ( 0n  ). The material’s equivalent stress-strain curve is denoted as black. 163 
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As expected, for axisymmetric notched tensile specimens with the same hardening exponent in Fig. 4 164 

and Fig. 5, the true stress calculated by Eq. (2) is larger than the material’s equivalent stress at the same 165 

strain, and the sharper notch ( larger value of 0 0a R ) yields a larger true stress. It is interesting to note 166 

that for the perfectly plastic material shown in Fig. 4, the true stress increases with the increase of the 167 

strain for the specimen with 0 0 1.5a R  . For the specimen with 0 0 3a R  , the true stress increases 168 

when the strain is small, and then decreases as the strain increases. For the specimens with 
0 0 1.5a R 169 

and 0 0 2a R  , the true stress increases firstly, and then varies slightly as the strain increases. It indicates 170 

that, with a single correction parameter, the true stress output from an axisymmetric notched tensile 171 

specimen with 
0 0 1.5a R  or 0 0 2a R  can be converted to the material’s equivalent stress. This has 172 

been investigated by the authors for hardening materials [21], and the axisymmetric notched tensile 173 

specimen with 0 0 2a R  has been proved to present a good agreement between the material’s equivalent 174 

stress-strain curve and the corrected stress-strain curve with a single G factor.  175 

Fig. 5    Normalized 
,T notch   curves of axisymmetric notched tensile specimens with different notch 176 

configurations: (a) 0.05n   ; (b) 0.1n   ; (c) 0.15n   ; (d) 0.2n   . The corresponding materials’ 177 

equivalent stress-strain curves are shown in black. 178 
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Indeed, the effect of the initial notch radius ratio 
0 0( )a R  on the resulting true stress-strain curve also 179 

occurs for hardening materials shown in Fig. 5. However, it is difficult to observe this phenomenon duo 180 

to the materials’ strain hardening. The reason for the initial notch radius ratio effect is mainly due to the 181 

stress distribution on the minimum cross-section and will not be discussed in this paper. 182 

 183 

The normalized engineering stress-true strain curves (normalized 
,e notch  ) of the axisymmetric 184 

notched tensile specimens with hardening exponents 0.1n   and 0.2n   are presented in Fig. 6. As 185 

expected, the engineering stress decreases after reaching the maximum value, for all the notched tensile 186 

specimens. It has been demonstrated that the strain corresponding to the maximum value of the 187 

engineering stress is approximately equal to the material’s hardening exponent (
maxP n  ), independent 188 

of the initial notch radius ratio [13, 21]. This is further investigated and a function describes the notch 189 

effect on diffuse necking is established in this paper. 190 

Fig. 6    Normalized 
,e notch   curves of axisymmetric notched tensile specimens: (a) 0.1n   ; (b)191 

0.2n   . The strains corresponding to the maximum engineering stresses are shown with red lines. 192 

4.2  The derivation of the correction function 193 

4.2.1  Normalizing the ratio between the true stress and the material’s equivalent stress 194 

 195 

The purpose for this study is to provide a simple correction function to convert the true stress-strain 196 

curve from an axisymmetric notched tensile specimen to the material’s equivalent stress-strain curve. 197 

The ratio   between the true stress from an axisymmetric notched tensile specimen and the material’s 198 

equivalent stress in Fig. (4)–(5) are calculated by Eq. (6), with the strain varying from 0.01 to 0.8.  199 
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The   versus the strain for the axisymmetric notched tensile specimens with 0 0 3a R   and hardening 201 

exponents from 0 to 0.2 are presented in Fig. 7. It can be seen in Fig. 7 (a) that the curves for different 202 

hardening exponents show similar trend. The values of   increases with the increase of the strain 203 

initially, and then decreases, for all the materials shown in Fig. 7 (a). By taking the ratio   at strain 204 

0.8   as a reference, the curves in Fig. 7 (a) are normalized and the results are presented in Fig. 7 (b). 205 

Interestingly, the normalized curves in Fig. 7 (b) collapse into one, except small deviations when the 206 

strain is very small. Same behavior of the    curves is also observed in Fig. 8-12 for the notched 207 

tensile specimens with 0 0a R  ranging from 0.25 to 2.  208 

Fig. 7    (a)   versus   for the axisymmetric notched tensile specimen with 0 0 3a R   and n  ranging  209 

from 0 to 0.2; (b) Normalized curves of Fig. 7 (a) by 
0.8 

 . 210 

 211 

Fig. 8    (a)   versus   for the axisymmetric notched tensile specimen with 0 0 2a R   and n  ranging 212 

from 0 to 0.2; (b) Normalized curves of Fig. 8 (a) by 
0.8 

. 213 
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 215 

Fig. 9    (a)   versus   for the axisymmetric notched tensile specimen with 
0 0 1.5a R   and n  216 

ranging from 0 to 0.2; (b) Normalized curves of Fig. 9 (a) by
0.8 

 . 217 

 218 

Fig. 10    (a)   versus   for the axisymmetric notched tensile specimen with 
0 0 1a R   and n   219 

ranging from 0 to 0.2; (b) Normalized curves of Fig. 10 (a) by 
0.8 

.  220 
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of the strain, and smaller 0 0a R yields a faster increase of the normalized  . Therefore, we may conclude 228 

that the notch radius ratio effect is determined by the notch geometry ( 0 0a R ), independent of the 229 

material’s hardening exponent. 230 

 231 

Fig. 11    (a)   versus   for the axisymmetric notched tensile specimen with 
0 0 0.5a R   and n  232 

ranging from 0 to 0.2; (b) Normalized curves of Fig. 11 (a) by 
0.8 

 . 233 

 234 

 235 

Fig. 12    (a)   versus   for the axisymmetric notched tensile specimen with 
0 0 0.25a R   and n  236 

ranging from 0 to 0.2; (b) Normalized curves of Fig. 12 (a) by 
0.8 

. 237 
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4.2.2  Normalizing 
0.8 

 240 

 241 

The ratio between the true stress and the material’s equivalent stress at 0.8   (namely the reference 242 

points 
0.8 

 used in Fig. 7-12) versus the materials’ hardening exponents for axisymmetric notched 243 

tensile specimens with different notch geometries are shown in Fig. 13, with hardening exponents up to 244 

0.35. For a given axisymmetric notched tensile specimen ( 0 0a R ), the value of 
0.8 

 decreases with 245 

increasing hardening exponent. Very interestingly, for axisymmetric notched tensile specimens with 246 

different notch geometries, the curves in Fig. 13 (a) behave similar to each other and can be normalized. 247 

By taking the value of 
0.8 

 for material with the hardening exponent 0n   ( 0.8, 0n   ) as a reference, 248 

the curves for axisymmetric notched tensile specimens with different notch geometries in Fig. 13 (a) can 249 

be normalized. The corresponding normalized curves are presented in Fig. 13 (b). As it can be seen, the 250 

normalized curves in Fig. 13 (b) collapse into one, which can be fitted by Eq. (7): 251 

 
2( ) 0.22942 0.36902 1f n n n        (7) 252 

 253 

where n  is the material’s hardening exponent. Eq. (7) describes the material’s hardening effect on the 254 

true stress-strain curves from notched specimen. As mentioned previously, for materials obeying the 255 

power law hardening (see Eq. (4)), the hardening exponent n  approximately equals to the true strain at 256 

the maximum tensile load, maxP . We further investigate maxP  for each numerical analysis for hardening 257 

materials in section 4.1. The maxP  for each case is normalized by the hardening exponent n and is 258 

plotted against the initial notch radius ratio in Fig. 14. As can be seen, the normalized maxP presents a 259 

small scatter at the given 0 0a R and decreases with the increase of 0 0a R , for all the hardening 260 

exponents discussed here. Fig. 14 indicates that sharper notch accelerates the diffuse necking, while the 261 

shallow notch postpones the diffuse necking. Fig. 14 is then fitted by Eq. (8).  262 

 263 

    
2

max 0 0 0 0/ 0.0466 0.2515 1.2462P n a R a R        (8) 264 

 265 

Eq. (8) describes the notch effect on diffuse necking. The strain hardening exponent n  can be 266 

determined with Eq. (8) when maxP  from a notched specimen is measured. For a given notched tensile 267 

specimen, the ratio   at the strain 0.8   can be calculated, once maxP  and the reference value 268 

0.8, 0n    is known: 269 

 0.8 0,8, 0( ) nf n        (9) 270 

 271 
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Fig. 13    (a) 
0.8 

 versus n  for axisymmetric notched tensile specimens with different notch 273 

geometries; (b) Normalized curves of Fig. 13 (a) by 
0.8, 0n  

 and are fitted by Eq. (7).  274 
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Fig. 14    Strain corresponding to the maximum load is normalized by hardening exponent and is 277 

plotted against the initial notch radius ratio. 278 

 279 

4.2.3  The proposed correction function 280 

 281 

As mentioned previously, for a given axisymmetric notched tensile specimen with different material 282 

properties (namely, different hardening exponents), the normalized    curves collapse into one and 283 

can be linearly fitted by Eq. (10), as seen in Fig. 7 (b)-12 (b).  284 

 
0 0 0 01 2( ) ( * )a R a Rg b b     (10) 285 

 286 
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where 
1b  and 2b  are the slope and the intersection of Eq. (10), respectively. The subscript in Eq. (10) 287 

denotes the initial notch radius ratio for a given axisymmetric notched tensile specimen. Combining Eq. 288 

(9) and (10), the ratio   can be written as: 289 

  
0 00.8, 0 ( )n a Rf n g       (11) 290 

 291 

Considering that the    curves in Fig. 7 (a)-12 (a) are normalized by 
0.8 

, the product of the second 292 

and third term in Eq. (11) returns back to the linear fitted curves for the perfectly plastic materials ( 0n  ) 293 

in Fig. 7 (a)-12 (a). In this case, 0.8, 0n    cancels out and Eq. (11) can be written: 294 

 

   

   
0 0

0 0
0 0

, 0

, 0 1, 0 2, 0

a R n

a R n n n a R

f n g

g b b

 

 



  

 

    (12) 295 

 296 

where 1, 0nb   and 2, 0nb   are the slope and intersection from the linear fitting of the curves for 0n   in Fig. 297 

7 (a)-12 (a), respectively. Corresponding values of 1, 0nb   and 2, 0nb   of Eq. (12) are listed in Table 1 and 298 

are presented in Fig.15 as functions of the initial notch radius ratio. The value of slope of Eq. (12) 299 

decreases with the increase of the initial notch radius ratio; inversely, the value of the intersection 300 

increases. The slope represents the notch radius ratio effect, while the intersection infers the stress 301 

concentration due to the existence of notch. The data in Fig. 15 (a) and (b) are fitted by Eq. (13) and Eq. 302 

(14): 303 

 
20 0

1, 0

0 0

0.03232( ) 0.27( ) 0.3866n

a a
b

R R
      (13) 304 

 305 

 
20 0

2, 0

0 0

0.04084( ) 0.3557( ) 1.0577n

a a
b

R R
       (14) 306 

 307 

 308 

Table 1 Parameters from linear fitting of Fig. 7 (b)-12 (b) by Eq. (10) 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

  317 

0 0a R  
Slope Intersection 

1, 0nb   2, 0nb    

3 -0.135 1.7597 

2 -0.0194 1.5985 

1.5 0.0529 1.4987 

1 0.137 1.3799 

0.5 0.2743 1.2299 

0.25 0.3143 1.1376 
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Fig. 15     (a) Slopes of linearly fitted equations of the    curves with n=0 in Fig. 7 (a)-12 (a) versus 319 

the initial notch radius ratio 0 0a R ; (b) Intersections of linearly fitted equations of the    curves for 320 

n=0 in Fig. 7 (a)-12 (a) versus the initial notch radius ratio 0 0a R . 321 

 322 

Inserting Eq. (13)-(14) into Eq. (12), the ratio   between the true stress from an axisymmetric notched 323 

tensile specimen and the material’s equivalent stress can be written in a general format: 324 

 1, 0 2, 0( ) ( )n nb b f n       (15) 325 

 326 

Eq. (15) consists of two terms: the first term is related to the initial notch geometry and is a function of 327 

the average true strain  ; the second term is a function of the hardening exponent n  , considering the 328 

material’s strain hardening effect. With Eq. (15), the 
,T notch   curve from an axisymmetric notched 329 

tensile specimen can be converted to the material’s equivalent stress-strain curve by Eq. (16). Therefore, 330 

Eq. (15) is the proposed correction function. 331 

 
,T notch

eq 





   (16) 332 

 333 

It should be noted that the correction function Eq. (16) are derived based on notched specimens and are 334 

not accurate for 0 0 0a R  , namely the smooth round bar specimen. The extrapolated value (0.3866 for 335 

0 0 0a R   ) of Eq. (13) (see in Fig. 15 (a)) is very close to the slope (0.3718) by linearly fitting the ratio 336 

between the true stress-strain curve from smooth round bar specimen and the input stress-strain curve 337 

for perfectly plastic material; while the extrapolated value (1.0577 for 
0 0 0a R  ) of Eq. (14) is very 338 

close to 1, giving reasonable indication that there is no stress concentration for smooth round bar 339 

specimen. However, since the proposed correction function applies to the whole range of the 
,T notch 340 
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curve. For the smooth round bar specimen before diffuse necking, the true stress-strain curve is exactly 341 

the same as material’s equivalent stress-strain curve and no correction is needed. Application of Eq. (15) 342 

to smooth round bar specimen may results in considerable error, especially when the strain is large.  343 

 344 

5. Verification and discussion 345 

 346 

To verify the proposed correction function, the axisymmetric notched tensile specimen with 347 

0 0 1.25a R   has been analyzed numerically. The equivalent stress-strain curves calculated by 348 

converting the true stress-strain curves from the axisymmetric notched tensile specimen with Eq. (16) 349 

are compared in Fig. 16 with the materials’ equivalent stress-strain curves. Very satisfactory agreement 350 

can be seen in Fig. 16 for materials with 0n   and 0.125n  . Compared with the well-known 351 

Bridgman correction method, the proposed correction function does not need to measure the current 352 

notch radius. Gromada et al. (2011) performed the Bridgman correction method with the perfectly plastic 353 

material numerically, and found that errors between the Bridgman corrected stress and the material’s 354 

equivalent stress occurred quite early and increased to 10% at the strain 1.25  . Compared with the 355 

Bridgman correction method, the proposed correction function yields accurate results for the perfectly 356 

plastic material, as can be seen in Fig. 16 (a). 357 
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Fig. 16     Comparison of the equivalent stress-strain curve calculated by correcting the trues stress-360 

strain curve from the axisymmetric notched tensile specimen with the proposed correction function 361 

and the material’s equivalent stress-strain curve: (a) 0n   ; (b) 0.125n   . 362 
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It should be noted that the conversion of the true stress-train curve from the axisymmetric notched tensile 367 

specimens to the material’s equivalent stress-strain curve with the proposed correction function is not 368 

perfect when the strain is very small. Fig.16 is replotted by ranging strain from 0 to 0.01 in Fig. 17. 369 

Difference between the equivalent stress-strain curves converted by the proposed correction function 370 

and the material’s equivalent stress-strain curves is shown in Fig. 17. One reason for the errors is that 371 

the normalized    curves in Fig. 7 (b)-12 (b) are linearly fitted, however, the normalized   deviates 372 

slightly to the linearly fitted equation in the initial stage. The second reason is that the transition of 373 

yielding for the notched tensile specimen is different to the smooth specimen. Yielding develops on the 374 

whole cross-section simultaneously for the smooth specimen, while the yielding for the axisymmetric 375 

notched tensile specimen develops firstly at part of the minimum cross-section. Gradual yielding of the 376 

axisymmetric notched tensile specimens also results in a smooth transition on the converted equivalent 377 

stress-strain curve, instead of a sharp transition in a smooth round bar specimen. 378 

 379 

In practice, for tensile tests with smooth round bar specimen or rectangular cross-section specimen, the 380 

yield stress is determined by the intersection of the 0.2% offset line ( 0.2 ) or the vertical line at the strain 381 

0.5% ( 0.5 ) on the equivalent stress-strain curve, for materials without obvious yield plateau ( ASTM 382 

E8/E8M-16a ). In this study, both 0.2  and 0.5  are derived from both the corrected equivalent stress-383 

strain curve and the material’s equivalent stress-strain curve for all the analyses in section 4, see in Fig. 384 

17 as an example. The relative errors (absolute value) are presented in Table 2 for 0.2  and Table 3 for 385 

0.5 , respectively. 386 

 387 

It can be seen that the values of the relative errors in table 2 and table 3 are within 5%, except the data 388 

marked in red which are mainly from the axisymmetric notched tensile specimen with 0 0 2a R   and 389 

0 0 3a R  . Therefore, it is not recommended to use very sharp axisymmetric notched tensile specimen 390 

to measure material’s yield stress on the converted equivalent stress-strain curve with the proposed 391 

correction function.  392 
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 393 

Fig. 17     Converted equivalent stress-strain curve by the proposed correction function at the strain 394 

less than 1% for materials with : (a) 0n   ; (b) 0.125n  . 395 

 396 

Table 2  Absolute value of Relative error of the 0.2% offset yield stress ( 0.2 ) 397 

n  
0 0a R  

0.25 0.5 1 1.5 2 3 

0 0.018 0.013 0.025 0.05 0.08 0.121 

0.05 0.005 0.008 0.018 0.046 0.049 0.083 

0.1 0.008 0.011 0.008 0.032 0.064 0.101 

0.15 0.03 0.031 0.011 0.016 0.044 0.078 

0.2 0.046 0.045 0.027 0.023 0.021 0.049 

 398 

 399 

Table 3  Absolute value of Relative error of the yield stress at 0.5%   ( 0.5 ) 400 

n  
0 0a R  

0.25 0.5 1 1.5 2 3 

0 0.013 0.006 0.015 0.035 0.059 0.098 

0.05 0.007 0.003 0.016 0.039 0.025 0.051 

0.1 0.002 0.005 0.013 0.033 0.055 0.086 

0.15 0.019 0.017 0 0.021 0.042 0.069 

0.2 0.032 0.032 0.018 0.003 0.022 0.043 

 401 

Since not all the materials follow power law hardening rule, the true stress-strain curves from smooth 402 

round bar specimen for steel 20MnMoNi 55 [16], AISI 304 and FE 430 [17] have been used to verify 403 

the correction function. The true stress-strain curves are expressed as Eq. (17)-(19) and are converted to 404 

equivalent stress-strain curves with the so-called MLR method introduced in [16]. The correction factor 405 

for the MLR method can be expressed as Eq. (20): 406 
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 407 

For steel 20MnMoNi 55: 408 

 
0.1828  for (0 0.1)    

614 460    for ( 0.1)
T

 


 

   
 

  

  (17) 409 

For steel AISI 304: 410 

 
0.251183   for (0 0.25)    

693 592         for ( 0.25)
T

 


 

   
 

  

  (18) 411 

For steel FE 430: 412 

 
0.19818  for (0 0.19)    

527 365       for ( 0.19)
T

 


 

   
 

  

  (19) 413 

 414 

  415 

  2 3 4, 1 0.6058( ) 0.6317( ) 0.2107( )N N N NMLR                 (20) 416 

 417 

 418 

where 
N  is the true strain at diffuse necking, which can be found in ref. [16] and [17]. By multiplying 419 

the true stress with the MLR correction factor, the equivalent stress-strain curve can be derived after 420 

diffuse necking. It should be noted that the error induced by the MLR is not considered here. The 421 

equivalent stress-strain curves converted by the MLR method are then converted to flow stress-strain 422 

curves and are input for numerical analyses with different axisymmetric notched tensile specimens. True 423 

stress-strain curves from the numerical analyses are then corrected with the proposed correction function, 424 

Eq. (15), up to the same failure strain as in ref. [16] and [17]. Results of the corresponding equivalent 425 

stress-strain curves converted by the proposed correction function from numerical analyses as well as 426 

the MLR converted equivalent stress-strain curves are presented in Fig. 18. For the application of Eq. 427 

(15), the true strain at the maximum tensile load is obtained from the force-true strain curve for each 428 

material and each specimen geometry and is presented in Table 4. 429 

 430 
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Fig. 18     Comparison of the equivalent stress-strain curves calculated by correcting the trues stress-432 

strain curves from the axisymmetric notched tensile specimens with the proposed correction function 433 

and the MLR corrected equivalent stress-strain curve: (a) 20MnMoNi 55; (b) AISI 304; (c) FE 430 . 434 

 435 
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 436 

Table 4  Error analysis for the application of the proposed correction function 437 

Material failure strain 
0 0a R  maxP  Error 

20MnMoNi55 1.1 

3 0.091 1.02 % 

2 0.095 0.98 % 

1.5 0.097 1.81 % 

1 0.102 3.11 % 

0.5 0.115 1.58 % 

0.25 0.12 4.75 % 

AISI 304 1.33 

3 0.212 7.16 % 

2 0.225 3.98 % 

1.5 0.236 2.34 % 

1 0.253 1.36 % 

0.5 0.273 3.17 % 

0.25 0.275 2.32 % 

FE 430 1.1 

3 0.16 4.04 % 

2 0.169 2.59 % 

1.5 0.176 1.57 % 

1 0.188 1.31 % 

0.5 0.199 0.04 % 

0.25 0.2 2.6 % 

 438 

As can be seen in Fig. 18, the equivalent stress-strain curves derived from the axisymmetric notched 439 

tensile specimens with the proposed correction function agree well with the MLR corrected equivalent 440 

stress-strain curves, except small deviations. It can also be noted that difference occurs when the strain 441 

is large in Fig. 18. Errors between the equivalent stress-strain curves from notched specimens and from 442 

the MLR corrected equivalent stress-strain curves are listed in Table 4. It can be seen that most of the 443 

errors are within 5%, except the one for steel AISI 304 with 
0 0 3a R  . It can also be observed that the 444 

strain at the maximum tensile load deviates slightly from the strain at necking from smooth round bar 445 

specimen.  446 

 447 

Fig. 19 presents the results of the equivalent stress-strain curves by correcting the true stress-strain curves 448 

from notched specimens with Eq. (15), together with the reference equivalent stress-strain curve for 449 

material D98 in ref. [19]. The true stress-strain curves are calculated numerically. The reference 450 

equivalent stress-strain curve in ref. [19] was derived by correcting true stress-strain curve from smooth 451 

round bar specimen with Bridgman correction method and expressed as: 452 

 
0.351260  for (0 0.55)    

933 197    for ( 0.65)
eq

 


 

   
 

  
  (21) 453 

 454 
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Tensile test with smooth round bar specimen in ref. [19] shows that diffuse necking occur at strain 455 

0.35   for this D98 material. The authors in [19] performed numerical analysis with smooth round bar 456 

specimen, using Eq. (21) as the input equivalent stress-strain curve. True stress-strain curve from 457 

numerical analysis was then corrected with Bridgman correction. They found that the equivalent stress-458 

strain curve corrected by the Bridgman correction from numerical analysis differed with the input 459 

equivalent stress-strain curve at large strain. The error reaches up to 10.6% at the strain 1.35  . As can 460 

be seen in Fig. 19, the equivalent stress-strain curves corrected by Eq. (16) are higher than the reference 461 

curve when the strain is larger than 0.7. The errors at the strain 1.35   range from 3.68% to 13.52%. 462 

It can also be noticed that notched specimen with larger 0 0a R shows larger deviation with the reference 463 

curve. 464 
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Fig. 19     Comparison of the equivalent stress-strain curves calculated from the axisymmetric notched 467 

tensile specimens with the proposed correction function and the equivalent stress-strain curve from 468 

Ref. [19]. 469 

 470 

It should be noted that notched specimen fails at smaller strain than smooth round bar specimen. The 471 

sharper (larger 0 0a R ) the notch is, the smaller the failure strain will be. This is due to the reason that 472 

the failure strain depends significantly on the stress triaxiality, which is the ratio of mean stress and 473 

Mises equivalent stress. Sharper notch corresponds to a higher stress triaxiality, resulting in a smaller 474 

failure strain. In order to obtain equivalent stress-strain curve in larger strain and considering the error 475 

analysis, we recommend to use notched specimen with smaller 0 0a R for the application of the proposed 476 

correction function.  477 

 478 
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The proposed correction function can also be applied to determine the equivalent stress-strain curve of 479 

each individual material zone in a weldment. By locating the notch either in the base material, weld 480 

metal, or possibly in the heat affected zone, the material’s equivalent stress-strain curve in the notched 481 

region as shown in Fig. 1 can be determined with the proposed correction function, once the geometry 482 

conditions (
0 03.5d a ; 

0a H ) are fulfilled.  483 

 484 

By summarizing the results above, a recommended procedure is proposed to determine material’s 485 

equivalent stress-strain curve with an axisymmetric notched tensile specimen: 486 

 487 

1. Prepare the axisymmetric notched tensile specimen under the geometry requirements: 
0 03.5d a , 488 

0a H ; 489 

2. Perform tensile test with the axisymmetric notched tensile specimen, record the load and the minimum 490 

cross section diameter; 491 

3. Calculate the 
,T notch   curve and the 

,e notch   curve, determine maxP  on the 
,e notch   curve; 492 

4. With the data of the initial notch radius ratio 0 0a R  and maxP , convert the 
,T notch   curve by Eq. 493 

(16) to derive the material’s equivalent stress-strain curve. 494 

 495 

6. Conclusions 496 

Recently, we identified a so-called ‘magic’ special axisymmetric notched tensile specimen to derive 497 

material’s flow stress-strain curve for hardening material [21]. In this study, we proposed a correction 498 

function by performing a series of numerical analyses with axisymmetric notched tensile specimens. 499 

With the proposed correction function, the true stress-strain curve from any axisymmetric notched 500 

tensile specimen can be converted to the material’s equivalent stress-strain curve and no Bridgman 501 

correction is needed. Accordingly, a recommended procedure to determine the material’s equivalent 502 

stress-strain curve with the axisymmetric notched tensile specimens is proposed. The proposed 503 

procedure can be used to hardening materials, as well as perfectly plastic material. Furthermore, the 504 

proposed procedure can be applied to both homogeneous material and inhomogeneous materials (such 505 

as the weldment), by locating the notch in the target material zone under the geometry requirements 506 

(
0 03.5d a , 

0a H ). The proposed procedure is cheap and accurate, since the only information needed 507 

to record during the tensile test is load and minimum cross section area (radius). 508 

 509 

 510 

 511 
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