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Problem description

The purpose of this thesis is to study potential benefits of combining two acknowledged

methods in housing analysis – hedonic regression and repeat sales – for property valuation.

We enhance the classic hedonic pricing model applying three spatial models from literature

as well as an ad hoc outlier-robust spatial model. Using a simple weighting approach, these

estimates are subsequently combined with previous sales prices adjusted to account for the

expected market growth. The investigation is conducted on the housing market of Oslo,

Norway.
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Abstract

Two common methods in real estate analysis are hedonic regression and repeat sales. While

research has pointed out the merits of combining these models constructing house price in-

dices, no study to our knowledge has examined this invention for property valuation. This

paper investigates potential benefits of the described combination in a price prediction con-

text, constructing house value estimates by combining predictions from repeat sales and

various hedonic regression specifications enhanced to account for spatial effects. Three of

these enhancements – regression kriging; mixed regressive, spatial autoregressive model and

geographically weighted regression – are acknowledged spatial econometric models. Further,

the article proposes a fourth augmentation which addresses systematic residual patterns in

regressions with district indicator variables and the presence of outliers in housing data.

Running the models on a data set containing 16,417 transactions in Oslo, Norway, we find

that the repeat sales combination reduces the median absolute percentage error of the he-

donic models with 6.8 % to 9.5 %, where larger gains are observed for less accurate spatial

enhancements. We attribute the improvements to both spatial and non-spatial information

inherent in previous sales prices. While the former has limited utility for well specified spa-

tial models, we believe the non-spatial information in previous sales prices is able to capture

otherwise hardly observable phenomena, making its contribution potentially highly valu-

able in automated valuation models.
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Sammendrag

To utbredte metoder for boligprisanalyse er hedonisk regresjon og repetert salg. Flere studier

har påvist nytteverdien av å kombinere disse to modellene ved boligprisindekskonstruk-

sjon, men ingen har etter vår kjennskap undersøkt kombinasjonen for verdsetting av boliger.

Denne artikkelen undersøker potensielle fordeler ved å kombinere boligprisprediksjoner fra

repetert salg og ulike hedoniske regresjonsspesifikasjoner utvidet for å ta høyde for lokasjon-

seffekter. Tre av disse utvidelsene – regresjonskriging; blandet regressiv, romlig-autoregressiv

modell og geografisk vektet regresjon – er anerkjente romlig-økonometriske metoder. Ar-

tikkelen introduserer dessuten en fjerde utvidelse, ment for å håndtere romlige residualmøn-

stre forårsaket av bydelsindikatorer samt begrense påvirkning fra anomale observasjoner.

Metodene ble testet på et datasett med 16 417 boligtransaksjoner i Oslo, hvor vi finner at

kombinasjonen reduserer medianen av den absolutte prosentfeilen hos alle regresjonsmod-

ellene med mellom 6,8 % og 9,5 %, hvor større forbedringer observeres for mindre nøyaktige

regresjonsutvidelser. Vi argumenterer for at disse forbedringene kommer som et resultat

av ulike typer iboende informasjon i repetert salgsprediksjoner, både relatert og urelatert til

lokasjon. For velspesifiserte romlige utvidelser av den hedoniske regresjonen har lokasjon-

sinformasjonen i repetert salgsprediksjoner mindre nytte, men vi mener at den ikke-romlige

informasjonen potensielt fanger opp egenskaper ved boliger som ellers er svært vanskelig å

observere. Dette gjør bidraget fra repetert salgsmetoden potensielt svært verdifull i en au-

tomatisk verdsettingsmodell.
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1
Introduction

A central aspect of uncertainty in housing transactions is accurate property valuation. As the

acquisition of housing represents the largest investment in most people’s lives, uncertainty

tolerance is low, arguably underpinning the real estate agent industry and its business of

human appraisal of property market value (Levin (2001)). If accurately computed, automati-

cally generated housing value estimates represent an efficient and cost-effective alternative,

potentially contributing to a more transparent housing market (Corcoran and Liu (2014)).

There is consensus in the literature that a hedonic price regression is a suitable approach

when conducting house price analysis. First described by Rosen (1974) to value composite

goods, this model assumes housing value equals the summarised market value of its indi-

vidual characteristics. Generating precise hedonic house price predictions requires an apt

representation of the main determinants of housing value: Structural characteristics, time

and location. Although the two first-mentioned classes require considerate specification,

proper modelling of location has proven particularly demanding in a classic hedonic regres-

sion framework. This is largely due to spatial interaction in cross-sectional housing data, in-

troducing simultaneity and feedback effects that explicitly require spatial econometric mod-

elling (Anselin (2010)). This has been a long-neglected fact, arguably because spatial analysis

is deep-rooted in disciplines like geography and geology, far from the studies of economics

(Dubin (1998)).

Another central methodology in real estate analysis is the repeat sales model, where pre-

vious sales prices of the same property are used to estimate the market development over a

period of time (Bailey et al. (1963)). Similar logic suggests that up-to-date price estimates can

be obtained by multiplying previous sale prices with the expected market growth. Case and

Quigley (1991) demonstrated the merits of combining repeat sales with hedonic regression

in the construction of house price indices, findings later confirmed and discussed by Case

et al. (1991). Interestingly, no studies to our knowledge have investigated broader applica-

bility of this combination.1

This paper applies the invention of Case and Quigley (1991) in a house price predic-

tion context, hypothesising increased accuracy of a combined price estimate from the two

1We found no public available research on this topic, however some companies advertise automated valu-
ation models with both models implemented, e.g. Home Value Explorer® by Freddie Mac (2017).
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methodologies compared to non-combined value estimates. For our result to be robust

against spatial misspesification of the hedonic model, repeat sales price predictions are com-

bined with predictions from regression models enhanced by both traditional and state of the

art spatial models from the literature, as well as an ad hoc spatial model proposed by this

paper. As a result, in addition to our primary contribution on house price valuation meth-

ods, we provide further empirical evidence on spatial econometric modelling of the housing

market, tying this paper to one of the most prevalent research trends in real estate valuation

(Krause and Bitter (2012)).

The methods are tested on a proprietary data set of 16,417 transactions of residential

property in Oslo, Norway, between August 2016 and December 2017. Repeat sales price pre-

dictions are constructed for 80 % of the dwellings in the data set, as these have data on pre-

vious sales prices. For this purpose, we apply a house price index published by Statistics

Norway.

Combining regression predictions with estimates from the repeat sales model resulted

in increased accuracy for all hedonic models on all metrics, even with simple combination

techniques, which we mainly attribute to diversification effects (Bates and Granger (1969)).

The geographically weighted regression outperformed the other spatial specifications, indi-

cating that spatial non-stationarity is more prominent than spatial dependence in the Oslo

housing market. Further, the combination resulted in higher improvements for regression

models with low pre-combination accuracy. As the models differed in terms of location mod-

elling only, we infer that repeat sales estimates contribute with, at least, some spatial infor-

mation. While the value of this contribution shrinks for well specified spatial models, we

argue that previous sales prices also contain a certain amount of hardly observable non-

spatial information. If this assumption holds, previous sales prices could be particularly

valuable in automated property valuation, as few alternatives to detect such information ex-

ist besides human inspection. The data requirements to construct repeat sales estimates are

substantial, potentially reducing the practicability of our findings. Finally, the scale of the

combination improvement is somewhat limited with respect to the effort required, leading

us to suggest some concepts for further studies.

The rest of this article is organised as follows: Chapter 2 presents background theory

on forecast combination, spatial effects and hedonic valuation. Chapter 3 introduces the

housing market of Norway and Oslo. An overview of the source data is given in Chapter 4.

Chapter 5 outlines the different models. The results are presented and discussed in Chapter

6, and Chapter 7 concludes the article and presents ideas for further research.
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2
Theory

This chapter initially provides a theoretical backdrop for point forecast combination, em-

phasising notable considerations when combining estimates from repeat sales and hedonic

regression. Further, we describe different spatial effects in the housing market, before out-

lining econometric methods for modelling location in a regression framework. Finally, two

measures of spatial autocorrelation are introduced.

2.1 Combination of point forecasts

Clemen (1989) provides a summary of research on forecast combination conducted in the 20

years following the seminal paper by Bates and Granger (1969). He acknowledged their initial

finding indicating that in general, the error of a linear combination of two competing point

forecasts is smaller than those of the two individual predictions. He also drew a second, more

counterintuitive conclusion: The simple average between forecasts tends to perform just as

well as more sophisticated combination methods, further discussed by Armstrong (1989).

Several studies have investigated the reason behind the empirically proven gains of fore-

cast combination: Granger (1989) argues that combinations providing substantial improve-

ments likely consist of forecasts partly based on non-overlapping information sets, stressing

the fundamental value of incorporating new information. Another view is given by Chan

et al. (1999) who focus on the impact of outliers on a model, arguing that forecast combina-

tion could be used to identify and handle these observations.

In the context of combining hedonic regression estimates and estimates based on for-

mer sales prices in the housing market, two elements should be considered particularly

important. First, house transaction data tend to include a non-negligible share of outliers,

which should be addressed in the combination algorithm. Second, the high heterogeneity of

dwellings implies that some price-influencing factors are unobservable and therefore omit-

ted in the hedonic model. Such information is potentially captured in former sales prices,

which would fulfil the criteria specified by Granger (1989) and imply the value of such a com-

bination (Wallis (2011)).
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2.2 Spatial effects and hedonic house price models

Two broad classes of spatial effects may be distinguished, referred to as spatial dependence

and spatial heterogeneity (Anselin, 1988, p. 8). Spatial dependence, also denoted spatial au-

tocorrelation, refers to the lack of independence between observations in cross-sectional

data, formally defined in Cliff and Ord (1970). This effect might be caused by a variety

of measurement problems as well as the presence of spatial externalities and spill-over ef-

fects ((Anselin, 1988, p 11), Griffith (1992)). Spatial heterogeneity, also denoted spatial non-

stationarity, refers to systematic variation in the behaviour of and relationships between

variables across space, implying that functional form and parameter values vary across lo-

cations (Fotheringham, 2009, p. 243).

Housing market analysis is often conducted using a hedonic house price model, regress-

ing price on structural characteristics (e.g., size and age) and location attributes1 (Can (1990)).

Location variables are often classified as either accessibility variables or neighbourhood vari-

ables (Chica Olmo (1995)). Accessibility variables – usually a distance gradient to a central

location – are meant to depict a spatial pattern, while neighbourhood variables are speci-

fied to indicate discrete differences between areas. In practice, the latter tend to be dummy

variables denoting a dwelling’s location by predefined submarkets, or variables such as edu-

cational level, where all dwellings in the same census area receive the same value (Fik et al.

(2003)). Vital data on location attributes are in practice inaccessible, and if obtained, it is

unlikely that a correct or true functional relationship will be specified. The consequence is

spatial dependence between the error terms of closely located observations, resulting in a

display of spatial patterns and autocorrelated regression residuals. Independently, a spatial

non-stationary price process modelled assuming fixed regression parameters also results in

autocorrelated residuals displaying a spatial pattern. As a consequence, distinguishing be-

tween spatial dependence and spatial non-stationarity based on residual characteristics is

futile, a problem commonly known as the inverse problem (Anselin (2010)). Both types of

spatial effects frequently coexist in spatial processes, also in the housing market (Anselin

(2007)), and different enhancements of the regression model are recommended reliant on

the root cause of the problem. As a result, identifying the more prominent spatial effect in

the given housing market is of interest.

Below, we briefly outline how location attributes traditionally are incorporated in the

hedonic regression, with emphasis on using location unit dummy variables, since this ap-

proach is taken in our ordinary hedonic regression specification. Further, we succinctly

outline the different procedures proposed for augmenting this regression, depending on

whether one assumes spatial dependence or spatial heterogeneity is the more prominent.

1As time also influences housing prices, auxiliary time indicators are often specified or real prices are
utilised. Although impractical, modelling of time-dependent parameters is more in line with the theory of
Rosen (1974).
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2.2.1 Embedding spatial variation in an ordinary hedonic regression

Traditional house price models regress price on, among other variables, a set of location at-

tributes. However, there is no clear consensus regarding which to include (Can (1990), Dubin

(1992)), where different attribute types have distinct properties. Accessibility variables are

hard to specify, posing questions such as which and how many central locations to include,

and whether the effect of living close to a given place varies with direction. Fik et al. (2003)

and Richardson (1988) argue that a predetermined, limited number of central locations in-

adequately represents a housing market, suggesting that the use of such variables in practice

is ineffective. Neighbourhood variables represent an alternative method, corresponding to

the idea that dwellings in a given area share a set of local conditions. Embedding data on

externalities like crime rate is theoretically attractive, but in practice hard due to data lim-

itations.2 Including area indicators is more feasible, where the argument is that combined

location effects are revealed as a "premium" for living in a given neighbourhood (Maser et al.

(1977)). In this paper, the latter approach is taken in specifying our basic hedonic regression.

Intercept neighbourhood dummy variables are easily implementable and empirically in-

crease prediction accuracy (Goodman and Thibodeau (2003), Helbich et al. (2013)). How-

ever, Fik et al. (2003) recognise several pitfalls associated with this approach. First, the pro-

cesses determining local conditions vary over short distances, and such differences get av-

eraged out by district dummies. Second, most externalities vary continuously over space,

not displaying discrete jumps. Hence, dwellings on the edge of an area might have more in

common with the adjoining neighbourhood dwellings than dwellings in their own area, re-

sulting in large residuals close to district edges. Third, defining true submarkets is difficult

(if they even exist), and in practice, administrative units are often used. If the area bound-

aries are misspecified, we get biased estimates and spatial autocorrelation in the residuals

(Fotheringham et al. (2002)).

Several methods to identify housing submarket boundaries have been developed, e.g.,

hierarchical models (Goodman and Thibodeau (1998)), factor reduction through principal

component analysis combined with cluster analysis (Bourassa et al. (1999)) or expanding

the submarket to be defined in a multi-dimension space (Dale-Johnson (1982)). In this pa-

per, we follow Case et al. (2004) in that k-means clustering is used to construct new city dis-

tricts. The algorithm is a stochastic, unsupervised clustering method designed to divide a

set of data points into k partitions based on multi-dimensional proximity (MacQueen et al.,

1967, p 281). As a part of the algorithm, the haversine formula (Sinnott (1984)) is used to

calculate distance between two longitude and latitude points. Subsequently, the k-nearest

neighbour3 algorithm is used to classify out-of-sample entries. First suggested by Fix and

Hodges Jr (1952), it assigns unclassified points to the cluster most heavily represented among

its k nearest neighbours. Together, these techniques enable dwellings to be grouped into ar-

tificial districts based on proximity in geography as well as in other variable spaces.

2Data tend to be non-existent or published aggregated due to privacy concerns (Kain and Quigley (1970)).
3The two algorithms work independently; their k values are not related and need not be equal.
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2.2.2 Enhancing the hedonic regression to model spatial dependence

In the presence of spatial autocorrelation, the Gauss-Markov assumption of i.i.d. error terms

in the classical regression model is violated (Brooks, 2014, p 91). To correct this behaviour,

three general methods can be applied:

i Spatial error models: The covariance structure of the random error term is modelled.

We give an example of this approach, called regression kriging, outlined in Section 5.2,

following Dubin (1998) and Hengl et al. (2007) among others. An alternative approach

to kriging is using what is called a lattice model; for more information we refer to Col-

well et al. (1983) and Pace and Gilley (1997).

ii Spatial lag models: Rather than modelling the error covariance structure, the correla-

tion of the dependent variable is modelled by including a function of the dependent

variable observed at other locations on the right-hand side of the regression. When

this autoregressive term is included, the error is assumed to be i.i.d.. We give an exam-

ple of this approach, called the mixed regressive, spatial autoregressive model, outlined

in Section 5.3, following Can and Megbolugbe (1997), Haider and Miller (2000) and

Farber and Yeates (2006). We also refer to this as the autoregressive model.

iii Incorporate omitted spatial variables: The i.i.d. error assumption will begin to hold

if all omitted location attributes are specified. As discussed in Subsection 2.2.1, this

approach is highly challenging due to data constraints. Moreover, it requires no modi-

fication of the model specification or the estimation technique, and as a result, will not

be discussed further. More details are provided in Florax and Folmer (1992).

2.2.3 Enhancing the hedonic regression to model spatial heterogeneity

A different conceptualisation of the housing price determination process is assuming the

original regression is correctly specified, but a spatial non-stationary process implies space-

varying parameter values. Localised models describe such relationships, with examples in-

cluding the spatial expansion model (Casetti (1972)), adaptive filtering (Foster and Gorr (1986)),

multilevel modelling (Congdon (1995)) and moving window regression (Farber and Yeates

(2006)), all used for house price valuation. This paper implements a geographically weighted

regression (GWR), described in Section 5.4, following (Fotheringham et al., 2002, p. 15) who

argue for the superiority of this model when analysing non-stationary spatial relationships.
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2.3 Indicators of spatial association

2.3.1 Moran’s I

Moran’s I applied on regression residuals is arguably the best known test statistic used to

detect spatial autocorrelation (Fotheringham, 2009, p. 261). Defined by Moran (1950) and

extended to the spatial domain by Cliff and Ord (1970), the test statistic is defined as:

I = N

W

ΣiΣ j wi j (εi − ε̄)(ε j − ε̄)

Σi (εi − ε̄)2
= N

W

ΣiΣ j wi j εiε j

Σiε
2
i

, i , j = 1,2, ..., N ; W =ΣiΣ j wi j (2.1)

where N is the number of observations; εi ( j ) is the residual for observation i (j); the mean of

εi , ε̄, is by definition zero; wi j are spatial weights, where wi i = 0, and W is the total distance

used to normalise the statistic. Similar to Pearson’s correlation coefficient, possible values

are in the range of -1 to 1. In the spatial domain, 0 implies perfect randomness, -1 implies

perfect clustering of dissimilar values (perfect dispersion), and 1 implies perfect clustering of

similar values. Inference is usually conducted following a normality assumption ( I−E [I ]p
V ar [I ]

∼
N (0,1)4), with the null hypothesis usually being perfect randomness.

2.3.2 Geary’s C

Geary’s C, also denoted Geary’s contiguity ratio, first defined by Geary (1954) and generalised

by Cliff and Ord (1970), is a statistic used for detecting spatial autocorrelation, structurally

akin to the Durbin-Watson test in the time domain (Sokal and Oden (1978)). It is defined as:

c = (N −1)

2W

ΣiΣ j wi j (εi −ε j )2

Σi (εi − ε̂)2
= (N −1)

2W

ΣiΣ j wi j (εi −ε j )2

Σiε
2
i

, i , j = 1,2, ..., N ;W =ΣiΣ j wi j (2.2)

where the notation corresponds to the definitions specified for Equation (2.1). Possible val-

ues range from 0, implying perfect clustering of similar values, to an unspecified positive

number above 1, where 1 implies perfect randomness. Similarly to Moran’s I, inference is

usually conducted following a normality assumption ( c−E [c]p
V ar [c]

∼ N (0,1)4), with the null hy-

pothesis usually being perfect randomness.

Evident from the equations above, Moran’s I and Geary’s C are sensitive to the choice of

weighting function. In this paper, we use the distance decay function outlined in Equation

(5.7). Although the two statistics are highly similar, Moran’s I can be understood as a mea-

sure of global spatial autocorrelation, while Geary’s C is more sensitive towards local spatial

autocorrelation (Sokal and Oden (1978)).

4E[I] and Var[I] are defined in (Fotheringham, 2009, p.262), while E[c] and Var[c] are defined in Chen (2016).

CHAPTER 2. THEORY 7



3
Background

3.1 The property market of Norway

The Norwegian housing market has some noteworthy characteristics making it highly suit-

able for studies on property pricing in general. First, the sales process can be characterised as

an English auction where the price is determined in a near perfect bidding context (Olaussen

et al. (2017)). Second, most properties for sale in Norway are announced with standardised

adds on the classifieds site FINN.no.1 This facilitates comparison between dwellings and

provides high-quality data for market participants. Third, Norwegians have a strong prefer-

ence for home ownership as opposed to renting, with a 2016 ownership rate of 82.7 %2 (Eu-

rostat (2016)). As a result, the Norwegian housing market is dominated by non-professional

buyers and sellers with low purchasing power, contributing to a fairly efficient housing mar-

ket.

3.2 The property market of Oslo

Oslo is the capital of Norway with a 2018 population of approximately 670,000. Historically,

the city has been demographically divided between east and west; industry workers were

based around the river Akerselva in the central and eastern areas, while wealthier families

mainly resided in western parts (Amundsen (2015)). Today, some former working class dis-

tricts like Grünerløkka and Gamle Oslo are becoming increasingly popular (Faksvåg (2015)),

but the historical pattern with higher prices in western areas is still evident, as shown in

Figure 3.1. Figure 3.2 shows the square metre price development for dwellings in Oslo and

Bærum3 from 1993 to 2018. It indicates that prices have been highly volatile in recent years

– a rationale behind our decision to draw the test sample randomly with respect to time,

further discussed in Subsection 5.1.1.

1FINN covers approximately 70 % of the Norwegian housing market (Eiendom Norge, Eiendomsverdi and
FINN.no (2017)). All properties in our data set were announced on the site.

2Higher than comparable figures like those of Sweden (65.2 %), Denmark (62.0 %) or EU average (69.2 %).
3Bærum is a suburb of Oslo, located west of the city.
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Figure 3.1: Administrative districts of Oslo with a 2017 square metre price ranking
(Humberset (2018)). Data for district Sentrum (grey area) are not available; district Søndre

Nordstrand is not represented in our data set and as a result excluded from this figure.

Figure 3.2: Statistic Norway’s Price index for existing dwellings in Oslo and Bærum
expressed in square metre price (Monsrud and Takle (2018)). 1 NOK ≈ 0.11 EUR (June 2018).
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4
Data

Our models were run on a proprietary data set, which we refer to as Virdi,1 provided by the

firm Alva Technologies (Alva), with data on housing transactions in Oslo occurring between

August 2016 and December 2017. The data set had accurate and comprehensive information

on building characteristics for each transaction, including longitude and latitude data. In the

data preparation process, entries in district Marka were discarded, dwellings from district

Sentrum were reassigned to St. Hanshaugen and dwellings marked with Other unit type were

reassigned as Apartment.2 This left Virdi with 16,417 entries. We augmented the data set

further by mapping administrative district information from Oslo Kommune (2018), adding

up to 3 previous sales of the Virdi dwellings using a second proprietary data set received from

Alva,3 and finally retrieving additional data through corresponding FINN advertisements.

An overview of the variables included in the regression models is provided in Tables 4.1 - 4.6,

where all attributes are specified as indicator variables. Variables stemming from FINN are

described in Table 4.6.

Parts of the information sourced from FINN was obtained through word recognition ap-

plied on the advertisement title. This implies that only characteristics highlighted by the

seller/agent were obtainable, potentially causing some dwellings to lack data on attributes

they in fact possess. However, these titles are fairly comprehensive; the Virdi dwellings have

titles with almost 17 words on average, allowing the promotion of multiple property charac-

teristics. Further, since data on price-increasing variables like Has a garden were retrieved,

we consider this problem limited as promoting such attributes is in the seller’s interest.4

Statistics Norway’s Price index for existing dwellings for Oslo and Bærum (Monsrud and

Takle (2018)), with data going back to 1993, was used as a proxy for the expected price ap-

preciation of dwellings between sales in the repeat sales method. We refer to Hansen and

Pettrém (2017) for an overview of house price indices available in Norway. A distribution

of the number of previous sales for the Virdi dwellings used in the repeat sales method is

provided in Table 4.7.

1Named after Alva’s value estimate application. For more information see: https://virdi.no.
2The discarded dwellings were too remotely located to be relevant; reassignments due to sample size.
3An unprocessed data set with more than 300,000 historical transactions of dwellings in Oslo.
4Data on refurbishment need were obtained. In our experience, the title always promotes this if relevant.
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Table 4.1: Construction year
for dwellings in Virdi

Construction year Dwellings

1820 - 1989 12,894
1990 - 2004 1,120
2005 - 2014 2,063
2015 - 340

Total 16,417

Table 4.2: House type distribution
for dwellings in Virdi

House type Dwellings

Apartment 14,592
Semi-detached house 367
Detached house 385
Serial house 1,073

Total 16,417

Table 4.3: District distribution
for dwellings in Virdi5

District Dwellings

Alna 1,317
Bjerke 719
Frogner 1,616
Gamle Oslo 1,647
Grorud 771
Grünerløkka 2,079
Nordre Aker 816
Nordstrand 1,038
Sagene 1,949
St. Hanshaugen 1,193
Stovner 556
Ullern 641
Vestre Aker 725
Østensjø 1,350

Total 16,417

Table 4.4: Sales month for
dwellings in Virdi

Time of sale Dwellings

August 2016 92
September 2016 1,036
October 2016 1,234
November 2016 1,094
December 2016 545
January 2017 729
February 2017 1,112
March 2017 1,189
April 2017 724
May 2017 1,283
June 2017 1,478
July 2017 863
August 2017 1,112
September 2017 1,098
October 2017 1,184
November 2017 1,140
December 2017 504

Total 16,417

Table 4.5: Size distribution
for dwellings in Virdi

Dwelling Size Dwellings

10 - 29 m2 578
30 - 39 m2 1,513
40 - 49 m2 1,933
50 - 59 m2 2,886
60 - 69 m2 3,277
70 - 79 m2 1,901
80 - 89 m2 1,303
90 - 99 m2 757
100 - 109 m2 578
110 - 119 m2 348
120 - 129 m2 292
130 - 139 m2 203
140 - 149 m2 165
150 - 179 m2 328
Above 180 m2 355

Total 16,417

5The district Søndre Nordstrand was excluded from the data set by Alva.
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Table 4.6: Variables retrieved from FINN
advertisements for dwellings in Virdi

Dwellings % of total

High monthly shared cost 1,642 10.0 %
Two bedrooms & size < 60 m2 932 5.7 %
Three bedrooms & size < 85 m2 835 5.1 %
Housing cooperative 8,615 52.5 %
Needs refurbishment 1,158 7.1 %
Is a penthouse 2,299 18.2 %
Has a garden 1,659 10.1 %
Has a terrace 1,139 6.9 %

High monthly shared cost is defined as having the top 10 % shared
cost of dwellings in Virdi, the threshold being NOK 4,713 per
month; Two bedrooms & size < 60 m2 is the number of dwellings
being smaller than 60 m2 and having exactly two bedrooms;
Three bedrooms & size < 85 m2 is the number of dwellings being
smaller than 85 m2 and having exactly three bedrooms; Hous-
ing cooperative is whether the dwelling is part of a housing coop-
erative. The self-explanatory variables Needs refurbishment, Is a
penthouse, Has a garden and Has a terrace were retrieved by word
recognition.

Table 4.7: Previous sales count for dwellings in Virdi

Number of sales Dwellings % of total

No previous sales 3,279 20.0 %
One previous sale 5,631 34.3 %
Two previous sales 4,109 25.0 %
Three previous sales 3,398 20.7 %

Total 16,417 100.0 %
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5
Methodology

We first outline an ordinary hedonic regression model with emphasis on intercept area dum-

mies constructed using the k-means and k-nearest neighbour algorithms. We then move on

to describe the following four extensions to the basic regression model:

1. Regression kriging: A spatial error model assuming spatial dependence in the error

terms.

2. Mixed regressive, spatial autoregressive model: A spatial lag model assuming spatial

dependence in the dependent variable.

3. Geographically weighted regression: A local regression model assuming spatial non-

stationarity.

4. Vicinity-based residual tuning: A simple, outlier-robust procedure adjusting hedonic

regression predictions based on residuals of nearby dwellings.

Finally, we outline how estimates from a repeat sales model are combined with the hedonic

regression estimates. Our model scheme is plotted in Figure 5.1 below, where the geograph-

ically weighted regression has a dashed line since district variables must be omitted in this

model.

Figure 5.1: Overview of spatial models and extensions used in this paper. The dashed line
indicates that district indicator variables cannot be specified in the GWR model.
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5.1 Basic hedonic regression model

The hedonic regression model was first introduced by Rosen (1974). It is a commonly used

model in property valuation, based on the assumption that the value of a property equals

the summarised market value of its parts. In our model, the value of a given dwelling is

represented by its common debt at sales date plus sales price divided by house area in m2,

formally:

Pi = sal es pr i cei + common debti

house ar eai
. (5.1)

The natural logarithm of Pi from Equation (5.1) is estimated by evaluating contributions

to the price by each utility-bearing attribute using multiple linear regression. The general

equation to be estimated is written

ln(Pi ) =β0 +
∑
k
βk Xki +

∑
n
δnDni +εi , ε∼ i .i .d . (5.2)

where P is the price variable as defined in Equation (5.1); Xk is a set of explanatory variables1

describing a presence of utility-bearing characteristic k; Dn is a set of n area indicator vari-

ables; ε is the error term, andβ0,βk and δn are the parameters to be estimated with estimates

denoted β̂0, β̂k and δ̂n . Our data only span 17 months and cover a single city, so we follow

the common assumption of parameter vectors invariant across space and time (de Haan and

Diewert (2013)). Equation (5.2) is estimated using least absolute deviation (LAD) following

Koenker and Bassett Jr (1978), as LAD is more robust towards outliers than ordinary least

squares (OLS) as well as other estimators based on distributional assumptions (Yoo (2001)).

An overview of the structural explanatory variables used in Equation (5.2) is found in Tables

4.1 - 4.6. To incorporate spatial and temporal variability in Equation (5.2), we use intercept

indicator variables, further discussed in the following subsections.

5.1.1 Isolating time – indicator variables and nonchronological sampling

House prices are volatile, subject to seasonality effects, and generally substantially influ-

enced by time (Reichert (1990)). However, the focus of this article is modelling spatial effects,

not the temporal dimension. To get results unbiased from the market price development, we

isolate this effect by including monthly time dummies as explanatory variables in all regres-

sion models. Furthermore, our test sample is constructed by randomly drawing 20 % of the

observations from the whole sample. This implies that the two samples we use for estimating

and testing the models span the same time horizon, as opposed to a sequential sampling.

1Includes both building characteristics and dummy variables for time.
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5.1.2 Constructing district boundaries with k-means

The k-means algorithm is applied to our training data sample to construct artificial market

districts with more homogeneous property pricing processes while retaining cohesiveness.

Distance between dwellings is measured as a function of longitude, latitude and price, the

latter as defined in Equation (5.1). After clustering the training set, k-nearest neighbour is

used to classify dwellings in the test sample based on the newly constructed districts, mea-

suring distance in classical, geographic sense using the haversine formula. An algorithmic

outline of the methods is provided in Appendix A.2. Empirical trial gave best results for val-

ues of k in k-means between 14 and 20, and was set to 18 in the final model as this provided

the most stable results. An illustrative plot comparing a k-means clustering with k = 14 and

administrative borders is shown in Figure 6.1. The k in k-nearest neighbour was set to 3,

based on empirical trial as well as visual inspection of district shapes produced by k-means.

5.2 Regression kriging

As argued by Dubin (1988) and Basu and Thibodeau (1998) among others, spatial depen-

dence in the housing price process can be modelled by assuming the original functional re-

lationship (Equation (5.2)) holds, while abandoning the assumption of the error term being

i.i.d. This requires the modelling of the error covariance structure. Adopting this approach

for prediction builds on the statistical interpolation technique kriging.2 Following the previ-

ously outlined notation, Equation (5.2) is reformulated into

ln(Pi ) =β0 +
∑
k
βk Xki +

∑
n
δnDni +εi , ε∼ N (0,σ2C) (5.3)

where C is the error correlation matrix. To estimate Equation (5.3), a functional form for

the error term’s covariance structure must be assumed. The parameters of this function,

along with the normal regression coefficients, are simultaneously estimated using maximum

likelihood.3 The estimation of (5.3) can become very complex in the presence of nonlinear

explanatory variables (Hengl et al. (2007)), and in practice, parameter instability is a major

concern (Goovaerts (1999)).

2When auxiliary variables (here X and D) are included, the terms kriging with external drift (KED) or uni-
versal kriging (UK) are used. Often, the latter term is limited to the case where the auxiliary variables are
coordinates only.

3We refer to Dubin (1988) for a definition of the maximum likelihood function.
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To mitigate this, the estimation can be divided into two parts. First, the linear regression

parameters β0, βk and δn are estimated using a less complex estimator, in our case, LAD.

Then, the error covariance function parameters are estimated by simple kriging4 with zero

mean on the residuals from the first regression. The prediction is finally calculated by adding

the fitted residual from the simple kriging model to the fitted value from the linear regression.

In mathematical terms, the predicted value for dwelling i in the test sample having structural

characteristics X ′ and D ′ is given by

ln(P̂i ) = β̂0,L AD +∑
k
β̂k,L AD X ′

ki +
∑
n
δ̂n,L AD D ′

ni + ∑
j

wi j ε̂ j ,L AD , j 6= i (5.4)

where ε̂ are the LAD residuals from the training sample, and wi j are elements in the weight

matrix W, determined by an assumed covariance function. This two-step procedure is called

regression kriging, first named by Odeh et al. (1995). Predictions from (5.4) and predictions

made from directly estimating (5.3) are mathematically equivalent; as long as the assumed

covariance function is identical, the difference lies in the computational steps only (Hengl

et al. (2003)).

Several structural covariance functions are applicable in kriging, with the common fea-

ture that correlation between observations decreases with increased physical distance. We

assume that the error covariance follows the negative exponential form, following Case et al.

(2004)

ci j = b1 +e
− di j

b2 , j = 1,2,3, ...,100; j 6= i

where the parameters b1 and b2 are estimated in the second step of the regression kriging

procedure outlined above; di j are euclidean distances between dwelling i and dwelling j,

and ci j are entries in the C-matrix from Equation (5.3). To calculate the weights based on

the covariance matrix, we use the relationship W = C−1c, where c is a vector of covariances

between the training data points and the estimation point (Bohling (2005)). For computa-

tional reasons, we limit the maximum number of neighbours taken into account to 100 for

each dwelling.

We give a final remark regarding our use of LAD. Generalised least squares (GLS) is recom-

mended as the proper estimator in the first step of regression kriging, to account for spatial

autocorrelation in the error term (Cressie (1990)). Despite this, Kitanidis (1993) shows that

the difference between several iterations of GLS and a single iteration (OLS) is too small to

have any notable effect on the final result. We tried using both GLS and LAD and observed

just marginal differences in line with Kitanidis (1993), and chose to use LAD to get a consis-

tent choice of estimator across all models evaluated in this paper.

4The term simple kriging is used when the mean of the dependent variable is assumed known (Cressie
(1990)).
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5.3 Mixed regressive, spatial autoregressive model

As argued by Can (1992), spatial dependence in the housing price determination process can

be modelled by including a function of the dependent variable as an autoregressive term in

the standard hedonic regression (Equation (5.2)). Using the specification by (Fotheringham,

2009, p. 257) the model can be expressed as

ln(Pi ) =β0 +ρ
∑

j
wi j l n(P j )+∑

k
βk Xki +

∑
n
δnDni +εi , j 6= i (5.5)

where ρ is a measure of the overall level of spatial dependence among (ln(Pi ), l n(P j )) pairs

for which wi j > 0, and wi j are spatial weights we give to the sales price of dwelling j. Other

variables are as described in Section 5.1. Including the dependent variable on the right-

hand side induces simultaneity,5 so estimating Equation (5.5) with OLS or LAD returns bi-

ased estimates. However, this is commonly done, as appropriate estimation using maximum

likelihood is a challenge (Farber and Yeates (2006)). A different solution following Can and

Megbolugbe (1997) is to include an additional constraint, rephrasing Equation (5.5) into

ln(Pi t ) =β0 +ρ
∑

j
wi j ln(P j ,t−m)+∑

k
βk Xki +

∑
n
δnDni +εi t , m = 1,2, ...; j 6= i . (5.6)

The distinction between Equation (5.5) and (5.6) is that the dependent variables in the latter

are determined at time t and are hence exogenous, resulting in OLS and LAD being unbiased

estimators. We define the weighting function, again following Can and Megbolugbe (1997):

wi j =
{ 1/di j

Σ j (1/di j ) : di j < 1.5 km

0 : di j ≥ 1.5 km
j = 1,2,3, ...,15; j 6= i (5.7)

where di j are euclidean distances between dwelling i and dwelling j, j representing the 15

dwellings located closest to dwelling i, and with earlier sales dates than dwelling i. In the

special case where two dwellings share the same location, we set di j = 10 metres so Equa-

tion (5.7) is defined for all observations.6

A final remark is given about remotely located dwellings and dwellings with the oldest trans-

actions of the sample, having no relevant neighbours available to define their autoregressive

term. To retain the same number of observations for all models considered in this paper, we

set the autoregressive term of these dwellings equal to the average log price for the relevant

district, with price defined as in Equation (5.1).7

5For definitions of simultaneity and simultaneous equations bias we refer to (Brooks, 2014, p. 308).
6Mainly for academic interest, as it accounts for less than 0.5 % of the sample.
7Mainly for academic interest, as it accounts for less than 1.0 % of the sample.
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5.4 Geographically weighted regression

As argued by Wheeler and Calder (2007), the housing price process is non-stationary over

space and the coefficients in the traditional hedonic regression represent the global "aver-

age" only. As a result, accurate predictions must stem from an enhanced regression model

where the parameters are allowed to vary over space (Yao and Fotheringham (2016)). The

geographically weighted regression method enables such a local parameter estimation. We

follow the notation of (Fotheringham et al., 2002, p. 52) and rephrase the traditional regres-

sion framework into

ln(Pi ) =β0(ui , vi )+∑
k
βk (ui , vi )Xki +εi (5.8)

where ui and vi denote the coordinates of the ith point in space, and βk (ui , vi ) is a reali-

sation of the continuous function βk (u, v) at point i. Note that the location area indicator

variable D from Equation (5.2) is omitted in Equation (5.8). The equation above contains

more unknown than observed variables, so at point i, Equation (5.8) is approximated by:

ln(Pi ) =β0 +
∑
k
βk Xki +εi . (5.9)

The parameters β0 and βk are independently estimated for all i locations with dwellings in

the test sample. Estimation is conducted by weighting the observations in accordance with

their proximity to location i, and the parameters are chosen to minimise the weighted sum

of squared residuals. We follow Fotheringham et al. (2002) and estimate Equation (5.9) with

weights calculated using a Gaussian kernel function:

wi j = e−0.5
di j

b

2

, i 6= j (5.10)

where di j are the euclidean distances between point i and j; b is referred to as bandwidth and

chosen by a cross-validation optimisation approach following Cleveland (1979). Practically

speaking, this implies that just a small subset of the observations in the training sample is

used to estimate Equation (5.9) at the different points i, making the estimate for a given

dwelling vulnerable to anomalies in the data of nearby located dwellings.
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5.5 Vicinity-based residual tuning

We introduce an automated variant of a valuation method commonly used by real estate

agents where a limited number of recently sold properties in the immediate neighbourhood

(usually 3 - 6) are used to provide a house value estimate (Can and Megbolugbe (1997), Pace

et al. (2000)). The procedure outlined here utilises the fact that differences between proper-

ties are already controlled for in the residuals of a hedonic regression. Pitfalls from including

district intercept dummies in a regression, as outlined in Fik et al. (2003), are also addressed.

The method is referred to as Vicinity-based residual tuning or VRT.

5.5.1 Procedure

Obtain fitted values for dwellings in the test set by using regression coefficients estimated on

the training set. Then, for each dwelling in the test set, with sales date denoted τ:

i) Identify up to the κ closest neighbours from the training set sold before time τ, located

within the same district8 and within a radius of maximum µ metres.

ii) Extract the residuals of the neighbours and calculate their median. This median resid-

ual is multiplied by a deflation factor α, and another deflation factor β if the number

of neighbours is below λ. Finally, add this residual to the fitted value to obtain the VRT

estimate.

Table 5.1: Parameter values, VRT method

κ µ α β λ

6 150 0.7 0.5 3

5.5.2 Reasoning behind parameter values and neighbour constraints

Specifying area intercept dummies in a hedonic regression often results in low prediction

accuracy close to district borders, where residuals with different magnitudes and signs are

clustered on each side of the borders. Figure A.2 provides an example of such effects. To

address this, we include the district constraint in i). Further, an outlier with extreme residual

value included as a neighbour can have a severe impact on the model accuracy. We limit this

effect by using the median9 and including the (λ, β) clause in ii), where λ = 3 corresponds

to the lowest number of neighbours where the smallest and largest neighbour residual value

are discarded in the calculation of the median. The rest of the parameters are set by the

following reasoning: µ is chosen intuitively, α and β are set based on empirical trial and the

selection of κ follows Can and Megbolugbe (1997).

8Either administrative or generated by k-means, depending on what variable the regression uses.
9As opposed to, e.g., regular or distance weighted average usually proposed in the literature (Dubin (1998)).
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5.6 Constructing and combining repeat sales predictions

Hedonic house price models have a shortcoming stemming from the high heterogeneity

of dwellings, making the inclusion of all price-influencing attributes infeasible (Case et al.

(1991)). By using the concept of repeat sales analysis, we try to capture such hardly observ-

able effects through the former sales prices of a given dwelling. The model assumes that

prices have developed in line with the overall market, as described by a house price index,

implying that the quality of each dwelling is assumed comparable at the transaction times.

As outlined in Chapter 4, Statistic Norway’s Price index for existing dwellings for Oslo and

Bærum with quarterly data going back to 1993 is used in this paper. We consider a maxi-

mum of three previous transactions for each dwelling, where the most recent transactions

are retained, excluding all sales from before 1993 as a result of the index span.

The premise that a dwelling’s quality is highly similar at different transaction times is

a vulnerable assumption at best. If previous sales conditions are unrepresentative for the

dwelling’s condition at resale, the repeat sales estimate is likely to mispredict gravely. To

remove such outliers, all repeat sales estimates deviating more than 25 % from the regression

estimate with which they are to be combined, are discarded, following Chan et al. (1999) and

OECD et al. (2013). To obtain one final prediction, the remaining estimates are combined

following the procedure outlined in detail in Appendix A.1; in short, the weight given to the

hedonic regression estimate will amount to at least 60 %, and heavier weighting is given to

predictions based on more recent previous sales than earlier transactions. Following Clemen

(1989), only simple linear combination techniques are used.

20 CHAPTER 5. METHODOLOGY



6
Results and discussion

The performance1 of an ordinary hedonic regression without any location attributes is dis-

played in the top row of Table 6.1. This model includes no spatial information whatsoever,

and consequently represents a benchmark for all our enhancements addressing the spatial

aspect. A comparison of the results confirms the strong influence of location on housing

value: The most basic effort to model location – adding administrative district indicator vari-

ables (row 2) – reduces the median error from 12.1 % to 8.05 %, an improvement of 33.5 %.

Interestingly, augmenting the benchmark model with either regression kriging (row 5) or

mixed regressive, spatial autoregressive model (row 9) yields similar improvements – from

12.1 % to 8.18 % and 7.70 %, respectively. We deduce that district intercept dummies rela-

tively accurately incorporate the effect of location, although several methods can tackle this

matter. The extensive use of indicator variables is likely driven by the intuitive interpretation

of the parameters, as well as ease of implementation. However, the use of such variables, par-

ticularly when based on administrative districts, disregards intradistrict variation and tends

to result in irregular residual patterns close to borders, as discussed in Subsection 2.2.1.2

Statistically generated districts can reduce these issues. A comparison of the adminis-

trative and a k-means based division of Oslo is visualised in Figure 6.1.3 An interesting case

is the administrative district Alna, where k-means classifies the dwellings into four different

districts, indicating large internal price differences. We limit ourselves to highlighting this

example and encourage examining Figure 6.1 in light of Figures 3.1, A.1 and A.2. Improved

performance from using k-means districts is evident comparing row 2 and 3 in Table 6.1; the

median absolute percentage error improves from 8.05 % to 7.67 %, and the values of Moran’s

I and Geary’s C indicate reduced spatial autocorrelation in the residuals. As stated in Sub-

section 5.1.2, k-means is set to divide the city into a higher number of districts (18) than the

administrative division (14), due to more stable performance. Results based on different val-

ues of k are shown in Appendix A.3, supporting the algorithm’s conceptual advantages, as

the improvement from implementing k-means with 14 districts is relatively high compared

to the improvement stemming from finer district fragmentation.

1Generally, we measure model performance by median absolute percentage error (Q0.5).
2The resulting residual pattern from using administrative borders is plotted in Figure A.2.
3As k-means works independently of administrative districts, any area similarities are coincidental.
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Figure 6.1: Comparison of administrative districts (lines) and statistically made districts
constructed using k-means (coloured markers) for the city of Oslo. Final k-means models

use k = 18, but this figure shows a partition using k = 14 for easier visual inspection of
algorithm functioning. Colour gradient indicates the average square metre price for each
k-means district, directly comparable with Figure 3.1. Number of observations is 13,133.
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Table 6.1: Model performances

Model
Admin

district

K-

means

Repeat

sales
Q0.25 Q0.5 Q0.75

Within

10 %

Moran’s

I

Geary’s

C

Row

no.

O
rd

in
ar

y
re

gr
es

si
o

n

� � � 5.69% 12.1% 21.3% 42.4% 0.524 0.449 1

�3 � � 3.74% 8.05% 14.1% 59.6% 0.143 0.826 2

� �3 � 3.55% 7.67% 13.5% 61.6% 0.107 0.860 3

� �3 �3 3.25% 6.94% 12.3% 66.0% 0.099 0.867 4

R
eg

re
ss

io
n

kr
ig

in
g

� � � 3.72% 8.18% 14.6% 58.5% 0.045 0.940 5

�3 � � 3.55% 7.72% 13.9% 61.1% 0.038 0.949 6

� �3 � 3.53% 7.72% 14.0% 61.2% 0.037 0.950 7

� �3 �3 3.23% 7.00% 12.5% 65.3% 0.036 0.950 8

A
u

to
-

re
gr

es
si

ve

� � � 3.52% 7.70% 13.7% 61.0% 0.086 0.889 9

�3 � � 3.40% 7.31% 13.0% 63.7% 0.068 0.902 10

� �3 � 3.39% 7.28% 12.9% 63.6% 0.065 0.906 11

� �3 �3 3.18% 6.77% 11.8% 67.4% 0.063 0.906 12

V
R

T

� � � 4.03% 8.76% 15.7% 55.6% 0.204 0.761 13

�3 � � 3.26% 7.12% 12.7% 64.6% 0.049 0.918 14

� �3 � 3.25% 7.06% 12.6% 64.8% 0.044 0.926 15

� �3 �3 3.01% 6.54% 11.6% 68.2% 0.051 0.919 16

G
W

R � 3.14% 6.65% 11.7% 68.1% 0.072 0.896 17

�3 2.93% 6.20% 11.0% 71.1% 0.059 0.909 18

Model refers to the methods outlined in Section 5.1 - 5.5; Admin district and K-means indicate if
the boundaries for the area dummy variables are administrative districts or generated by k-means,
respectively (irrelevant for the GWR model); Repeat sales indicates whether the results are obtained
after combining with repeat sales predictions; Q0.25, Q0.5 and Q0.75 denote the first, second and
third quartile of the errors, respectively, where Q0.5 is boldfaced for emphasis; Within 10 % specifies
the fraction of errors below 10 %; Moran’s I and Geary’s C are calculated as detailed in Section 2.3,
and Row no. is row number provided for convenience when referring to this table.
The results shown are average values from 10 runs for each implementation. The number of ob-
servations used for model training is 13,133, while the number of observations out-of-sample is
3,284.
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District indicators are insufficient to appropriately model refined spatial patterns. We

first consider the performance of the global augmentations regression kriging and mixed

regressive, spatial autoregressive model. Without district variables, both models display im-

proved prediction accuracy compared to the benchmark model, as already pointed out. With

district variables, accuracy increases further, although not substantially. A less intuitive re-

sult is that the two spatial models seem indifferent to the choice of district representation,4

in contrast to the clear advantage of applying k-means to the ordinary regression. We sug-

gest two possible explanations. First, the influence of district dummy variables shrinks when

location is concurrently modelled by several methods.5 Second, the two enhancements cor-

rect some spatial abnormalities caused by the administrative district, reducing the need for

k-means. A final observation is that the autoregressive model outperforms regression krig-

ing. No clear trend in similar research concurs with this finding, nor did applying different

weighting functions in the regression kriging model affect the result (in line with LeSage and

Pace (2014)). However, while this might reduce the credibility of our kriging implementation,

the effect of combining these predictions with repeat sales estimates (discussed later in this

section) coincides with the remaining spatial models.

The VRT model performs second best among the spatial enhancements (rows 14 and 15

in Table 6.1). To explain these results, we refer to the arguments by Chan et al. (1999) about

the severe impact from outliers on most models, given that VRT is constructed to be more

outlier-robust. We also note that the model only performs well for specifications includ-

ing district variables6 and attribute this behaviour to VRT being unable to distinguish more

district-wide trends when only considering a very limited number of neighbours. As op-

posed to adjusting the model to capture such trends, we stress that it is intrinsically tailored

to address spatial residual patterns emerging from the use of intercept dummy variables in

a regression. As a result, the method probably has limited use in general forecasting, but

proves to be highly effective in this specific context. VRT also seems quite indifferent to the

choice of district representation, most likely by the same reasons suggested for regression

kriging and the autoregressive model.

The geographically weighted regression emerges as the most precise spatial enhance-

ment (row 17 in Table 6.1). Since this model assumes and addresses spatial non-stationarity,

the large improvement strongly suggests that this is the more prominent spatial effect in the

Oslo housing market. The fact that GWR seems to outperform other spatial models for out-

of-sample predictions corresponds with the findings of Farber and Yeates (2006) and Páez

et al. (2008), but contrasts Harris et al. (2010) and Harris et al. (2011), recommending uni-

versal kriging. Although GWR tends to provide precise predictions, it has received criticism

based on its limited value for making inferences. Furthermore, the method is sensitive to

outliers on a local level, particularly problematic in housing valuation where outliers pose a

permanent challenge.

4Comparing row 6 with row 7, and row 10 with row 11 in Table 6.1.
5Observable by comparing the absolute values of the location dummy parameters in Tables A.4 and A.5.
6Row 13 in Table 6.1 shows unsatisfactory performance by VRT where district variables are omitted.
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Figure 6.2: Visualisation of improved performance by combining repeat sales predictions
with hedonic regression predictions. The bold number above the arrows indicates the

reduction in median absolute percentage error in percentage terms. The row number at the
bottom of each column indicates the corresponding row in Table 6.1.

The gain from combining repeat sales predictions with hedonic regression forecasts is

evident in Table 6.1 and further emphasised in Figure 6.2, where the median absolute er-

ror achieved by the different regression models are plotted pre- and post-combination.7 In

fact, the table reveals that the combination improves accuracy by every metric and for every

variation of the hedonic regression.8 To support diversification as the main driver of the im-

provement (as argued by Bates and Granger (1969)), as opposed to a deterioration of highly

accurate repeat sales predictions, independent repeat sales results are provided in Appendix

A.4. This table makes it evident that uncombined repeat sales predictions perform worse

than all regression models used for combination, supporting the diversification argument.

Also note the considerable effect of outlier removal on the repeat sales estimates, evident by

comparing the two rows in Appendix A.4 – arguably a necessity in order to replicate the level

of improvement from the repeat sales/hedonic regression combination.

7Equivalent to comparing rows 4, 8, 12, 16 and 18 with their prior in Table 6.1.
8Moran’s I and Geary’s C do not describe model accuracy.
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Apart from overall increased accuracy, Figure 6.2 shows that improvements from the re-

peat sales combination vary between the regression models, where a more substantial effect

is observed when the initial regression error is large. Considering the fact that the regres-

sion models only differ in terms of location modelling, we infer that repeat sales contribute

with at least some spatial information, with diminished value for more sophisticated spatial

models. Arguably, location is fairly well modelled in the autoregressive, VRT and GWR mod-

els, where the repeat sales combination resulted in similar improvements of 0.51, 0.52 and

0.45 percentage points, respectively. Consequently, we strongly suppose that the predomi-

nant part of these improvements stems from the incorporation of non-spatial information

omitted from the hedonic regression. Although not verifiable, this argument is supported by

the inherent heterogeneity of dwellings, making inclusion of all price-influencing attributes

infeasible in a regression framework (de Haan and Diewert (2013)).

Based on this, we argue that previous sales prices can provide specific value in two ways.

Most importantly, they have the ability to incorporate information on hardly observable at-

tributes. This could have a pivotal value in automated property valuation, as there are few

alternatives to detect such information besides human inspection. Second, they enable the

implementation of a scalable, parsimonious forecasting model, only specifying easily avail-

able attributes, and relying on previous sales prices to incorporate information on the omit-

ted, more market-specific attributes.9

While we argue for conceptual advantages of the combination, some practical limita-

tions should also be addressed. First, collecting previous sales price data reflecting current

housing quality is hard or even impossible in particular cases. Newly built dwellings obvi-

ously lack such data, but very old sales prices are hardly better, as they rarely represent the

current state of the property (Case and Shiller (1987)). As a result, the combination might

be less useful for markets where houses are traded less frequently, such as rural or suburban

areas containing more family homes (Clapp et al. (1991)). In addition, there will always be

some houses lacking data, preventing the method’s applicability to all dwellings. We make

a final remark regarding the scale of the model improvement. As an example, the median

error of GWR is reduced from 6.65 % to 6.20 % – a 6.8 % improvement – when combining

the regression predictions with estimates from repeat sales. This visible, but rather marginal

improvement might imply that the combination has little practical implication. Arguably,

both models are good enough to get an approximate value estimate but, at the same time,

not good enough to make end users confident in the result.

9No universal hedonic specification exists (Bowen et al. (2001)), resulting, to a certain degree, in the need
for local expertise to identify relevant price-influencing attributes in a given market (Gelfand et al. (1998)).
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7
Conclusion

A central aspect of uncertainty in housing transactions is accurate property valuation. This

article has investigated benefits of combining property price predictions from two valuation

methods: Repeat sales and hedonic regression. The models were tested on 16,417 histor-

ical transactions in Oslo, Norway. Due to spatial effects inherent in housing markets, the

hedonic regression was enhanced with three acknowledged spatial econometric models and

a fourth, outlier-robust model proposed by this paper. This was done to ensure a change in

performance was caused by methodological effects from the combination, as opposed to the

correction of a spatially misspecified regression.

The studied combination resulted in improved accuracy for all hedonic regressions on

all metrics, assumed due to diversification, following Bates and Granger (1969). Models with

lower pre-combination accuracy displayed higher improvements, where reduction in me-

dian absolute percentage error ranged from 9.5 % for the ordinary regression to 6.8 % for the

most accurate enhancement, geographically weighted regression. We infer that this varying

gain indicates that repeat sales predictions contribute with at least some spatial information.

While this might have limited value for refined spatial models, we suggest that the existence

of some non-locational information in previous sales prices could have pivotal value for au-

tomated property valuation, as there are few alternatives to detect such information besides

human inspection.

We identify two main limitations of the combination. Non-existent or inapplicable pre-

vious sales price data in certain markets is inevitable. A more manageable problem is our

limited improvement, which we propose for further studies. Optimising the simple combi-

nation scheme presented in this paper is a clear-cut path, e.g., through more considerate

implementation of the temporal dimension of previous sales. A second approach is improv-

ing repeat sales accuracy, for example, by applying local price indices. Considering broader

trends in automatic housing valuation, machine learning appears to be usurping the po-

sition as focal point of research at the expense of hedonic regression (Park and Bae (2015)).

However, these tools are equally dependent on observable, quantifiable data (Trawiński et al.

(2017)), and following our argument that previous sales prices incorporate some otherwise

hardly observable information, a repeat sales/machine learning combination is an interest-

ing direction for further research.
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A
Appendix

A.1 Algorithm combining repeat sales and hedonic regression predictions

1. No previous sales available:

(Applies to 20.0 % of the dwellings in Virdi (Table 4.7))

(a) In this situation, the regression estimate is set as final estimate.

2. One previous sale available:

(Applies to 34.3 % of the dwellings in Virdi (Table 4.7))

(a) We discard the repeat sales estimate when this value deviates more than 25 %

from the regression estimate.1 In this case, the regression estimate is set as final

estimate.

(b) When the repeat sales estimate remains, the final estimate is a weighted sum of

the two estimates, giving the regression estimate a weight of 60 %.

3. Two previous sales available:

(Applies to 25.0 % of the dwellings in Virdi (Table 4.7))

(a) For both repeat sales estimates, we remove outliers following procedure 2a.

(b) When discarding both repeat sales estimates, the regression estimate is used.

(c) When discarding only one repeat sales estimate, the procedure in 2b is used for

the estimate remaining.

(d) When both estimates remain, we compose the final price estimate weighting the

regression 60 %. The remaining 40 % is based on the two repeat sales estimates,

where we let the estimate from the most recent sale be weighted 90 %.

1This threshold is chosen so the resulting removal is in accordance with Chan et al. (1999)
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4. Three previous sales available:

(Applies to 20.7 % of the dwellings in Virdi (Table 4.7))

(a) For all repeat sales estimates, we remove outliers following the procedure 2a.

(b) When discarding all repeat sales estimates, the regression estimate is used.

(c) When discarding two repeat sales estimates, the procedure in 2b is used for the

estimate remaining.

(d) When one estimate is discarded, the procedure in 3d is used for the estimates

remaining.

(e) When all estimates remain, the regression estimate is given a weight of 60 %. The

remaining 40 % is based on the three repeat sales estimates, where the most re-

cent is given 85 %, the second 12 % and the least recent 3 %.
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A.2 K-means and k-nearest neighbour algorithms

input : Data set with longitude, latitude and price; the number of desired clusters, k

output: Clustered data set

begin;

Select longitude, latitude and price values from k random entries in the data set, and

initialise district centroids with these values;

while Centroids still updating do
Assign each observation to its closest centroid using distance function ∆m defined

below;

Reposition all centroids to the average longitude, latitude and price values of their

belonging observations;

end

Algorithm 1: K-means. ∆m(s, t ) =√
hav((us , vs), (ut , vt ))2 +µ(ps −pt )2, where s and t rep-

resent two dwellings; us (t ) and vs (t ) represent the longitude and latitude of s (t ), respec-

tively; hav is the haversine function returning the kilometre distance between two (longi-

tude, latitude) points; ps (t ) is the price of s (t ), on the form specified in Equation (5.1), and

µ is a scaling factor set to 9.3

input : Clustered training set with longitude and latitude; unclustered test set with

longitude and latitude; the number of desired neighbours, k

output: Predicted clustering of the test set

begin;

for i ← 1 to test set size do

for j ← 1 to k do
Identify the j th nearest neighbour in the training set, n, to dwelling i in the test

set, using distance function ∆n defined below;

Store the clustering of n;

end

Assign dwelling i to the cluster shared by the largest number of neighbours;

end
Algorithm 2: K-nearest neighbour. ∆n(s, t ) = hav((us , vs), (ut , vt )), where s and t represent

two dwellings; us (t ) and vs (t ) represent the longitude and latitude of s (t ), respectively, and

hav is the haversine function returning the kilometre distance between two (longitude,

latitude) points.

3Based on trial; higher values of µ repeatedly resulted in geographically non-cohesive clusters.

APPENDIX 39



A.3 K-means results for different values of k

Table A.1: K-means results with varying k, compared to administrative districts

District

type
Q0.25 Q0.5 Q0.75

Within

10 %

Moran’s

I

Geary’s

C

Administrative 3.74% 8.05% 14.1% 59.6% 0.143 0.826

K-means (k = 14) 3.61% 7.78% 13.9% 60.8% 0.125 0.839

K-means (k = 16) 3.66% 7.78% 13.9% 60.8% 0.115 0.853

K-means (k = 18) 3.55% 7.67% 13.5% 61.6% 0.107 0.860

K-means (k = 20) 3.54% 7.62% 13.6% 61.5% 0.098 0.870

K-means (k = 22) 3.57% 7.64% 13.6% 61.5% 0.103 0.866

District type refers to the type of district indicator used; Q0.25, Q0.5 and
Q0.75 denote the first, second and third quartile of the errors, respec-
tively, where Q0.5 is boldfaced for emphasis; Within 10 % specifies the
fraction of errors below 10 %, and Moran’s I and Geary’s C are calculated
as detailed in Section 2.3.
The results shown are average values from 10 runs for each implemen-
tation. The number of observations used for model training is 13,133,
while the number of observations out-of-sample is 3,284.

A.4 Independent repeat sales results

Table A.2: Independent repeat sales results

Model Q0.25 Q0.5 Q0.75
Within

10 %
Number of

observations
Percentage

of total

Repeat sales 4.11 % 8.88 % 16.1 % 54.8 % 13,138 80.0 %
Repeat sales
after outlier removal

3.68 % 7.77 % 13.4 % 61.5 % 11,690 71.2 %

Model refers to whether the repeat sales estimates have undergone outlier removal;
Q0.25, Q0.5 and Q0.75 denote the first, second and third quartile of the errors, respec-
tively, where Q0.5 is boldfaced for emphasis; Within 10 % specifies the fraction of errors
below 10 %; Number of observations denotes the number of entries with previous sales
prices, and Percentage of total indicates the latter number as a percentage of the entire
data set.
We remark the coincidental similarity between the number of entries with previous
sales before outlier removal (13,138) and the number of observations used for model
training of regressions in this paper (13,133).
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A.5 Hedonic regression coefficients tables

Table A.3: Hedonic regression coefficients with admin districts

Coefficients Robust Std. Err P > |t|

Intercept 11.5659∗∗∗ (0.014) 0.0000
Size group: 10 - 29 m2 0.2944∗∗∗ (0.008) 0.0000
Size group: 30 - 39 m2 0.1307∗∗∗ (0.005) 0.0000
Size group: 50 - 59 m2 −0.1090∗∗∗ (0.005) 0.0000
Size group: 60 - 69 m2 −0.1221∗∗∗ (0.005) 0.0000
Size group: 70 - 79 m2 −0.1560∗∗∗ (0.005) 0.0000
Size group: 80 - 89 m2 −0.1786∗∗∗ (0.006) 0.0000
Size group: 90 - 99 m2 −0.1543∗∗∗ (0.007) 0.0000
Size group: 100 - 109 m2 −0.1739∗∗∗ (0.008) 0.0000
Size group: 110 - 119 m2 −0.1759∗∗∗ (0.010) 0.0000
Size group: 120 - 129 m2 −0.2038∗∗∗ (0.010) 0.0000
Size group: 130 - 139 m2 −0.2230∗∗∗ (0.012) 0.0000
Size group: 140 - 149 m2 −0.2367∗∗∗ (0.013) 0.0000
Size group: 150 - 179 m2 −0.2864∗∗∗ (0.011) 0.0000
Size group: Above 180 m2 −0.3454∗∗∗ (0.012) 0.0000
Month sold: August 2016 −0.0590∗∗∗ (0.018) 0.0010
Month sold: September 2016 −0.0441∗∗∗ (0.008) 0.0000
Month sold: October 2016 −0.0343∗∗∗ (0.007) 0.0000
Month sold: November 2016 −0.0211∗∗∗ (0.008) 0.0050
Month sold: December 2016 0.0056 (0.009) 0.5350
Month sold: January 2017 0.0111 (0.008) 0.1830
Month sold: February 2017 0.0196∗∗ (0.008) 0.0100
Month sold: March 2017 −0.0023 (0.008) 0.7630
Month sold: May 2017 −0.0126∗ (0.007) 0.0870
Month sold: June 2017 −0.0545∗∗∗ (0.007) 0.0000
Month sold: July 2017 −0.0754∗∗∗ (0.008) 0.0000
Month sold: August 2017 −0.0805∗∗∗ (0.008) 0.0000
Month sold: September 2017 −0.0771∗∗∗ (0.008) 0.0000
Month sold: October 2017 −0.0976∗∗∗ (0.007) 0.0000
Month sold: November 2017 −0.0968∗∗∗ (0.008) 0.0000
Month sold: December 2017 −0.1326∗∗∗ (0.009) 0.0000
District: Alna −0.4747∗∗∗ (0.006) 0.0000
District: Bjerke −0.3463∗∗∗ (0.007) 0.0000
District: Grünerløkka −0.1706∗∗∗ (0.006) 0.0000
District: Gamle Oslo −0.2086∗∗∗ (0.006) 0.0000
District: Grorud −0.5306∗∗∗ (0.007) 0.0000
District: Nordre Aker −0.1582∗∗∗ (0.007) 0.0000
District: Nordstrand −0.3214∗∗∗ (0.007) 0.0000
District: Østensjø −0.3788∗∗∗ (0.006) 0.0000
District: Sagene −0.1298∗∗∗ (0.006) 0.0000
District: St. Hanshaugen −0.0633∗∗∗ (0.006) 0.0000
District: Stovner −0.6528∗∗∗ (0.008) 0.0000
District: Ullern −0.1544∗∗∗ (0.008) 0.0000
District: Vestre Aker −0.2238∗∗∗ (0.007) 0.0000
House type: Apartment −0.0992∗∗∗ (0.011) 0.0000
House type: Semi-detached house −0.0184 (0.012) 0.1380
House type: Serial house −0.0617∗∗∗ (0.011) 0.0000
Construction year: 1990 - 2004 0.0595∗∗∗ (0.005) 0.0000
Construction year: 2005 - 2014 0.1062∗∗∗ (0.004) 0.0000
Construction year: 2015 - 0.1681∗∗∗ (0.009) 0.0000
Needs refurbishment −0.1028∗∗∗ (0.005) 0.0000
Has a garden 0.0397∗∗∗ (0.005) 0.0000
Housing cooperative −0.0098∗∗∗ (0.003) 0.0020
Is a penthouse 0.0449∗∗∗ (0.005) 0.0000
Has a terrace 0.0182∗∗∗ (0.003) 0.0000
High monthly shared cost −0.0546∗∗∗ (0.004) 0.0000
Two bedrooms & size < 60 m2 0.0477∗∗∗ (0.006) 0.0000
Three bedrooms & size < 85 m2 0.0262∗∗∗ (0.006) 0.0000

*** Significant at the 1 % level. ** Significant at 5 % level. * Significant at 10 % level.
Coefficients estimated using LAD, Pseudo R-squared = 0.5290, number of observations is
13,133. Dependent variable is price as defined in Equation (5.1). All explanatory variables are
indicator variables as described in Table (4.1 - 4.6). The baseline variables are: Size group 40 -
49 m2; Month sold: April 2017; District: Frogner; House type: Detached house and Construction
year: 1820 - 1889.
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Table A.4: Hedonic regression coefficients with k-means districts

Coefficients Robust Std. Err P>|t|

Intercept 10.8891∗∗∗ (0.014) 0.0000
Size group: 10 - 29 m2 0.2913∗∗∗ (0.007) 0.0000
Size group: 30 - 39 m2 0.1322∗∗∗ (0.005) 0.0000
Size group: 50 - 59 m2 −0.0934∗∗∗ (0.005) 0.0000
Size group: 60 - 69 m2 −0.1200∗∗∗ (0.005) 0.0000
Size group: 70 - 79 m2 −0.1403∗∗∗ (0.005) 0.0000
Size group: 80 - 89 m2 −0.1549∗∗∗ (0.006) 0.0000
Size group: 90 - 99 m2 −0.1458∗∗∗ (0.007) 0.0000
Size group: 100 - 109 m2 −0.1530∗∗∗ (0.008) 0.0000
Size group: 110 - 119 m2 −0.1744∗∗∗ (0.009) 0.0000
Size group: 120 - 129 m2 −0.1925∗∗∗ (0.010) 0.0000
Size group: 130 - 139 m2 −0.1801∗∗∗ (0.012) 0.0000
Size group: 140 - 149 m2 −0.2266∗∗∗ (0.013) 0.0000
Size group: 150 - 179 m2 −0.2668∗∗∗ (0.011) 0.0000
Size group: Above 180 m2 −0.3437∗∗∗ (0.012) 0.0000
Month sold: August 2016 −0.0647∗∗∗ (0.016) 0.0000
Month sold: September 2016 −0.0371∗∗∗ (0.007) 0.0000
Month sold: October 2016 −0.0292∗∗∗ (0.007) 0.0000
Month sold: November 2016 −0.0111 (0.007) 0.1300
Month sold: December 2016 0.0097 (0.009) 0.2690
Month sold: January 2017 0.0204∗∗ (0.008) 0.0110
Month sold: February 2017 0.0269∗∗∗ (0.007) 0.0000
Month sold: March 2017 0.0092 (0.007) 0.2020
Month sold: May 2017 −0.0071 (0.007) 0.3160
Month sold: June 2017 −0.0454∗∗∗ (0.007) 0.0000
Month sold: July 2017 −0.0717∗∗∗ (0.008) 0.0000
Month sold: August 2017 −0.0781∗∗∗ (0.007) 0.0000
Month sold: September 2017 −0.0683∗∗∗ (0.007) 0.0000
Month sold: October 2017 −0.0854∗∗∗ (0.007) 0.0000
Month sold: November 2017 −0.0914∗∗∗ (0.007) 0.0000
Month sold: December 2017 −0.1242∗∗∗ (0.009) 0.0000
K-means district 1 0.2991∗∗∗ (0.007) 0.0000
K-means district 2 0.5303∗∗∗ (0.006) 0.0000
K-means district 3 0.3158∗∗∗ (0.007) 0.0000
K-means district 4 0.4531∗∗∗ (0.006) 0.0000
K-means district 5 0.6171∗∗∗ (0.007) 0.0000
K-means district 6 0.2566∗∗∗ (0.007) 0.0000
K-means district 7 0.3250∗∗∗ (0.008) 0.0000
K-means district 8 0.6652∗∗∗ (0.007) 0.0000
K-means district 9 0.5428∗∗∗ (0.008) 0.0000
K-means district 10 0.4454∗∗∗ (0.007) 0.0000
K-means district 11 0.4140∗∗∗ (0.007) 0.0000
K-means district 12 0.1361∗∗∗ (0.007) 0.0000
K-means district 13 0.5137∗∗∗ (0.006) 0.0000
House type: Apartment −0.0919∗∗∗ (0.011) 0.0000
House type: Semi-detached house −0.0181 (0.012) 0.1330
House type: Serial house −0.0474∗∗∗ (0.011) 0.0000
Construction year: 1990 - 2004 0.0519∗∗∗ (0.005) 0.0000
Construction year: 2005 - 2014 0.1035∗∗∗ (0.004) 0.0000
Construction year: 2015 - 0.1411∗∗∗ (0.009) 0.0000
Needs refurbishment −0.0952∗∗∗ (0.005) 0.0000
Has a garden 0.0298∗∗∗ (0.004) 0.0000
Housing cooperative −0.0031 (0.003) 0.3180
Is a penthouse 0.0359∗∗∗ (0.005) 0.0000
Has a terrace 0.0204∗∗∗ (0.003) 0.0000
High monthly shared cost −0.0498∗∗∗ (0.004) 0.0000
Two bedrooms & size < 60 m2 0.0465∗∗∗ (0.006) 0.0000
Three bedrooms & size < 85 m2 0.0294∗∗∗ (0.006) 0.0000

*** Significant at the 1 % level. ** Significant at 5 % level. * Significant at 10 % level.
Coefficients estimated using LAD, Pseudo R-squared = 0.5559, number of observations is
13,133. Dependent variable is price as defined in Equation (5.1). All explanatory variables are
indicator variables as described in Table (4.1 - 4.6). The baseline variables are: Size group 40 -
49m2; Month sold: April 2017; K-means district 14; House type: Detached house and Construc-
tion year: 1820 - 1889.
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Table A.5: Hedonic regression coefficients with k-means districts and autoregressive term

Coefficients Robust Std. Err P>|t|

Intercept 7.3865∗∗∗ (0.144) 0.0000
Size group: 10 - 29 m2 0.2656∗∗∗ (0.007) 0.0000
Size group: 30 - 39 m2 0.1218∗∗∗ (0.005) 0.0000
Size group: 50 - 59 m2 −0.0926∗∗∗ (0.004) 0.0000
Size group: 60 - 69 m2 −0.1149∗∗∗ (0.004) 0.0000
Size group: 70 - 79 m2 −0.1331∗∗∗ (0.005) 0.0000
Size group: 80 - 89 m2 −0.1443∗∗∗ (0.006) 0.0000
Size group: 90 - 99 m2 −0.1348∗∗∗ (0.006) 0.0000
Size group: 100 - 109 m2 −0.1480∗∗∗ (0.007) 0.0000
Size group: 110 - 119 m2 −0.1710∗∗∗ (0.009) 0.0000
Size group: 120 - 129 m2 −0.2011∗∗∗ (0.010) 0.0000
Size group: 130 - 139 m2 −0.1863∗∗∗ (0.011) 0.0000
Size group: 140 - 149 m2 −0.2200∗∗∗ (0.012) 0.0000
Size group: 150 - 179 m2 −0.2569∗∗∗ (0.01) 0.0000
Size group: Above 180 m2 −0.3596∗∗∗ (0.011) 0.0000
Month sold: August 2016 −0.0450∗∗∗ (0.016) 0.0060
Month sold: September 2016 −0.0264∗∗∗ (0.007) 0.0000
Month sold: October 2016 −0.0227∗∗∗ (0.007) 0.0010
Month sold: November 2016 −0.0087 (0.007) 0.2060
Month sold: December 2016 0.0090 (0.008) 0.2670
Month sold: January 2017 0.0146∗ (0.007) 0.0510
Month sold: February 2017 0.0287∗∗∗ (0.007) 0.0000
Month sold: March 2017 0.0043 (0.007) 0.5230
Month sold: May 2017 −0.0075 (0.007) 0.2640
Month sold: June 2017 −0.0518∗∗∗ (0.007) 0.0000
Month sold: July 2017 −0.0758∗∗∗ (0.007) 0.0000
Month sold: August 2017 −0.0783∗∗∗ (0.007) 0.0000
Month sold: September 2017 −0.0728∗∗∗ (0.007) 0.0000
Month sold: October 2017 −0.0845∗∗∗ (0.007) 0.0000
Month sold: November 2017 −0.0887∗∗∗ (0.007) 0.0000
Month sold: December 2017 −0.1113∗∗∗ (0.008) 0.0000
K-means district 1 −0.0009 (0.007) 0.8940
K-means district 2 0.1470∗∗∗ (0.008) 0.0000
K-means district 3 −0.0629∗∗∗ (0.008) 0.0000
K-means district 4 −0.0763∗∗∗ (0.007) 0.0000
K-means district 5 0.0345∗∗∗ (0.007) 0.0000
K-means district 6 −0.1110∗∗∗ (0.007) 0.0000
K-means district 7 −0.2666∗∗∗ (0.009) 0.0000
K-means district 8 −0.0782∗∗∗ (0.007) 0.0000
K-means district 9 0.1042∗∗∗ (0.007) 0.0000
K-means district 10 0.0483∗∗∗ (0.007) 0.0000
K-means district 11 0.0771∗∗∗ (0.008) 0.0000
K-means district 12 −0.1926∗∗∗ (0.008) 0.0000
K-means district 13 −0.0132∗ (0.007) 0.0540
House type: Apartment −0.1190∗∗∗ (0.01) 0.0000
House type: Semi-detached house −0.0266∗∗ (0.011) 0.0180
House type: Serial house −0.0666∗∗∗ (0.01) 0.0000
Construction year: 1990 - 2004 0.0555∗∗∗ (0.005) 0.0000
Construction year: 2005 - 2014 0.0884∗∗∗ (0.004) 0.0000
Construction year: 2015 - 0.1347∗∗∗ (0.008) 0.0000
Needs refurbishment −0.0959∗∗∗ (0.005) 0.0000
Has a garden 0.0237∗∗∗ (0.004) 0.0000
Housing cooperative 0.0020 (0.003) 0.4870
Is a penthouse 0.0442∗∗∗ (0.004) 0.0000
Has a terrace 0.0234∗∗∗ (0.003) 0.0000
High monthly shared cost −0.0457∗∗∗ (0.004) 0.0000
Two bedrooms & size < 60 m2 0.0478∗∗∗ (0.005) 0.0000
Three bedrooms & size < 85 m2 0.0283∗∗∗ (0.006) 0.0000
Autoregressive term 0.3553∗∗∗ (0.013) 0.0000

*** Significant at the 1 % level. ** Significant at 5 % level. * Significant at 10 % level.
Coefficients estimated using LAD, Pseudo R-squared = 0.5710, number of observations is
13,133. Dependent variable is price as defined in Equation (5.1). All explanatory variables are
indicator variables as described in Table (4.1 - 4.6). The baseline variables are: Size group 40 -
49m2; Month sold: April 2017; K-means district 14; House type: Detached house and Construc-
tion year: 1820 - 1889.
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A.6 Residual maps

Figure A.1: Out-of-sample residuals from the hedonic regression without spatial
enhancements or district indicators (referred to in Chapter 6 as the benchmark model) on a
map of Oslo. Lines represent administrative district boundaries; marker colour represents

residual value for each dwelling. Observations: 3,284.
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Figure A.2: Out-of-sample residuals from the hedonic regression with administrative
district indicators on a map of Oslo. Lines represent administrative district boundaries;

marker colour represents residual value for each dwelling. Observations: 3,284.

APPENDIX 45



Figure A.3: Out-of-sample residuals from our most accurate model, combining
geographically weighted regression and repeat sales, on a map of Oslo. Lines represent

administrative district boundaries; marker colour represents residual value for each
dwelling. Observations: 3,284.
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