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Abstract 

There are numerous analytical solutions in order to take into account the geometry effect on 

the fracture toughness and the fracture load of the cracked specimens. However, due to the 

complexities of the mentioned criteria it is practical to have an engineering method which can 

be used for fracture prediction in cracked samples of various shapes and loading conditions. 

In this paper, the fracture behavior of five different testing samples made of 

polymethylmethacrylate (PMMA) has been studied using an energy based criterion namely 

the Average Strain Energy Density (ASED) criterion. According to the formulation of the 

ASED criterion, all the stress terms around the crack tip were taken into account and the 

brittle fracture of different PMMA samples with various geometry constraints were well 

predicted.  
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Nomenclature 

a  crack length  

B  biaxiality ratio 

E  elastic modulus 

h1  minor height of cracked specimen 

h2  major height of cracked specimen 

KI  mode-I stress intensity factor  

KIc  mode-I fracture toughness  

F  applied load in finite element analysis 

Fc  fracture load 

rc  critical distance  

T  T-stress 

W  width of cracked specimen 

σt  ultimate strength 

ν  Poisson’s ratio 

ASED  Average strain energy density criterion  

ASTM  American society of testing materials  

CT  compact tension specimen 

DCB  double cantilever beam specimen 

TDCB  tapered double cantilever beam specimen  

GMTS  generalized maximum tangential stress criterion 

GSED  generalized minimum strain energy density criterion 

LEFM  linear elastic fracture mechanics 

MTS  maximum tangential stress criterion  

PMMA polymethylmethacrylate 
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SED  strain energy density criterion  

SIF  stress intensity factor 

W   average strain energy density  

Wc  critical strain energy density  

 

1. Introduction  

Brittle fracture is the dominant failure mechanism in a wide range of brittle and quasi-brittle 

materials. Hence, failure load assessment is an important task for numerous practical 

applications of brittle materials such as rocks, concretes, ceramics and polymers. The 

majority of available researches in this field are related to the failure criteria based on 

singular terms of stress at the vicinity of the crack tip. Considering the pure mode I loading, 

cracks can be deviated from the original crack plane due to the presence of large values of 

higher order terms of stresses. In this case, several researchers have shown that the fracture 

toughness of the materials is considerably different from the results obtain from the standard 

testing samples such as Compact Tension (CT) and these differences are influenced by the 

shape of the tested specimen [1-12].  

In this case the available fracture criteria which are based on only the singular terms of stress 

(i.e. stress intensity factor, SIF) fail to predict the onset of the fracture [1-4]. One possibility 

is to include the higher order terms (such as T-stress) contribution in the fracture criteria by 

reformulating the previous models based on SIFs. Various fracture criteria have been 

proposed based on the leading terms of series expansion governed by the SIFs combined with 

the T-stress. It has been reported that these two-parameter fracture criteria provide more 

reliable fracture assessments [13–16]. Among the various two-parameter fracture criteria, the 

generalized maximum tangential stress (GMTS) and generalized strain energy density 



4 

 

(GSED) criteria are mostly used for brittle fracture of cracked specimens [10,11]. The GMTS 

and GSED criteria are modified versions of maximum tangential stress (MTS) [17] and strain 

energy density (SED) [18,19] criteria by considering the effect of T-stress in the closed form 

formulations. Although these failure criteria provide better approximation of the fracture 

behavior, they have more complex formulations compared to the previous models based on 

SIF.  

Lazzarin and Zambardi [20,21] presented the ASED criterion by improving the SED criterion 

and considering a control volume instead of a critical distance. According to the ASED 

criterion, brittle fracture occurs when the averaged strain energy density over a control 

volume is equal to a critical value which is a function of material properties of the material. 

By using a control volume around the crack tip and obtaining the strain energy densities, all 

terms of Williams’s series can be considered in calculations leading to more accurate results. 

Although successful ability of the ASED criterion has been reported in several researches for 

various loading conditions in different engineering materials (such as rocks, graphite, 

polymers, metals, and etc. [22-30]) and different practical applications (such as welded joints 

in constructional industries [31] and roller in metal forming industries [32]), the validity of 

this criterion has not yet been examined for different geometries of cracked specimens. 

Hence, the main aim of the present research is to investigate mode I brittle fracture in PMMA 

testing samples of five different geometries. For this aim, the experimental fracture results of 

PMMA specimens reported in a recently published article of the current authors (see Ref. 

[11]) are assessed using the ASED criterion. It has been shown that very good agreement 

exists between the experimental results and the theoretical findings. 

 

2. Experiments  
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Fig. 1 illustrates the geometry of five different specimens used for conducting the fracture 

tests, namely CT, two types of double cantilever beam (i.e. DCB1, DCB2) and two types of 

tapered double cantilever beam (i.e. TDCB1, TDCB2). Due to different geometric constraints 

in these specimens, they can provide a wide range of positive T-stress. Samples were cut 

from a PMMA sheet of 10 mm thick. The geometrical dimensions of the test samples are 

provided in Table 1. The initial notch in the samples was created using a 0.2 mm thick strip 

saw blade. Then, a razor blade was pressed on the notch tip to create a sharp pre-crack. The 

final crack length for all the cases was equal to a/W = 0.5.  

 

Table 1. The geometrical dimensions of the test samples [11] (all dimensions in mm). 

Sample type Width, W Minor height, h1 Major height, h2 Pre-crack length, a 

CT 30 30 30 15 

DCB1 90 30 30 45 

DCB2 150 30 30 75 

TDCB1 90 30 90 45 

TDCB2 150 30 90 75 
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Fig. 1. Schematic view of specimen geometries [11]. 

 

A series of standard tensile tests were conducted according to ASTM D638 to obtain the 

elastic modulus E and the ultimate tensile strength σt of PMMA. Based on earlier study [11, 

33] elastic modulus, ultimate tensile strength and Poisson’s ratio were obtained as E = 2.9 

GPa, σt = 55 MPa and ν = 0.35. Additionally, a constant displacement rate of 0.1 mm/min 

was applied to the fracture test samples and the load-displacement curves were exported for 

each test. According to the brittle behavior of PMMA in room temperature, all the load-

displacement curves had a linear trend followed by sudden failure under critical load. The 

failure load of CT sample was then used in finite element analyses to obtain the fracture 
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toughness. In the following sections, the obtained fracture loads are estimated theoretically 

using the ASED criterion. 

 

3. Theoretical background of ASED criterion  

In this research, a strain energy density-based criterion namely the ASED is described and 

used for fracture load prediction of different test samples under pure mode I loading 

conditions. According to the ASED criterion, when the mean value of strain energy density 

over a control volume, W  is equal to a critical value Wc, the pre-cracked sample will fail. 

The critical strain energy density, Wc is a material property which is independent from the 

geometry of cracked specimen [20]. The radius of control volume depends on the fracture 

toughness (KIc) and the ultimate tensile strength (σt) of the materials under static loads.  

For the case of cracked components, the control volume is a circle of radius rc centered at the 

crack tip (see Fig. 2). Due to the relatively large thickness of the test samples compared to 

other dimensions, plane strain condition was used in the analysis. Dealing with cracked 

components under plane-strain condition, the control volume size, rc, can be calculated using 

the following expression [34]: 
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Fig. 2. Schematic view of the control volume around the crack tip.  
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Lazzarin et al. [20,21] proposed a formula to calculate the average strain energy density using 

SIFs, however, this formulation neglects the effect of higher order terms of stress in front of 

the crack tip. According to their research, elastic deformation energy averaged on the control 

volume turns out to be [20,21]: 
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where I1 is the mode I geometric constant which is a function of the notch geometry and the 

Poisson’s ratio. Additionally, λ1 is Williams’ mode I eigenvalue and KI is the mode I SIF. 

Dealing with the specific case of a cracked sample (i.e. 2α = 0), the mode I geometric 

constant and mode I eigenvalue are equal to I1 = 0.7425 and λ1 = 0.5. As a result, the mean 

strain energy density in the control volume around the crack tip can be obtained using Eq. (3).  

2

(0.11817)= I

c

K
W

Er
 (3) 

On the other hand, to avoid any simplifications, the strain energy density values were also 

directly obtained from the finite element analysis in this paper and the results were compared 

with those obtained from Eq. (3).   

At the onset of fracture, the average strain energy density, W reaches its critical value, Wc. 

The critical strain energy density, Wc can be obtained as a function of σt and E [20,21]: 

2
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The critical strain energy density value is considered to be constant for different sample 

geometries. Considering the average strain energy density value W  to be equal to the critical 
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value Wc, the fracture load of the cracked specimens can be obtained. Thus, using a simple 

proportion between the applied load F in finite element analyses and the square root values of 

averaged strain energy density, the theoretical fracture loads (FASED) can be calculated as 

given below 

=ASED cF F W W  (5) 

In order to have a quantitative parameter to evaluate the geometry effect, the biaxiality ratio, 

B was introduced to show the ratio of the T-stress relative to the SIF (see Eq. 6) [35]. Higher 

values of biaxiality ratio demonstrate higher geometry constraints in the samples resulting to 

lower fracture toughness. Additionally, it has been reported by Ayatollahi et al. [11] that 

higher values of B increase the probability of crack kinking out of its initial direction.  


=

I

T a
B

K
       (6) 

 

 

4. Finite element model 

In order to obtain the SIF, T-stress and strain energy density, two dimensional finite element 

models of the tests samples were analyzed. An interaction integral method built in finite 

element software was used in order to directly obtain the SIFs and the T-stress [36, 37]. A 

typical mesh pattern generated for modeling one of the test samples is shown in Fig. 3. Two 

dimensional stress analyses were conducted using the elastic properties of PMMA as 

presented in Section 2. Due to the relatively large value of thickness of the tested samples in 

comparison with the other dimensions, plane strain elements were used for finite element 

analyses. The model was meshed using iso-parametric 8-node quadrilateral elements. 
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Although ASED calculations doesn’t require fine elements, fine singular elements have been 

used in the first ring of elements surrounding the crack tip to produce the square root 

singularity of the stress field around the crack tip resulting in more accurate SIF and T-stress 

values. By considering different sizes of elements in the control volume, a mesh convergence 

study was undertaken on the SIF values to ensure that proper element sizes were used in the 

finite element analyses. 

 

Crack tip

rc

 

Fig. 3. A typical mesh pattern used for finite element analysis and exploring the variation of strain energy inside 

the control volume for DCB1 specimen. 

 

5. Results and discussion  

According to the experimental data on the CT specimens, a fracture toughness of KIc = 44.27 

MPa mm  was obtained from CT specimens which was used in critical strain energy density 

calculations. By substituting fracture toughness (KIc = 44.27

 

MPa mm ) and tensile strength 

(σt = 55 MPa) of PMMA into Eq. (1), the calculated value of critical radius, rc was found to 
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be 0.153 mm. In order to obtain the mean strain energy density in the control volume and the 

crack tip parameters, a unit concentrated force was applied to the loading pins of the finite 

element models (i.e. F = 1 N). The critical strain energy density was equal to Wc = 0.522 

mJ/mm3. The theoretical ASED predictions were obtained using Eq. (5).  

Table 2 presents the finite element results of SIF and T-stress corresponding to the unit 

applied load in finite element model and the mean strain energy density values obtained using 

Eq. (3) in addition to the theoretical ASED predictions based on Eq. (3). Additionally, the 

mean strain energy density values corresponding to the unit applied load in finite element 

analysis and the theoretical ASED predictions based on the finite element analysis are 

presented in Table 3. A comparison between the experimental fracture loads and the ASED 

predictions based on finite element analysis is presented in Fig. 4.  

According to the ASED predictions based on the constant value of Wc = 0.522 mJ/mm3 for 

different specimen geometries, maximum discrepancies of 8% and 4% were obtained for the 

predictions based on Eq. (3) and finite element results, respectively. Although both ASED 

predictions are quite acceptable, however, application of finite element software for ASED 

calculations results in more precise predictions with almost half discrepancies compared to 

Eq. (3) which is based on the singular term of Williams’ series.     

 

Table. 2. Outline of numerical results for the test specimens  

(The numerical values of W are obtained using Eq. (3) based on KI)  

Specimen  

type 

KI  

[ MPa mm ] 
T-stress 

[MPa] 

B 
W |theor. 

[mJ/mm3] 

Average fracture load 

Fexp [N]  

(Experiments)  

Fracture load Ftheor. [N]  

(prediction based on KI) 

Discrepancy|theor. 

(%) 

CT 0.14 0 0.51 5.11e-6 319 (4%)* 319 0 

DCB1 0.29 6.79e-3 1.14 2.28e-5 141 (4%) 151 -7 

DCB2 0.47 6.29e-3 2.15 5.92e-5 87 (4%) 94 -8 

TDCB1 0.12 6.01e-3 1.14 3.83e-6 367 (9%) 369 -1 
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TDCB2 0.24 5.92e-3 2.06 1.48e-5 175 (9%) 188 -7 

 * Standard deviation  

 

 

 

 

Table. 3. Outline of numerical results for the test specimens 

(The numerical values of W are obtained directly from the finite element analysis)  

Specimen  

type 

KI  

[ MPa mm ] 
T-stress 

[MPa] 
B W |FEM 

[mJ/mm3] 

Average fracture load 

Fexp [N]  

(Experiments)  

Fracture load FFEM [N]  

(ASED prediction) 

Discrepancy|FEM 

(%) 

CT 0.14 0 0.51 5.12e-6 319 (4%)* 319 0 

DCB1 0.29 6.79e-3 1.14 2.42e-5 141 (4%) 147 -4 

DCB2 0.47 6.29e-3 2.15 6.38e-5 87 (4%) 90 -4 

TDCB1 0.12 6.01e-3 1.14 3.95e-6 367 (9%) 363 -1 

TDCB2 0.24 5.92e-3 2.06 1.60e-5 175 (9%) 181 -3 

* Standard deviation   
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Fig. 4. Comparative results of the experimental fracture loads and ASED predictions.  

 

A comprehensive synthesis expressed in terms of the square root of the average strain energy 

density normalized by its critical value, Wc, as a function of the biaxiality ratio, B is 

illustrated in Fig. 5. The parameter (W/Wc)
0.5 is proportional to the fracture loads of the tested 

samples. According to the ASED synthesis, it is confirmed that the chosen control volume is 

capable of considering the geometry effect on the fracture behaviour of PMMA samples. 

According to Fig. 5, it is obvious that the majority of fracture load predictions are well inside 

the scatter band ranging between ± 10% with considerable number of the results falling inside 

the scatter ranging between ± 5%. 
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Fig. 5. Synthesis of fracture data in terms of normalized ASED. 

 

It is worth mentioning that the fracture load of brittle materials are commonly obtained using 

single parameter fracture criteria which are based on the critical SIF corresponding to the 

fracture load of the material. It was shown in this paper that considering the higher order 

terms of Williams’ series in ASED calculations leads to more accurate fracture load 

predictions. Hence, the single parameter fracture criteria can provide reliable fracture 

predictions only for limited range of geometry.  

In general, the ASED criterion can be used by engineers and scientists to predict the onset of 

fracture in complex pre-cracked parts without requiring costly and time-consuming 

experiments. On the other hand, the simple ASED criterion can provide very good fracture 

prediction compared to the available complex double parameter fracture criteria (based on 

SIF and T-stress). The presented fracture predictions in this research confirmed the accuracy 

and practical ability of ASED criterion for evaluating the fracture behavior of various cracked 

samples subjected to mode I loading with a very limited discrepancy.  

Ayatollahi et al. [11] reported that for materials with high critical distance rc, e.g. rock 

materials, the T-stress becomes no longer negligible when calculating SED inside the control 
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volume. Hence, the T-stress can play an important role in fracture behavior of materials 

possessing larger critical radii. In that case, the importance of using a fracture criterion, 

which counts for higher order terms, would be even more important. Hence the fracture 

behavior of three different rocks (i.e. Harsin marble, Johnstone, South Korean Yeosan) were 

assessed both with single parameter fracture model (Eq. 3) and ASED criterion. The material 

properties of the mentioned rocks are presented in Table 4. According to Table 4, it can be 

observed that the critical radius of the presented rock materials are one order of magnitude 

bigger than that of PMMA.  

 

Table. 4. Material properties of the investigated rocks.  

Material property  Harsin marble [38] Johnstone [40-42] South Korean Yeosan [43] 

Elastic modulus, E [GPa] 70 [39] 0.20 48 [44]  

Poisson’s ratio, ν 0.28 [39] 0.30 0.31 [44] 

Fracture toughness, KIc [ MPa mm ] 31.62 2.20 27.50 

tensile strength, σt [MPa] 7.20 0.44 6 [45,46] 

Critical radius, rc [mm] 5.42 6.72 5.52 

 

The fracture load predictions based on ASED method and single parameter model are 

presented in Tables 5 to 7 respectively for Harsin marble, Johnstone, South Korean Yeosan 

rocks.  

Table. 5. Outline of numerical results for the fracture of Harsin marble rock. 

Specimen  

type 
W |theor. 

[mJ/mm3] 

W |FEM 

[mJ/mm3] 

Fracture load Ftheor. [N]  

(prediction based on KI) 

Fracture load FFEM [N]  

(ASED prediction) 
∆* (%) 

CT 5.98e-9 5.37e-9 248.82 262.65 5 

DCB1 2.67e-8 4.16e-8 117.78 94.35 -25 

DCB2 6.92e-8 1.24e-7 73.13 54.62 -34 

TDCB1 4.48e-9 6.45e-9 287.38 239.57 -20 
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TDCB2 1.73e-8 3.73e-8 146.31 99.64 -47 

        * ∆ = (FFEM - Ftheor.) / FFEM × 100 

 

Table. 6. Outline of numerical results for the fracture of Johnstone rock. 

Specimen  

type 
W |theor. 

[mJ/mm3] 

W |FEM 

[mJ/mm3] 

Fracture load Ftheor. [N]  

(prediction based on KI) 

Fracture load FFEM [N]  

(ASED prediction) 
∆ (%) 

CT 1.69e-6 1.37e-6 16.93 18.78 10 

DCB1 7.53e-6 1.11e-5 8.02 6.61 -21 

DCB2 1.95e-5 3.36e-5 4.98 3.79 -31 

TDCB1 1.27e-6 1.73e-6 19.56 16.74 -17 

TDCB2 4.88e-6 1.04e-5 9.96 6.81 -46 

 

Table. 7. Outline of numerical results for the fracture of South Korean Yeosan rock. 

Specimen  

type 
W |theor. 

[mJ/mm3] 

W |FEM 

[mJ/mm3] 

Fracture load Ftheor. [N]  

(prediction based on KI) 

Fracture load FFEM [N]  

(ASED prediction) 
∆ (%) 

CT 8.57E-09 7.23E-09 209.18 227.82 8 

DCB1 3.82E-08 5.60E-08 99.02 81.83 -21 

DCB2 9.92E-08 1.68E-07 61.48 47.27 -30 

TDCB1 6.42E-09 8.56E-09 241.61 209.35 -15 

TDCB2 2.48E-08 5.02E-08 123.01 86.41 -42 

 

 

 

Although the current methodology was presented for a brittle material (i.e. PMMA), 

however, the same method can be employed to predict the ductile failure of cracked and 

notched components by equating the real ductile material with a brittle material having a 

virtual ultimate strength. Using the ASED method, the failure loads of the ductile notched 

components were successfully predicted without requiring time-consuming and complex 
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elastic-plastic finite element analyses [26, 27]. The same technique can be used in order to 

assess the geometry effect of ductile materials.  

 

6. Conclusions  

In this paper, the average strain energy density (ASED) criterion was used to assess the 

fracture load of five different test sample geometries under mode I. Application of classical 

fracture models for the cases with high geometry constraints results in higher discrepancies of 

the predictions, which can be a result of neglecting the higher order terms in these models. 

The ASED criterion that includes all terms of Williams’s series could provide considerably 

improved predictions for the experimental data obtained from PMMA specimens of different 

shapes. The same methodology can be used to estimate the fracture load of other brittle and 

quasi-brittle materials.  
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