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Abstract

In this work, a new model is proposed for predicting stress transients caused by strain path 

changes. The model is formulated in stress space, where a second order tensor, i.e., the 

microstructure stress deviator, is used to memorize and model the evolution history of the 

microstructure. Both its direction and magnitude are used to transiently distort the yield surface 

and to modify the work hardening. Orthogonal strain-path changes are handled by yield surface 

distortions, while Bauschinger effects are described by a kinematic hardening formulation. The 

model is calibrated to, and captures well, earlier published experiments for commercial pure 

aluminum, an extra deep drawing quality steel and a dual-phase steel. The proposed model 

describes qualitatively the response to double strain-path changes in low carbon steels. Efforts 

are made to design a relatively simple model as compared to the high complexity of the 

experiments, applying simple mathematical sub-models with straightforward interpretations and 

enabling a numerically stable implementation. 
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1. Introduction

Compared with proportional loading, strain-path changes (SPCs) induce transients of 

hardening or softening during the subsequent forming process. The most obvious influences are 

on springback and forming limits. In sheet metal forming processes, springback needs to be 

compensated (Boers et al., 2010; Lee et al., 2012). The forming limit curve (FLC) (Keeler and 

Backofen, 1963) is normally measured by proportional loading. However, the SPCs always exist 

and result in anisotropic hardening of the materials (Cao et al., 2000; Yao and Cao, 2002). 

Hence, a precise description of the material properties after complex SPCs is very important.

SPCs can be defined either in the strain rate space (Schmitt et al., 1994) or in the deviatoric 

stress space (Barlat et al., 2011). For abrupt SPCs, Barlat et al. (2011) proposed the measure 
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where  and  refer to the deviatoric stress tensors before and after the SPC, respectively, and 1σ 2σ

 denotes the norm of the second order tensor . For cases of monotonic and reverse ij ijT TT T

loading,  equals  and , respectively. Even though the original Schmitt angle (Schmitt cos 1 1

et al., 1994) was formulated in the strain rate space, the angle  is also referred to as the Schmitt 

angle. The term orthogonal deformation refers to , i.e., the Schmitt angle  is equal to cos 0  

90°. 

Examples of stress-strain curves of typical sheet metals subjected to reverse and orthogonal 

SPCs are sketched in Fig. 1. The phenomenon that the reloading yield stress is smaller than the 

unloading yield stress after a reverse SPC, is denoted the Bauschinger effect (Hasegawa et al., 

1975; Bauschinger, 1881), as shown in Fig. 1a. The reloading hardening rate will often be much 

higher than the hardening rate under monotonic straining. For some materials, hardening 

stagnation will occur, i.e., a subsequent temporary decrease of the hardening rate. Commonly, 

transients induced by SPCs will vanish after a certain plastic strain, and the reloading stress-

strain curve will coalesce with the monotonic loading curve (Ha et al., 2013). However, in some 

metals and alloys, permanent softening occurs, which means that the stress-strain curve is 

permanently affected by the reverse SPC. Eventually, the hardening rate may resume that of the 

monotonic curve, but the strength is still decreased permanently ( Orowan et al., 1959; Li and 



3

Bate, 1991). For a number of materials, orthogonal hardening (Ha et al., 2013; Mánik et al., 

2015) or softening (Ha et al., 2013) transients take place after an orthogonal SPC, as shown in 

Fig. 1b. Permanent softening may also be observed after orthogonal SPCs (Mánik et al., 2015).

Fig. 1. The effect of different loading paths on the macroscopic material response for monotonic, 

reversed and orthogonal strain-paths 

This paper considers phenomenological continuum plasticity models. A yield surface and an 

isotropic hardening rule are commonly used to describe the yielding and the hardening behavior 

of materials subjected to proportional loading (Barlat et al., 2003a; Yoshida et al., 2015). In order 

to capture the transients after SPCs, numerous models have been proposed, either using crystal 

plasticity formulations( Peeters et al., 2001a; Holmedal et al., 2008; Kitayama et al., 2013; Wen 

et al., 2015, 2016) or continuum plasticity ( Haddadi et al., 2006; Wang et al., 2008; Barlat et al., 

2013, 2014; Mánik et al., 2015). Basically, the continuum plasticity models can be divided into 

two groups as described in the following. 

The first group modifies the flow stress by combined isotropic and kinematic hardening, 

while keeping the shape of the yield surface. This strategy was first proposed by Teodosiu and 

Hu (1995) and has been applied in many works (Bouvier et al., 2005; Wang et al., 2006, 2008). 

Choi et al. (2006) demonstrated a model which enables the anisotropic yield surface to expand, 

translate and rotate while the shape remains unchanged. Strategies for the numerical analysis and 

parameter identification were illustrated by Haddadi et al. (2006). The Teodosiu-Hu model 

applies second and forth orders tensors to predict transients, which do not affect permanently the 
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work hardening during subsequent monotonic loading. Mánik et al. (2015) proposed a model 

using only second order tensors to predict the SPC behavior. This model also accounts for 

changes of the work hardening during the SPC transients. 

The other group of models distorts the yield surface. The distortion can be done either 

before the SPC (pre-distortion) or after the SPC (post-distortion). Hence, a specific 

phenomenological model can be classified as a pre-distortion model when the yield surface is 

distorted during preloading and as a post-distortion model when the yield surface is distorted 

after SPCs. Levkovitch and Svendsen (2007) proposed a pre-distortion model considering 

pressure dependence, which was motivated by polycrystalline modeling. Comparison of the 

Teodosiu-Hu model and the model proposed by Levkovitch and Svendsen (2007) was done by 

Boogaard and Riel (2009) and Clausmeyer et al. (2009). A directional pre-distortion hardening 

model within the framework of thermodynamics was proposed by Feigenbaum and Dafalias 

(2007). 

In order to capture the Bauschinger effect by pre-distortion of the yield surface rather than 

translation by kinematic hardening, the homogeneous anisotropic hardening (HAH) yield 

criterion formalism for pre-distorting any isotropic or anisotropic yield surface was proposed by 

Barlat et al. (2011). The HAH pre-distortion model for reversal effects was complemented by an 

isotropic post-expansion of the yield surface to capture cross-hardening transients, in a 

framework with a dislocation-based work hardening model (Barlat et al., 2013; Ha et al., 2013). 

Another formulation but with distortional post-expansion of the yield surface in two in-plane 

directions relatively to the microstructure deviator, was suggested by He et al. (2013). Their 

model depends on a prescribed rotation angle defined in the plate plane, which in practice limits 

the model to plane stress deformation. A more general modification, the “enhanced HAH 

model”, was suggested by Barlat et al. (2014) and successfully applied to predict the orthogonal 

hardening behavior of an extra deep drawing quality (EDDQ) steel by post-distortion of the yield 

surface in its orthogonal directions, and to orthogonal softening behavior of a dual-phase steel by 

pre-distortion of the yield surface in its orthogonal directions. Furthermore, this model was able 

to qualitatively capture the measured behavior subsequent to double SPC transients of low 

carbon steel (Vincze et al., 2013). As discussed in Manopulo et al. (2015), the HAH model 

responds according to its anisotropic yield function in the case of proportional loading. This 

model has a complex mathematical formulation with a complex interpretation of how its 
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parameters are related to the experiments, but the model allows for a clear uncoupling of the 

Bauschinger parameters from the latent hardening coefficients. It is reported in Qin et al. (2017) 

that the HAH models have some challenges with respect to numerical convergence for purely 

orthogonal SPCs. 

The transients after simple single SPCs of aluminum and steel have been captured well by 

several models (Peeters et al., 2001b; Haddadi et al., 2006; Levkovitch and Svendsen, 2007; 

Wang et al., 2008; Barlat et al., 2013, 2014; Mánik et al., 2015). However, so far, only the 

enhanced HAH model (Barlat et al., 2014) can capture, at least in a qualitatively correct manner, 

the transients occurring after double SPCs in low carbon steel. In Qin et al. (2017), the models 

proposed by Barlat et al. (2014) and Mánik et al. (2015) were compared and evaluated based on 

existing experimental data for commercially pure aluminum and EDDQ steel. The objective of 

the present paper is to propose a new distorted yield surface formulation, which can capture the 

features of both single and double SPCs and enable a robust numerical implementation. This will 

be an alternative to the enhanced HAH model. The modelling framework combines the 

simplicity of the model by Mánik et al. (2015) with a new formulation of orthogonal post-

distortion of the yield surface, but unlike the HAH model, a kinematic hardening model captures 

load reversal effects.

2. Model formulation

The model formulation follows closely the ideas and formalism of Mánik et al. (2015), but 

the microstructure deviator is evolving in deviatoric stress space rather than in strain rate space, 

and during orthogonal hardening transients, the yield surface is distorting and expanding in its 

orthogonal directions in additional to its the original shape-invariant expansion. The formulation 

described here is restricted to small elastic strains as well as isothermal and rate-independent 

conditions. 

A corotational formulation based on hypoelastic-plasticity theory is applied (Khan and 

Huang, 1995). All the tensorial quantities are expressed in the corotational frame. The 

transformations of the Cauchy stress tensor  and the rate-of-deformation tensor  between the σ D

fixed and corotational coordinate systems are given by
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 (2)ˆˆ ,T T σ R σR D R DR

where  and  are the corotational Cauchy stress tensor and corotational rate-of-deformation σ̂ D̂

tensor, respectively, and  is the rotation tensor here defined by the polar decomposition of the R

deformation gradient (Belytschko et al., 2013).

The corotational rate-of-deformation  can be additively decomposed into elastic and D̂

plastic parts

 (3)ˆ ˆ ˆe p D D D

where  and  are the elastic and plastic corotational rate-of-deformation tensors, ˆ eD ˆ pD

respectively. The relation between the corotational stress rate tensor and the elastic corotational 

rate-of-deformation tensor is written as

 (4) ˆ ˆ ˆ: :ˆ ˆˆ e pD
Dt

  
σ D D DC C

where  is the fourth-order tensor of elastic moduli. In the corotational formulation,  can be Ĉ Ĉ

anisotropic but elastic isotropy is assumed here, and  is defined by Young’s modulus  and Ĉ E

Poisson’s ratio . The plastic rate-of-deformation tensor is defined by the associated flow rule

 (5)ˆ
ˆ

p  



D

S


where  is the plastic multiplier,  is a first-order homogeneous yield function defined in 0  

the following section,  is the overstress tensor, and  is the backstress tensor. ˆ ˆˆ S σ X X̂

2.1. The yield function

A first-order homogeneous yield function combined with isotropic hardening is suitable for 

describing the stress-strain behavior under monotonic loading. However, under non-proportional 

loading sequences, translation and distortion of the yield surface is required to describe both the 

Bauschinger effect and the orthogonal hardening effects. Thus, the yield criterion is given by

(6)ˆ ˆ 0( ) ( ) Yf     S S

where  is the deviatoric overstress tensor and  is the yield stress. The initial yield ˆ S Y rR S  

stress and isotropic work hardening are represented by , while  is the extra isotropic R rS
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expansion or shrinkage of the yield surface occurring after reverse SPCs. The yield function 

, i.e., the equivalent stress with respect to the backstress, is here defined on the form ˆ( ) S

(7) 
1

3 2
28

1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= : : : :

ˆ
( ) ( )

q qq q q
q q

q

g
g 

 
              

 

S S P S P S S P S
P

P

where  and  are functions, as specified below,  is a parameter, and  is the 1g 2g q P̂

microstructure deviator that introduces a fading memory of the deformation history.  The 

magnitude and direction of  are associated with the density and orientation of the dislocation P̂

microstructure, but cannot be directly linked to the microstructure evolution. For a well-annealed 

material, the magnitude of  equals zero. Any first-order positive homogenous isotropic or P̂

anisotropic yield function can be used as the stable component . The yield function  is  

convex as long as  is convex, according to the theory of convex analysis of positive 

homogeneous functions (Rockafellar, 1970; Barlat et al., 2011).

The two functions  and are defined as follows1g 2g

 (8)1 2 1, 1ˆ

q

q q q

o

Rg g g
R S

 
     P

where  captures the extra hardening transients after orthogonal SPCs. The evolution ˆ
oS P

equation for the variable  is given in Section 2.4. According to Equations (7) and (8), the yield oS

function  equals the stable component  when  equals zero, and thus the fluctuating   oS

component of the yield function is only used to describe cross-hardening effects due to 

orthogonal SPCs. Note that in Equation (7) the factor  never creates a singularity, since ˆ q
P

, due to that . ˆ  P 0 1ˆ 0
lim 1g




P

The evolution of  is defined in the deviatoric stress space according toP̂

 (9) ˆ ˆ ˆ1ˆ ˆ ˆ ˆ
ˆ

, ,
ΔP P P

P P

k
k





  


P h h N P N S

S
 
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where  is the normalized deviatoric overstress tensor. In Equation (9),  acts as an attractor N̂ ˆ
pk N

for the microstructure deviator, while  controls the strain scale of the saturation of . The Δp Pk  P̂

parameter  is defined by 0,1pk 

 (10)
4

ˆˆ(1 ) cos if : 0
ˆˆ(1 ) cos if : 0

Pk
  

  

    
  

P S

P S

where  is a constant, and the Schmitt angle  is here defined as 0,1  

 (11)
ˆ ˆ ˆ ˆ: :cos ˆˆˆ




 
 P

S P N P
S P

The  term for  is introduced to retain a small value of  during the first part of 4cos  ˆˆ : 0 P S Pk

the transient. A physical argument for the asymmetry of  is that elements of the old Pk

dislocation microstructures will first have to be erased after a SPC with a reversal component 

(Barlat et al., 2003b), i.e.,  remains small when . However, as  rotates towards  Pk ˆˆ : 0 P S P̂ N̂

and the scalar product  becomes positive, new microstructure will gradually be built, ˆˆ : P S

corresponding to a larger value of .Pk

2.2. Isotropic hardening

Isotropic hardening implies shape-preserving expansion of the elastic region in the 

deviatoric stress space during plastic deformation governed by the hardening variables  and R rS

.

The evolution equation for the hardening variable  is defined byR

 (12) 
2

1

tr tr
i r o

i
R R h h 



   

where  and  describe monotonic hardening. The effects of SPCs involving reverse and 1R 2R

orthogonal loading on the hardening rate are defined by the softening moduli  and , tr
rh tr

oh

respectively. The evolution of  and  are here defined by a generalized Voce rule (Voce, 1R 2R

1948)
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 (13), , 1, 2
Δi i

i

sat
i i

i R R
R

R RR h h i



  

where  gives the saturation value of hardening term , and  controls its strain scale for sat
iR iR Δ

iR

its saturation. The analytical solutions of these evolution equations are

 (13)1 ex( p) , 1, 2
Δ

i

sat
i i

R

R R i


  
         

where the equivalent plastic strain is defined by . The initial values of  and  are 
0

t
dt   

1R 2R

zero, while the initial value of  is the initial yield stress . R 0R

The two softening moduli  and  are introduced to capture the permanent softening tr
rh tr

oh

behavior after reverse and orthogonal SPCs, respectively. The softening modulus  reduces the tr
rh

work hardening rate during the transient occurring subsequent to a reverse SPC and thus leads to 

permanent softening

 (14) min ˆ ,0costr
r rh k  P

where  controls the magnitude of the deviation between the reverse loading curve and the rk

monotonic loading curve. The above formulation implies that when reverse loading happens, the 

permanent softening term will be activated. Similarly, the softening modulus  modifies the tr
oh

work hardening rate after orthogonal SPCs and also causes permanent softening

 (15)ˆ sintr
o oh k   P

The parameter  reflects the magnitude of the deviation between the reloading loading curve ok

after orthogonal SPC and the monotonic loading curve. 

Kinematic hardening can describe the Bauschinger effect, but cannot capture hardening 

stagnation, i.e., the inflection point on the stress-strain curve after reverse loading. This reverse 

behavior is here modeled by a combination of kinematic hardening and transient isotropic 

hardening. The evolution of the transient hardening variable  is given by rS
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 (16)
 ˆmin cos ,0

, ,
Δr r

sat
r r sat

r S S r r
r

S S
S h h S q R






 
  

P
 

The constant  relates the saturation of the strength transient to the hardening variable . The rq R

parameter  controls the strain scale of this saturation process. The initial value of  is set to Δ r rS

zero. After the reverse SPC, implying that  is temporarily in the opposite direction of ,  ˆ S P̂ rS

rapidly increases and saturates towards , and then decreases to zero as the ˆ cossat
rS  P

microstructure deviator  rotates towards the current loading direction as defined by the unit P̂

tensor .N̂

2.3. Kinematic hardening 

The deviatoric backstress tensor , which defines the center of the elastic region in X̂

deviatoric stress space, is used to describe the kinematic hardening. The nonlinear hardening rule 

of Armstrong and Frederick (1966) is used to describe the evolution of the backstress tensor, viz.

 (17)
2

1

ˆ ˆ,     
ˆ1ˆ ˆ ˆ ˆ, ˆΔ ( )i i

i

sat
i i X X i i

i X

X
 

  
 
   

 SX X h
S

X h X 

where  are the partial backstress tensors. The parameter  represents the saturation value ˆ
iX sat

iX

of , while  defines the strain scale of the saturation processes. The initial values of the ˆ
iX Δ

iX

backstress tensors are .  ˆ 0  i X 0

Note that the use of kinematic hardening also leads to a drop of the yield stress after an 

orthogonal SPC, caused by the shift of the yield surface during deformation prior to the SPC. 

2.4. Distortional hardening 

The extra strength subsequent to orthogonal SPCs is here modeled by the scalar variable , oS

which distorts the yield surface by expanding it in stress directions orthogonal to . The P̂

evolution of  is defined byoS

 (18)
0

sin, , 
Δo

sat n
sato o

o S S o o
o

S SS h h S q R



   
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where  so that . It is worth noting that even though  plays a similar role 0    0 sin 1  oS

as in Mánik et al. (2015), the mathematical formulation here is different, the main difference 

being that it is here applied to expand the yield surface only in orthogonal directions, as 

compared to the isotropic expansion in the MHH model. The constant  relates the saturation of oq

the strength transient to the isotropic hardening , and  controls the strains scale of the R Δ o

saturation processes. The initial value of  is zero. Subsequent to the SPC,  rapidly increases oS oS

and saturates towards , and then, according to Equation (11), decreases to zero as the sinsat n
oS 

microstructure deviator  rotates towards the current loading state . The parameter  is used P̂ N̂ n

to describe the correct evolution of the stress overshoot subsequent to orthogonal SPCs along 

different angles. A positive value smaller or larger than unity will increase or decrease the strain 

range of the stress overshoot ratio, respectively. 

During monotonic and reverse loading,  remains equal to zero, and, according to oS

Equation (8),  and . By Equation (7), the yield criterion then becomes 1 1qg  2 0qg 

, and it follows that during monotonic and reverse loading, yielding is ˆ( ) 0Yf    S

described by the stable component  of the yield function . Right after a purely orthogonal  

SPC, the scalar product  and the transient hardening variable  are equal to zero, and the ˆˆ : P S rS

yield criterion then becomes

 (19) ˆ ˆ
ˆ 0( )

o

Rf R
R S

R    


  S
P

S

The equivalent stress  is equal to  and does not change abruptly after SPCs. However, ˆ( ) S R

the value of  is instantaneously equal to  and the subsequent orthogonal  ˆ S ˆ
oR S P

hardening behavior can be described by the stress overshoot  as  now rapidly increases. ˆ
oS P oS

Note that the Bauschinger effect also influences the orthogonal SPCs because the back stress 
shifts the yield surface in stress space.
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3. Parameter identification 

There are 19 coefficients in the constitutive model in addition to the parameters of the stable 

component of the yield surface. In the following, the identification procedure is described in 

general terms, assuming that monotonic, reverse and orthogonal loading curves from 

experiments are available. Any homogeneous yield function describing the initial anisotropy of 

the material can be used as the stable component of the yield surface. The high-exponent, 

isotropic Hershey yield function was adopted for commercial pure aluminum by Mánik et al. 

(2015), while the high-exponent, anisotropic Yld2000-2d yield function was used for EDDQ and 

DP780 by Ha et al. (2013). The exponent  of the high-exponent yield functions was set to 8 m

for aluminum and 6 for steel (Barlat et al., 2003b).

The identification procedure consists of three steps that are repeated iteratively until 

converged values of the model coefficients are obtained. The procedure is as follows. 

In the first step, the initial yield stress  is determined and the isotropic hardening 0R

parameters ( , , , ) and the kinematic hardening parameters ( , , ,1
satR

1
Δ R 2

satR
2

Δ R 1
satX

1
Δ X 2

satX

) are estimated from the monotonic and reverse loading curves without accounting for 
2

Δ X

transients and permanent softening due to the SPC. In Fig. 2a, the drop of the yield stress after 

reverse loading, which is denoted , equals two times the back stress at the specific plastic 2X

prestrain. The reloading curves resulting from this first estimate of the parameters are illustrated 

with dashed lines in Fig. 2. Note that two terms may be used to describe the evolution of 

isotropic and kinematic hardening. However, they are not necessary if an acceptable description 

of the hardening behavior can be predicted with only one term, as is the case here.

In the second step, the strain scale  of the transient phase after reverse SPC is estimated, Δ P

which determines the response of the microstructure deviator , see Fig. 2a. The permanent P̂

softening, which is represented by the difference between the monotonic loading curve and the 

reloading curve after that the transient behavior has faded away, see Fig. 2a, is used to estimate 

the parameter . Then, the parameters  and  that control the transient behavior during rk Δ r rq

reverse SPC by the evolution of the internal variable , are estimated. Their influence on the rS

stress-strain transient is illustrated by the shaded area in Fig. 2a. 
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Fig. 2. Sketches of the loading curves and quantities used in the parameter identification process. 

The monotonic loading curve  and the reloading curve after reverse and orthogonal    

SPCs,  and , respectively, are plotted with solid lines, while the reloading  r    o  

curve without transients and permanents softening due to SPCs is shown with dashed lines.

In the third step, the parameter  that reflects the permanent softening behavior after ok

orthogonal loading, is first estimated by considering the difference between the monotonic 

loading curve and the reloading curve after an orthogonal SPC, see Fig. 2b. Then, the parameters 

 and  that govern the transient behavior during orthogonal SPC by the evolution of the Δ o oq

internal variable , are assessed, as illustrated by the shaded area in Fig. 2b. Finally, the oS

parameters  and  are estimated by considering the stress overshoot of reloading curves with  n

different angles after orthogonal SPCs. 

In each step of the identification process, a first approximation was obtained iteratively by 

using a least squares method with a weighted sum of the differences between available 

experimental data and corresponding simulation results. It is worth noting that the inflection area 

should be given larger weights. Subsequently, a manual trial-and-error method was used to 

improve the calibration in each step. The sequence of steps was repeated several times to 

improve the calibration further.
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4. Applications

Experimental results, including single SPCs of various kinds, have earlier been reported for 

commercially pure aluminum (AA1050), EDDQ and DP780 steels (Ha et al., 2013; Barlat et al., 

2014; Mánik et al., 2015). In the following, the proposed constitutive model will be used to 

describe the behavior of these materials after complex single and double SPCs. The model 

constants obtained by using the parameter identification procedure outlined in the previous 

section, are listed in Table 1. 

The use of two back stress tensors was justified in Mánik et al. (2015) in order to obtain the 

r-value transient of commercially pure aluminum. However, the current model cannot capure the 

r-value transient correctly even with two terms, hence only one kinematic hardening term was 

used for AA1050. The inflection point of the stress-strain curve occuring subsequent to the 

reverse SPC, could then be modelled entirely by the reduced work hardening rate during this 

transient, i.e., with the transient stress contribution  set to zero. rS

Owing to the lack of reversal tests for EDDQ steel and the experimental observation that this 

material does not exhibit permanent softening after orthogonal SPCs, the functions ,  , 1X 2X rS

 and  were not employed for this material.tr
rh tr

oh

For the DP780 steel, the reported experiments indicate that this material does not exhibit 

orthogonal hardening and permanent softening after orthogonal SPC; hence,  and  were not oS tr
oh

employed. The transient behavior of the reversal tests was also turned off, i.e.,  and  were rS tr
rh

not applied. Furthermore, only one kinematic hardening term was applied for this material.

The Hershey yield function (Hershey, 1954) was used for commercial pure aluminum, while 

the anisotropic Yld2000-2d yield function (Barlat et al., 2003a) was used for the two steels. The 

anisotropy coefficients of the Yld2000-2d yield function were taken from Ha et al. (2013). 
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Table 1 Model constants for commercially pure aluminum (CP-Al), EDDQ and DP780 steels

 q  0R  1
satR  

1R  2
satR  

2R  1
satX  

1X  2
satX  

2X

[–] [MPa] [MPa] [–] [MPa] [–] [MPa] [–] [MPa] [–]

CP-Al 2 7 80 0.330 32 0.0230 7 0.0010 0 –

EDDQ 2 150 323 0.500 97 0.0400 0 – 0 –

DP780 2 471 385 0.108 52 0.0074 180.5 0.0074 0 –

 P  0q o n  rq r  0k  rk

[–] [–] [–] [–] [–] [–] [–] [MPa] [MPa]

CP-Al 0.1 0.8 0.16 0.0004 0.25 0 – 100 1300

EDDQ 0.2 0.8 0.38 0.0010 0.25 0 – 0 0

DP780 – 0 0 – 0 0 – 0 0

4.1. Single SPCs of commercially pure aluminum

Mánik et al. (2015) studied the stress-strain behavior of initially isotropic, commercially 

pure aluminum after reverse and orthogonal SPCs. Abrupt SPCs were obtained by performing 

tension tests in various directions subsequent to prestraining by compression or rolling. In Fig. 3, 

the simulated stress-strain curves after reverse SPCs are compared with the experimental data. 

The proposed model captures the Bauschinger effect, the hardening stagnation and the 

permanent softening after reverse SPCs. The initial yield stress of the reverse loading curve for 

4.4% prestrain is slightly higher than the experimental data.
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Fig. 3. Commercially pure aluminum: Experimental and simulated stress–strain curves in 

uniaxial tension after prestraining by uniaxial compression (2% and 4.4%), together with the 

monotonic loading curve.

The experimental and simulated behaviors of commercially pure aluminum in uniaxial 

tension along various loading directions after prestraining to different levels by rolling are shown 

in Fig. 4. For a given prestrain, the reloading curve reaches almost instantaneously a higher value 

than the monotonic loading curve. Then, permanent softening occurs with further straining. 

Finally, the hardening rate of the reloading loading curve approaches that of the monotonic 

loading curve. The permanent softening results in a lower flow stress. The model captures with 

good accuracy both the stress overshoot and the permanent softening observed experimentally.
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Fig. 4. Commercially pure aluminum: Experimental and simulated stress–strain curves in 

uniaxial tension along various directions after prestraining by rolling, together with the 

monotonic loading curve.



18

4.2. Single and double SPCs of EDDQ steel 

Ha et al. (2013) reported tests on an EDDQ steel, i.e., a low carbon steel with high r-values. 

Uniaxial tensile tests were performed at every 15° from the rolling direction after prestraining to 

4% and 10% in uniaxial tension along the rolling direction. Large samples were prestrained, 

from which small samples subsequently were cut at different angles. 

The experimental and simulated monotonic loading curves in the rolling direction (0°) are 

shown in Fig. 5. Also the simulated monotonic loading curves in the other orientations compare 

well with the experimental counterparts. 

Fig. 5. EDDQ steel: Experimental and simulated monotonic loading curve in uniaxial tension 

along the rolling direction (0°).
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Fig. 6. EDDQ steel: Experimental and simulated reloading curves in tension at every 15° after 

4% and 10% prestrain in tension along the rolling direction, together with the monotonic loading 

curve in the reloading direction. 
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The experimental and simulated reloading curves for every 15° after 4% and 10% 

prestraining are presented in Fig. 6. Extra hardening transients occur after orthogonal SPCs. The 

stress overshoot and the duration of the transients increase with increased prestraining. The 

maximum stress overshoot is obtained along the 45° orientation. The model captures the stress 

overshoot of all reloading curves with prestrain of 10% as well as the duration of the transient 

behavior. However, the predicted yield stresses of the reloading curves with prestrain of 4% 

along the 45° and 60° orientations are slightly lower than the experimental data. The behavior in 

the other orientations after 4% prestrain is well described. 

The proposed constitutive model was also applied to predict the behavior of EDDQ steel 

after double SPCs consisting of 6% tensile prestraining in the rolling direction (RD), followed by 

2%, 5% or 10% tensile straining in the 45° orientation and finally reloading in tension along the 

RD. The behavior of low carbon steel after double SPCs has been experimentally investigated by 

Vincze et al. (2013) and the EDDQ steel is expected to exhibit a similar behavior. Fig. 7 shows 

the simulated stress-strain curves after the double SPCs obtained with the QHH model as well as 

the enhanced HAH model (Barlat et al., 2014). The parameters of the enhanced HAH model 

were taken from Qin et al. (2017). The results of both models are in qualitative agreement with 

the experimental results of Vincze et al. (2013). In particular, the different strain scale of the 

transient in the third loading curve compared with the second loading curve is notable. 

Fig. 7. EDDQ steel: Simulated double SPCs with the QHH model and the enhanced HAH model 

consisting of 6% tensile prestraining in the rolling direction (RD), followed by 2%, 5% or 10% 
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tensile straining in the 45° orientation and finally reloading in tension along the RD. The 

monotonic stress-strain curve in RD is also plotted.

4.3. Single SPCs of DP780 steel

Finally, the model is used to simulate the behavior of a DP780 steel after single SPCs. In the 

same manner as for the EDDQ steel, Ha et al. (2013) presented results from uniaxial tensile tests 

at every 15° from rolling direction after prestraining to 4% and 10% in uniaxial tension along the 

rolling direction. Fig. 8 shows the experimental and simulated reloading curves after the single 

SPC. Contrary to the EDDQ steel, this material does not exhibit stress overshooting. Instead, the 

reloading yield stress of the DP780 steel is below the monotonic loading curve in the same 

orientation and decreases with the angle of the second loading path. The decrease of the 

reloading yield stress is nearly the same for the two levels of prestrain. It also transpires that the 

proposed constitutive model is capable of describing the SPC behavior of the DP780 steel with 

good accuracy.

5. Discussion 

The new yield function adopted in the proposed model is based on similar mathematics as the 

HAH model (Barlat et al., 2014), but the fluctuating part of the yield function is applied 

differently, namely to describe a distortional post-expansion of the yield surface in directions that 

are orthogonal to the microstructure deviator. A similar behavior of the yield surface is obtained 

in the HAH model based on splitting the deviatoric stress tensor into parts that are collinear and 

orthogonal to the direction of the microstructure deviator. In the HAH model, the yield surface is 

pre-distorted in the reversal part of the loading direction to capture reversal transients, while in 

the proposed model, the Bauschinger effect and hardening stagnation in reverse loading are 

described by combined isotropic and kinematic hardening rules, similar as by Mánik et al. (2015). 
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Fig. 8. DP780 steel: Experimental and simulated reloading curves in tension at every 15° after 4% 

and 10% prestrain in tension along the rolling direction (RD), together with the monotonic 

loading curve in the reloading direction. 
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Due to the kinematic hardening, the yield surface translates along the loading direction 

under monotonic loading, which leads to reduced yield stress not only in reverse, but also in 

orthogonal SPCs. In addition, an orthogonal SPC leads to an immediate distortional post-

expansion of the yield surface along its orthogonal directions, as controlled by the internal 

variable . Thus, by combining nonlinear kinematic hardening with orthogonal distortion of the oS

yield surface, both the Bauschinger and cross-hardening effects are modeled. Hardening 

stagnation after a reverse SPC is captured by a transient isotropic expansion of the yield surface, 

as governed by the internal variable . rS

The constitutive model relies on the microstructure deviator, , which is a second order P̂

tensor. The direction of  in the deviatoric stress space is interpreted as a memory of the P̂

microstructure directionality, and its magnitude mimics the amount of this microstructure. The 

angle between the microstructural deviator and the overstress tensor defines a Schmitt angle. For 

Schmitt angles lower than 90°, the microstructure will gradually change during plastic straining 

as a function of the current deviatoric stress state, by that  is heading directly towards the new P̂

deviatoric stress direction. However, for Schmitt angles higher than 90°, the SPC is partly 

reversal, and reversible parts of the microstructure will first be destroyed before or 

simultaneously as the microstructure of the new strain path is built up (Barlat et al., 2003b). In 

the model, this reversal part is accounted for by that the evolution of the microstructure deviator 

tensor  after such a SPC is first heading partly towards the origin. This is controlled by how P̂

the parameter  depends on the Schmitt angle, i.e., being smaller for Schmitt angles higher than pk

90°. Both the magnitude of the attractor  and the strain scale of the transient  are ˆ
pk N p Pk 

influenced, so that immediately after a SPC with a Schmitt angle higher than 90°, the 

microstructure deviator tensor  is shrinking faster and heading more towards the origin with P̂

increasing Schmitt angles. 

The evolution of the yield surface and the microstructure deviator  for EDDQ steel during P̂

uniaxial tensile loading along the  axis (90° direction) after 9.4% tensile prestrain along the  y x

axis (rolling direction) is shown in Fig. 9. As kinematic hardening was neglected for this 

material, the yield surface expands isotopically during the preloading, as seen in Fig. 9a. 

Simultaneously, the microstructure deviator grows towards the deviatoric stress direction, as 



24

illustrated in Fig. 9b. Each arrow corresponds to a specific equivalent plastic strain. The arrow at 

a plastic strain of 0.05 is shifted slightly from the origin, so that it can be distinguished in the 

figure. The stress-based Schmitt angle of this SPC is 120°. Subsequent to the SPC, the yield 

surface immediately expands rapidly in all directions orthogonal to the microstructure deviator 

. Since  now rotates gradually towards the new strain path, the distortionally expanded part P̂ P̂

of the yield surface rotates along with it. However, the yield surface reaches its maximum 

distortional expansion at the very early part of this rotation. During continued rotation, the 

expanded part of the yield surface vanishes gradually as the microstructure deviator becomes 

more and more collinear with the current deviatoric stress tensor.

Since the considered Schmitt angle in Fig. 9 is larger than 90°, the microstructure deviator is 

first heading partly towards the origin, i.e., it rapidly decreases and rotates to an intermediate 

state, which represents the partial annihilation of the microstructure created in the course of the 

preloading. Subsequently, when  has rotated so that it points 90° to the new deviatoric stress P̂

direction, it grows and rotates, heading directly towards this direction, as can be seen in Fig. 9b. 

As it is approaching the new deviatoric stress direction, the orthogonal distortional hardening of 

the yield surface fades out, and the reloading curve approaches asymptotically the monotonic 

loading curve.
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Fig. 9. Evolution of (a) the yield surface and (b) the microstructure deviator during loading in 

uniaxial tension along the  axis subsequent to 9.4% prestrain in uniaxial tension along the  y x

axis. The numbers indicate the equivalent plastic strain levels. 

The distortional post-expansion of the yield surface after an orthogonal SPC is important for 

the description of the double SPC presented in Section 4.2. Recall that the double SPC consisted 

of firstly 6% prestraining in tension along the rolling direction, secondly either 2%, 5% or 10% 

tensile straining in the 45° direction (corresponding to a stress-based Schmitt angle of 75.6°), and 

lastly reloading in tension along the rolling direction. The simulated results were shown in Fig. 7. 

As kinematic hardening is neglected for the EDDQ steel, the yield surface expands isotropically 

during preloading in the rolling direction, followed by distortional post-expansion along the 

orthogonal directions after the first change of the loading path, i.e., from tension along the rolling 

direction to tension along the 45° direction. Accordingly, a transient stress overshoot occurs 

during the second strain path. When the second SPC, i.e., back to the first strain path,  occurs at 

the intermediate stage of the transient after the first SPC, a small stress overshoot is predicted 

subsequent to the last SPC, as compared with the monotonic loading curve without the SPCs, see 

Fig. 7. The microstructure deviator has in this case rotated into a new direction between the first 

and the second strain path directions. As evident from Fig. 7, a significant stress overshoot is 

obtained when the second SPC takes place during the final stage of the transient after the first 
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SPC. In such cases, the direction of the microstrucure deviator has had time to almost reach the 

second loading path. This behaviour is similar as predicted by the simpler models with isotropic 

post-expansion of the yield surface (Barlat et al., 2013; Mánik et al., 2015). However, when the 

second SPC occurs early in this transient, the final reloading curve nearly coalesces with the 

monotonic loading curve of the first strain path, see Fig. 7. This is reasonble, because there will 

have been limited time for changes of the microstructure to occur during the limited straining in 

the 45° tensile direction during the second SPC. However, models with isotropic post-expansion 

of the yield surface (Barlat et al., 2013; Mánik et al., 2015) will predict a sudden expansion that 

is similar for all directions; hence, after returning to the first strain path, the yield surface will 

have to shrink rapidly and isotropically from this level, as explained in Qin et al. (2017). Double 

SPCs occur in complex forming operations and such apparent softening behavior could wrongly 

lead to predictions of flow instabilities by these models, while it is accounted for by the 

distortional post-expansion in the proposed model.
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Fig. 10. Simulated reloading curves for AA1050 with tensile axis just below and just above 

54.736° to RD after 5% prestrain along RD, i.e., nearly orthogonal SPCs. Note that the stable 

strain increment  is 10 times larger for the QHH model.

The QHH and the enhanced HAH models are quite similar in terms of what they can predict, 

and their calculation times should be about the same, depending on the time integration scheme 

used. The main difference is the way they model the Bauschinger effect, and differences may be 

expected for loading sequences in which orthogonal and reversal model terms play together. 

Hence, an orthogonal hardening simulation was conducted with both models for a material 

exhibiting a considerable Bauschinger effect, namely the AA1050 alloy. The parameters of the 

enhanced HAH model are again taken from Qin et al. (2017). The considered load sequence 

consists of 5% prestraining in tension along RD followed by tensile reloading at 54.736° to RD, 

corresponding to an orthogonal SPC. The results are shown in Fig. 10. In this case, a 

considerably smaller strain increment was required in the numerical integration of the enhanced 

HAH model than for the QHH model to get a stable and accurate solution. More importantly, it 

was found that the enhanced HAH model predicts two distinctly different reloading curves when 

approaching the limit of an orthogonal SPC from either a lower or higher Schmitt angle than 90°. 

In contrast, the QHH model provides similar curves and thus the behavior changes continuosly 

as the Schmitt angle goes through 90°. The origin of this spurious behavior is found in the 

original HAH model (Barlat et al., 2011), where the rotation direction of the microstructural 

deviator  is opposite for Schmitt angles above and below 90°. If the Bauschinger effect is h

considerable, this behavior is unavoidable when the orthogonal and reversal model terms are 
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both active with similar strain scales.  This was not observed by Barlat et al. (2014) for EDDQ 

steel because the expansion of the compressed part of the yield surface was very fast for this 

particular material.

In the current parameter identification process, all the experimental data are used to calibrate 

the model. The model is able to reproduce the available experimental data, but at present we 

cannot evaluate its predictive capabilities for other materials and more complex SPCs. 

Development of robust and standardized calibration procedures is important for future 

applications of advanced plasticity models like the one proposed here. However, like in similar 

earlier works ( Haddadi et al., 2006; Barlat et al., 2014; Mánik et al., 2015), the main goal in this 

paper is to show the capability of the model rather than to develop a robust calibration procedure. 

An outline of such a procedure is given, but manual fine tuning is still required.

6. Conclusions

A new anisotropic hardening model has been developed, which describes monotonic loading 

and reverse SPC effects by combined nonlinear isotropic and kinematic hardening. The model is 

a generalization of the model by Mánik et al. (2015), introducing distortional post-expansion of 

the yield surface to handle complex, transient orthogonal SPC effects.  A new formulation for 

orthogonal distortions has been proposed. Subsequent to orthogonal SPCs, the yield surface 

expands distortionally along directions being orthogonal to the direction of the microstructure 

deviator. After SPCs with Schmitt angles above 90°, the existing microstructure is assumed to 

partially dissolve before a new microstructure is formed, modeled by that the microstructure 

deviator first decreases in magnitude before heading in the direction of the current deviatoric 

overstress tensor. The model was assessed by simulating existing experimental tests for 

commercially pure aluminum, EDDQ and DP780 steels. It was found that the model is capable 

of describing the Bauschinger effect after general SPCs due to the back stress, the hardening 

stagnation and permanent softening after reverse SPCs, and transient hardening and permanent 

softening after orthogonal SPCs. The spurious behavior observed for nearly orthogonal SPCs 

with the enhanced HAH model is avoided with the QHH model.
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