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ABSTRACT

Asset integrity and management is an important part of oil
and gas industry especially for existing offshore structures. With
declining oil price, the production rate is an important factor to be
maintained that makes integrity of the structure one of the main
concerns. Reliability based and risk- based inspection (RRBI)
constitutes an efficient method to optimize inspection planning
when it is based on the Bayesian decision analysis. A pre-
posterior Bayesian decision analysis and especially a Value of
Information analysis allows to explicitly quantify the expected
benefits, costs and risks associated with each inspection strategy.
A simplified and generic risk-based inspection planning utiliz-
ing pre-posterior Bayesian decision analysis had been proposed
Faber et al. [1] and expanded within the field of offshore engi-
neering by Straub [2]. This paper provides considerations on
the theoretical background and a Value of Information analysis-
based inspection planning. The paper will start out with a review
of the state-of-art RBI planning procedure based on Bayesian
decision theory and its application in offshore structure integrity
management. With examples illustrating the full use of the Value
of Information approach, it is pointed to further research chal-
lenges.

INTRODUCTION

Asset integrity management for offshore structure is impor-
tant to ensure operational safety during hydrocarbon production.
During its lifetime, an offshore structure is subjected to cyclic
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environmental loads i.e. wave, current, and wind which are the
common causes of fatigue failure in the structures. There are sev-
eral fatigue failures with catastrophic consequences in the 1980s
with the most notable example being the Alexander L. Kielland
accident [3].

Fatigue failure is essentially the consequence of deteriora-
tion of structural strength due to crack growth from initial de-
fects in the material. The causes of the defects vary and in-
volve complex interaction between micro-structures that caused
by the welding process. The simplest way to describe the fatigue
performance is to use S-N Curve and Miner’s summation rule.
However, an S-N curve approach with Miner’s rule has limited
comprehensiveness, which necessitates a fracture mechanics ap-
proach. The fracture mechanic approach then can be calibrated
to the S-N curve approach based on equal fatigue reliability.

This paper first introduces the basic of pre-posterior decision
analysis to plan the inspection and repair strategy with focus on
the Value of Information (Vol) theory. Probability modelling of
fatigue failure based on the fracture mechanics is presented. The
uncertainties related to the fatigue crack growth and inspection
outcomes are identified according to Folso et al [4] and Hong [5].
The updating methodology of the probability of fatigue failure is
formulated according to the Bayes’ Rule. Various inspection and
repair strategies are described for the prior and the pre-posterior
analysis in the form of decision tree. The extensive form analysis
is used to find the optimum inspection and repair strategy based
on Vol. The results from the extensive form analysis are then
utilized to form the decision rules for normal form analysis.
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INSPECTION PLANNING AS PRE-POSTERIOR DECI-
SION ANALYSIS

Planning an inspection for offshore structures is an example
of a decision problem. Solving the decision problem by means
of Bayesian decision theory, including the pre-posterior decision
analysis, had been introduced by Raiffa et al. [6] in the form of
extensive and normal form analysis.

Inspection planning can be modeled using a decision tree as
shown in Fig. 1. The inspection space, e, consists of available
inspection strategies that can be performed. The outcomes of
the inspection are collectively stored in the inspection outcome
space Z. The repair action space, a, consists of possible repair
actions available to the decision maker. The repair action space
and the inspection outcome space can be connected to form the
decision rules d(Z) = a that would be required in a normal form
analysis. The state space, 0, describes the system states, i.e.
failure or survival of the associated structural components, and
may be affected by the outcomes of the decision rules d(Z).

The expected utility for a certain terminal action a, E[C(a)],
can be calculated as follows [7]:

n,

E[C(a)] = Y. p(61a)C(a, 6) (1)

i=1

where i = 1,..,n, is the number of possible state of natures, 6,
p(6;|a) is the probability of a certain state of nature, 6; given the
terminal action a, and C(a, 6;) is the utility of set (a, 6;). As seen
in Eqn. (1) the utility may be associated to monetary value i.e. to
costs or benefits.

In structural reliability, the utility is often considered as the
summation of cost of failure, repair, and inspection over the ser-
vice life, Tz, that may vary for different inspection and repair
strategies as follows:

Cr(e,a) =Ci(e) +Cg(e,a)+Cy(e,a) 2)

where e = [e},ez,...,e,] is the possible inspection strategies,
a = [ay,ay,...,axg] is the possible repair strategies that can be
performed, C;(e) is the cost of inspections, Cg(e,a) is the cost
of repairs, and Cy(e, a) is the cost of failures.

For inspection planning, the objective is to find the optimum
repair and inspection strategy, which maximizes the utility cal-
culated by Eqn. (1) and (2). The optimization problem can be
formulated by utilizing extensive form decision analysis as fol-
lows [6]:

E[Cr(e*,a*,Ts, )] = argmin Ez[argmin Ey[Cr (e,a,Ts.)]]  (3)
e a
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FIGURE 1: Decision tree (top) and influence diagram (bottom)
to illustrate the pre-posterior decision analysis. The rectangu-
lar nodes are the decision nodes and the circular nodes are the
chance nodes.

where ¢* and a* are the optimum inspection and the optimum
. " .

repair plan, and E,[Cr(e,a,Ts; )] is the expected value over the

posterior state of nature.

Value of Information (Vol)

Vol theory is one important concept building upon the pre-
posterior decision analysis that describes the value of perform-
ing an inspection/experiment e.g. to reduce the expected costs
and the risks. If we consider a,,,,, as the optimum repair ac-
tion without any inspection performed (prior analysis), the Value
of Information of performing an inspection can be calculated as
follows:

Vol = E[Cr(e",a", Ts.)| — E[[Cr(aprior; TsL)]] 4)

In this paper, the Vol theory will be used as a basis for planning
inspection and repair strategy.

PROBABILITY OF FATIGUE FAILURE

In inspection planning, the fatigue failure occurs if the crack
depth, I, of the hotspot exceeds a certain critical crack depth, /..
In mathematical terms, the fatigue failure can be modeled by a
limit state function, g, as follows:

gr(X,t)=1.—-1(X,1) 5)
where X is a vector that contains random variables defining the
crack size growth. Structural failure corresponds to the condition

that g¢(X,1) <O0.
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The crack size is a function of time as can be seen in Eqn.
(5). The crack growth is calculated using the widely applied Paris
Law for a crack in an infinite size plate as follows:

) _ ¢ (as/aim)” ©)

dn

where [ is the crack depth, n is the number of cycles, AS is the
stress range, and C and m are the empirical parameters. The
differential equation in Eq. (6) can be solved to find the crack
depth as a function of time, /(X ) [4,8]:

m

m I
1x.0) = ((1-2) cBgBRAs 2 v —1f ) (=)
@)

where [y is the initial crack size, v is the annual cycle rate,
Bg;r and Bag are the model uncertainties in the stress inten-
sity factor and the stress range calculation as shown by Folso
et al. [4]. The random variable space is defined as X =
[AS,V,ZO,C,m,BS]F,BAs].

The probability of fatigue failure therefore can be calculated
by using the following equation:

P = [ X ®)

where f(X) is the joint distribution of all random variables con-
tained in vector X and Q((r) = g(X,1) <O0.

Eqn. (8) can be solved using Monte Carlo Simulation
(MCS), i.e. by creating an indicator function, /(X ), where:

0 9
o ©)

Eqn. (8) can therefore be written as follows based on application
of the MCS method:

1 nycs
Pf(t) ~ orcs Zl If(X,l‘) (10)

where nycys is the number of simulation performed by using the
Monte Carlo method.

PROBABILITY OF INSPECTION OUTCOMES

The inspection outcomes, Z, are affected by many factors
such as the inspection technique, the inspector performance, the
environmental condition, and the inspection equipment. The
probability of detection (PoD) is the measure of detection suc-
cess taking the uncertain factors into account and may be mono-
tonically increasing from O to 1 [2]. The one dimensional log-
logistic PoD model accounting for the mean rate of success for
given crack depth, [, is defined as follows [2]:

B exp(OC‘l‘BDl”(l))
POD(Z) - 1+exp((XD+ﬁDl”(l)) b

where ap,fp, are the model parameters that depend on the ap-
plied inspection techniques.

The limit state function for an inspection resulting in unde-
tection, Z1, is defined as follows [5]:

82, (X,1;) =@ ' (PoD(I(X,1;))) — Z (12)

where Z is a random variable with Standard Normal distribution
and #; is the time when the inspection is performed.

Therefore, the probability of undetection, Pz, (t7) can be cal-
culated as follows:

Pal)= [ fX)dx (13)
z1(p)

where X is a vector containing the random variables in Eqn. (7)
and Q (;,) is the domain where gz, (X,#/) < 0. The probability
of detection can easily be found with Pz, = 1— Pz,.

RELIABILITY UPDATING OF PROBABILITY OF FA-
TIGUE FAILURE

By performing the inspection, the probability of fatigue fail-
ure can be updated by following Bayes’ Rule as follows:

Pr(t) Py, (11)

P(F(t)|2:(tr)) = Pan

(14)

where 7; is the time when the inspection is performed, and Pz, ;)
is the probability of undetection at time #;. By inserting Eqn. (8)
and (13), Eqn. (14) can be written as:

Copyright (© 2017 by ASME



HF@B@»—J@“m””ﬂXMX (15)
BT ey, f0dx

ANNUAL PROBABILITY OF FATIGUE FAILURE

In structural engineering context, the probability of failure
of interest most often is the annual probability of fatigue failure.
The annual probability of fatigue failure given survival before
time ¢, APy(z), is calculated as follows:

Py(t) — Pyt — Ar)
At(1—Ps(t —Ar))

APs(1) = (16)

where At is taken as 1. The probability of fatigue failure, Py(z),
in Eqn. (16) may refer to the updated probability of failure in
Eqn. (15) if t > t; or Eqn. (8) if otherwise.

REPAIR STRATEGY

The main objective of the inspection planning is to find the
optimum inspection and repair strategy. After an inspection, the
decision maker could decide to perform the repair immediately
or in the future. A repair strategy can be modeled with the time
of repair and/or the repair location. The repair performance de-
pends on many factors such as repair techniques, difficulties of
repair location, and costs of performing the repair. An example
of repair strategies decision tree based on the time of repair can
be seen in top figure of Fig. 2.

There are two assumptions that widely utilized for the be-
havior of the repaired element [2]:

1. The repaired element behaves like new element,
2. The repaired element behaves like an element that has no
indication during inspection.

In this paper, the first assumption is used for the repaired element.
A new initial crack size is generated after the repair is performed.

It is assumed that the repair shall be performed by welding, and
thus the crack size may be calculated as follows:

I, = Bol, (17)

where By is uncertainty of weld quality [4].
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FIGURE 2: Decision tree of inspection and repair strategy for
prior (top) and pre-posterior analysis (bottom).

APPLICATION

In this section, an example of inspection planning for a typ-
ical fixed offshore platfrom is presented. The objective is to op-
timize the inspection strategies, e, and the repair strategies, a, by
the application of the Vol theory as shown in Eqn. (4). The exten-
sive form decision analysis is used to find the optimum strategies.
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Problem Description

A structural joint in an offshore structure with the lifetime,
Tsr, of 30 years will be investigated. The joint is subjected to
cyclic loading due to waves and current, and deteriorates over
time due to fatigue damage. A repair and inspection strategy is
to be determined through out structure’s lifetime. The decision
tree for the repair and inspection strategy is shown in Fig.2. The
failure limit state function, gy, is given by Eqn. (5) where the
critical crack depth, /., is equal to 40 mm. The considered ran-
dom variables are the stress range, AS, the initial crack depth, /,,
the material parameter, C, the stress intensity uncertainty, Bg;r,
and the stress range uncertainty, Bag. The inspection is assumed
performed by MPI (Magnetic Particle Inspection) with the asso-
ciated probability of detection is given by Eqn. (11). The stress
range is assumed to be Weibull distributed. A summary of the
parameters used in this example is presented in Tab. 1 according
to Straub [2] and Thons et al. [9].

Each inspection strategy is characterized by the inspection
time over the service life, ; = [1,2,...,29], while the repair can
be performed at the same time or after the inspection, f3; =
[t7, ..., Tsr), depending on the inspection strategy. The decision
tree for the inspection and repair strategies can be seen in Fig. 2.
In total, 930 combinations of inspection and repair strategies are
investigated.

The cost model considered used in this example contitutes a
typical fixed offshore structure [10]. The unit cost of an inspec-
tion, Cy, is equal to $2000 and is subjected to the discount rate,
r, which depends on the financial strategy of the decision maker.
In this example, the discount rate is assumed equal to 0.03. The
expected cost of inspection over the service life is as follows:

Inl

C[ e TSL ZC]

(18)

where #; is the inspection time.

The unit repair cost, Cg, is equal to $20°000 and also sub-
jected to the discount rate, . The expected repair cost over the
service life is as follows:

IR

ZCRea ! ey (19)

=ty

E[Cr(e,a,Tsy)]

where 77 is the repair time. It is assumed that the repaired ele-
ment behaves as new element according to Eqn. (17).

The cost of structural failure, Cp, is assumed equal to
$307000°000 and the expected cost of failure over the lifetime
is as follows [10]:

TABLE 1: Summary of random variables.

Par. Description Distribution u c
InC Material Normal -29.9 0.5
parameters
Bgir Uncertainty Log-Normal 1.0 0.3
of stress
intensity
factor
Bas Uncertainty Log-Normal 0.95 0.285
in stress range
calculation
By Uncertainty in ~ Log-Normal 1.10 0.22
weld quality
h Shape param- Normal 1.2 0.18
eter
A Scale parame- Deterministic 2.3 -
ter
Iy Initial crack Exponential 0.11 -
depth
m Material Deterministic 3.0 -
parameter
v Annual stress Deterministic  5-10° -
cycle
Ty, 1
E|(Cr(e,a,Ts )| =) CrAPs(e,a,t)(1 —Prle,a,t —At)——
[Cr(e.a,TsL)] 1:21 FAPr(e,a,t)(1—Pr( )(1+r),
(20)

where APy (e, a,t) is the annual probability of failure in time ¢ for
every combination of the inspection and repair strategies. The
expected total cost over the service life can then be calculated as
follows:

E[Cr(e,a,TsL)| = E[Ci(e, TsL)]
+E[CR(e,a,TSL)+E[Cp(e,a,TSL)] 21

Prior and Pre-Posterior Analysis

The results of the prior analysis may be seen in Fig. 3. The
top left diagram shows the total expected costs for different repair
times, f7, and no repair. The optimum repair time was found at
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FIGURE 3: Total expected costs for prior analysis in thousand USD (top left), annual probability of fatigue failure for #); = 14 in
prior analysis (top right), total expected costs for the pre-posterior analysis in thousand USD (bottom left), and the optimum repair and

inspection time difference, AR (bottom right).

t = 14 years. The top right diagram shows the annual probability
of fatigue failure for the optimum repair strategy.

The pre-posterior analysis was carried out for every branch
of decision tree in Fig. 2 by utilizing the extensive form analy-
sis. The results of the analysis may be seen in bottom left and
right diagrams in Fig. 3. The bottom left diagram shows the
expected total costs over the service life for the optimum repair
strategy given the inspection outcomes, while the bottom right
diagram shows the difference between the optimum repair and
the inspection time, AR, for each inspection strategy. From both
diagrams, it can be seen that the optimum inspection strategy is
to perform inspection at + = 10 years while the optimum repair
time is conditional on the inspection outcomes. For the undetec-
tion branch, the repair should be performed at ¢t = 18 years while
for detection branch the repair should be performed in the same
year as the inspection.

Value of Information

Figure 4 shows the Value of Information for each inspection
strategy. It can be seen that the maximum VoI is $12°500 and
occurs if the inspection is performed at r = 10 years. The Vol
is zero if the inspection is performed below t=4 years and after
t=16 years.

DISCUSSION

From Fig. 3, it can be seen that it is not beneficial to per-
form the repair at the early stage of the structure’s lifetime. It is
because the repair will not sufficiently reduce the probability of
failure and is more expensive to perform. This behavior can be
seen both in the prior and the pre-posterior analysis (given the
detection outcome). In the pre-posterior analysis, the optimum
repair time is conditional on the inspection outcome. If a crack
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is detected during the inspection, generally the repair should be
performed immediately after the inspection unless the inspection
is performed very early. If no crack is detected during the inspec-
tion, the optimum repair strategy is to perform the repair several
years after the inspection. From Fig. 3, it can be seen that the dis-
tance between the optimum repair and the inspection time, (AR),
for the undetection branch had inverse relationship with the time
of the inspection. This is because the remaining structure’s life-
time after the inspection is lower with increasing inspection time;
therefore the available repair time after the inspection decreases.
The AR is constant for several inspection times in the undetection
branch before the optimum repair time changes due to the lower
remaining lifetime after the inspection.

It should be noted that the Vol becomes zero after + = 16.
Therefore, it can be said that little to zero value is gained if the
inspection is performed very late in the structure’s lifetime. It
also can be seen that there is no value in performing the inspec-
tion very early due to the low probability of detection.

In the extensive form analysis, the entire decision tree shown
in Fig. 2 is evaluated. In practice, the computational cost of
the analysis can be very high if more optimization parameters
are included in the analysis, i.e. multiple inspection times and
different repair methods.

The normal form analysis requires the decision rules which
connect the inspection outcome, Z, to the repair strategies, a, in
the form d(Z) = a. Depending on the formulation of the deci-
sion rules, significantly fewer branches of the decision tree may
then be assessed if the decision rules cover the branches contain-
ing the optimal inspection strategy and action. From the previous
discussion, it can be noticed that if a crack is detected, immediate
repair is required. If a crack is undetected, the optimum repair
strategy is to perform repair after the inspection. Therefore, the
decision rule for the normal form analysis can be formulated as
shown in Tab. 2. By utilizing the decision rules, the decision
tree branches can be reduced significantly but still retain the im-
portant branches that govern the optimum inspection and repair
strategy. Further elimination of the branches may be done by
discarding branches that have inspection time higher than half of
the the structure’s lifetime due to the low Vol.

TABLE 2: Decision rule for normal form analysis.

Decision Rule  Description

d(z)) = a/1 Repair after the inspection is per-
formed/Do not repair during the in-
spection,

d(Zy) =ay Repair at the same time as the in-

spection.
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FIGURE 4: Vol for each inspection strategy in thousand USD

CONCLUSION

This paper contains a formulation of the decision theoret-
ical basis for inspection planning applying the Bayesian deci-
sion theory. The inspection planning is formulated as a Value
of Information problem where additional information about the
fatigue performance is provided by inspections. The fatigue per-
formance is modeled with a fracture mechanics approach and the
limited precision of inspections is accounted for. The inspections
are performed to optimize the maintenance and repair planning.

The introduced formulation facilitates that an optimal in-
spection strategy can be identified with an analysis in extensive
form based on the Value of Information it provides. Consecu-
tively, it becomes possible to derive decision rules which lead to
the optimal inspection strategy and optimal maintenance and re-
pair action. These decision rules can then be applied in future
analyses leading to a significant reduction of the computational
efforts by utilizing a normal form analysis.

The approach is applied to the inspection and repair planning
of one hot spot. By considering all branches of the decision tree,
the optimal inspection and repair times are determined. It has
been found Vol optimal to repair immediately when a crack is
detected.
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