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Abstract

Despite our improved ability to probe biological systems at a higher spa-

tiotemporal resolution, the high dimensionality of the biological systems often

prevents su�cient sampling of the state space. Even with large scale datasets,

such as gene microarrays or multi-neuronal recording techniques, the variables

we are recording from are typically only a small subset, if wisely chosen, repre-

senting the most relevant degrees of freedom. The remaining variables, or the so

called hidden variables, are most likely coupled to the observed ones, and a↵ect

their statistics and consequently our inference about the function of the system

and the way it performs this function. Two important questions then arise in

this context: which variables should we choose to observe and collected data

from? and how much can we learn from data in the presence of hidden vari-

ables? In this paper we suggest that recent algorithmic developments rooting

in the statistical physics of complex systems constitute a promising set of tools

to extract relevant features from high-throughput data and a fruitful avenue of

research for coming years.
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1. Introduction

Ongoing technological advancements in high-throughput recordings of bio-

logical systems have captured the attention of many scientists who have aimed to

come up with methods for analyzing these data. Protein sequence alignments

[1], gene expression level measurements [2, 3] and neural recordings [4, 5, 6]

constitute extensive samplings of the microstates of the underlying complex

systems, and the availability of large datasets calls for statistical tools to an-

alyze them [7]. New methods from machine learning and statistical physics

are constantly being proposed to allow us to gain information from these large

datasets. In particular, statistical physics, with a set of tools that are built over

many years for dealing with high dimensional systems, have come to play an

important role for this purpose in recent years. The main focus of this paper

is then to discuss and assess some of these tools and the prospect they o↵er for

future developments in the field.

From its origins, statistical physics has dealt with large systems of interact-

ing degrees of freedom [8], describing them in terms of macroscopic variables

that ultimately provide a lower dimensional representation of the system and

uncover collective behavior. The ability of bridging between di↵erent levels of

description of a system in a systematic way makes some approaches within sta-

tistical physics promising candidates for inspecting data from biological or other

complex systems. When engaging in statistical inference, physicists may aim at

reconstructing the underlying system from the data, e.g. a network of interac-

tions [9, 10], and exploiting the theoretical understanding they developed on the

phenomenon [11]. In order to find insightful structure in noisy data one may

adopt some dimensionality reduction scheme, before proceeding to parametric

inference. In the deeply undersampled regime, namely when the number of sam-

ples is much smaller than the dimensionality of the state space of the system, or
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even the state space characterized by observed or recorded parts of the system,

selecting the relevant degrees of freedom becomes imperative to avoid fitting

noise and to gain as much information as possible about the system and its

function. This problem can be addressed from an information theoretical point

of view [12] and is based on the distribution of mostly informative samples, as

we will discuss in section 2. Once the pre-processing of the data is performed,

one can incorporate the observed data into rigorous probabilistic models of the

data. In some cases, one can then even infer how the hidden variables might

influence observed variables: hidden variables, namely those deemed less impor-

tant to observe and measure from, can then be incorporated in the statistical

model using new developments in inference in the presence of hidden variables,

whereby one can estimate how much the latent variables a↵ect the inference on

the observed subsystem as well as predict their time-varying states, as we will

discuss in section 3.

2. Critical Variable Selection

Critical Variable Selection (CVS) is a method recently proposed for select-

ing variables or degrees of freedom that are important about the function of

the system, without having much knowledge a priori about this function. The

main idea, proposed in [12], rests on the assumption that without any prior

knowledge, and when there is very little data, there is little reason to think that

two configurations of the system are functionally di↵erent, when they appear in

data with similar frequency. The degree of similarity necessary to determine if

two configurations of the system are functionally di↵erent also depends on the

number of samples available: a small di↵erence in the observed frequency of two

states become more important when there is more data.

Before going into more details about the issue of variable selection in the

under-sampled systems, it is imperative to give a history of what can be seen as

a surprising phenomena of similar statistical behavior in widely di↵erent com-

plex systems. In the last century, numerous databases have gathered empirical
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evidence supporting the prevalence of power laws, characterizing samples across

diverse domains [13]: from words count in text [14], sand pile avalanches [15],

to size of cities [16]. Biology is no exception [13] and given the universality of

power laws, general mechanisms have been proposed as generating this distri-

bution [17]. A tantalizing one, is self-organized criticality. The relation between

this type of criticality and power laws dates back to the 1980s [15]: the idea is

that the system is poised at a critical point (at the cross-over between macro-

scopic states or phases) automatically, without requiring any parameter tuning,

and through its own internal dynamics. This is in contrast to other forms of

critical phenomena, e.g. water to vapor boiling transition, where an external

parameter, namely temperature, should be tuned by an external agent. Criti-

cality implies long range spatial and temporal correlations between the states

of the system and complex emergent behavior. The link between power-laws

and criticality was originally drawn in statistical physics where the description

of equilibrium systems in terms of entropy and energy allows a rigorous deriva-

tion. In biology the connection between power law distributions — Zipf’s law in

particular — and criticality has been extended through the use of maximum en-

tropy models (max-ent) [18]. Max-ent models [19] reflect the current knowledge

on the system encoded in the data: the entropy of the inferred distribution is

maximized, while being constrained to reproduce some or all of the statistics of

the data. Maximum entropy inference naturally introduces an energy function

on the states space, that, in case of power law distributed data, relates to the

entropy of the data in a way similar to physical systems at the critical point.

The interpretation of power laws as a signature of criticality has become very

popular in the last decades and has fostered the use of maximum entropy models

in statistical inference on biological data [20].

Maximum entropy inference, and its approximate implementations, have

proven to be a versatile and useful technique, and to outperform other ap-

proaches for biological data analysis in a number of settings e.g. cross-correlation

based analysis for inferring interactions in neuronal data or inference of protein

residue contacts. For instance, single cell responses can be predicted from the
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population activity of a network of neurons in the salamander retina [21] using

the max-ent approach and this approach appears to predict higher order c cor-

relations [22] when fitted only using lower order correlations (mean firing rate

and pairwise). From the activity of simultaneously recorded neurons in the pre-

frontal cortex of a rat, maximum entropy inference methods reveal task-related

changes of the e↵ective couplings which reappear during sleep post-task [23]. In

protein contact prediction from multiple sequence alignments [24], fitting maxi-

mum entropy models is a step in the powerful Direct Coupling Analysis (DCA)

method for inferring residue contacts [25]. An important work in this line is

the work by Weigt et al [26] who used a relatively computationally expensive

message passing method to learn a max-ent model and to use this model to find

direct residue contacts in proteins-protein interactions. Later, it was shown that

even a rougher (and faster) approximate method can serve the purpose [27]. A

further improvement on max-ent DCA performance in contact prediction con-

sists of employing the pseudolikelihood method [28], whose accuracy allows for

protein 3D structure reconstruction [29]. This list can be continued and other

fruitful applications of the maximum entropy inference exist e.g. for inferring

gene regulatory networks [30] or epidemics [31]. The usefulness of maximum

entropy approaches can continue to rise, with algorithmic improvements on the

maximum entropy approach to match biologically realistic features of networks

e.g. by including sparsity [32, 33, 34].

Despite the numerous useful applications and insights gained from the max-

imum entropy approach, there are, however, a number of problems with this

framework and, in particular, the interpretation of criticality when dealing with

data collected from large systems. As discussed before, typically when observing

large systems, the resulting sample is (a) at best only a small fraction of the

system, e.g. hundreds of neurons out of thousands or hundreds of thousands

in a cortical circuit, and (b) even for this small fraction, a limited part of the

configuration space is sampled, e.g. for hundreds of neurons, one would need to

record for years to cover the whole phase space spanned by these neurons. We

describe these problems in more details below.
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Roudi et al. [35] argued that the success of max-ent models stems from the

small number of neurons and low probability of spikes considered in the anal-

ysis. It was further shown that applying the max-ent techniques to a random

connected network of simulated neuronal network, one obtains similar results

as [36], but the usefulness of the max-ent model decreases as the size of the

sampled neurons increases. More recently the maximum entropy approach has

been criticized in the context of protein contact prediction [37], in particular

discussing foundational arguments behind the current the implementation of

the max-ent principle and the implications of applying the max-ent approach

for uncovering the underlying processes of the systems. Pairwise models are

indeed largely employed for inferring interactions but somehow contradict the

max-ent spirit: the model is forced to reproduce pairwise correlations of the

data, while higher order statistics is neglected. On the other hand, it can be

argued that pairwise models are su�cient to infer pairwise interactions, even if

they are not su�cient to reproduce protein distribution within domains. The

other controversial aspect is the fact that max-ent models assume that the pro-

cess sampled is at equilibrium, which is certainly debatable for many biological

systems, e.g. neural networks.

Even with these problems with the maximum entropy approach, it still had

the interesting benefit that it appeared to explain the regularities that many

data sets from complex system exhibit, e.g. the Zipfs laws in neural data pat-

tern rank order, stating that this is somewhat related to the criticality of the

inferred maximum entropy models. However, recently a number of, in our opin-

ion, more likely explanations have been o↵ered: instead of an actual feature of

the system, e.g. being poised at the critical point, the power law distribution

has been interpreted as signaling the presence of hidden variables and that ex-

perimentalists, searching in this highly under-sampled system, would do best,

if they choose the variables that exhibit a Zipf’s law [12].

Initially it was shown [12] (see Box 1) that, under mild conditions on the dis-

tribution of the states of a system maximizing some unknown utility function,

the observed variables exhibit a Boltzmann distribution at an e↵ective temper-
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ature that depends on the number of hidden variables. In light of these results,

the authors in [12] introduced a new paradigm in data analysis suggesting the

entropy of frequencies H [K] to be used as a relevance measure for a sample;

here H[K] is the entropy of the counts: defining Ks as the number of times

configuration s was seen in M samples, one defines mk =
P

s �k,Ks , namely the

number of configurations that were observed k times, and H[K] is the entropy

of the variable K which takes value k with probability kmk/M . Identifying a

subset of variables that together exhibit the largest H [K], or broadest distribu-

tion of frequencies in the sample, as those carrying information on the function

performed by the system, is the backbone of CVS.

Multiple examples of the usefulness of this approach has been given in [12]

and later work has proven its power further. For instance [38] used this ap-

proach, and found that the algorithm proves to give results that are consistent

with the present knowledge on biologically relevant sites (Response Regulator

Receiver and Voltage Sensor Domain of Ion Channels) and to outperform state of

the art algorithms (Statistical Couplings Analysis) when integrated with DCA.

The method has proven to be robust against the number of selected sites and

the sample size. In another recent paper [39], the CVS method proposed in [12]

has found much firmer theoretical grounds by studying how to optimally cluster

the observed configurations of a system depending on the number of samples in

the data; see Box. 2 for more details.

Within the same idea of the importance of hidden variables or external fac-

tors (which can also obviously be seen as hidden variables), it has been rigorously

proven that in the specific case of a high dimensional latent variable model, the

frequency of the configurations of observed variables follows the Zipf’s power

law[40]. This work has subsequently been elaborated and extended in [41], where

the authors notice that a broad distribution of frequencies (power law) can be

generated by mixing a narrow frequency distribution of the observed variables

given the hidden variables across di↵erent settings of the hidden ones. Identi-

fying the latent variable allows for the quantification of its explanatory power

in terms of the distribution of frequencies in di↵erent domains [41]. As an in-
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structive example, we can consider the power law distribution of frequencies

in the dataset suggested by a max-ent equilibrium analysis [36] indicating that

the system is strongly coupled or even critical. Later, learning a non-stationary

model [42], it was proved that the correlations between neurons can be explained

by a latent variable (time dependent) external field (presumably the movie to

which the retina was exposed during recordings), without requiring significant

couplings between neurons. In this case, as in many other cases, the statistical

regularity that seems to give insights on the way the complex system coordi-

nate and perform its function, may just be a characteristic of the (incomplete)

sampling.

3. Learning the dark side of the network

Whichever method is chosen to select variables to observe, it would also

be very useful to infer the e↵ect of the unobserved hidden variables on the

system. For instance, can we say how the inferred functional couplings between

a set of neurons are going to change if we were to include some of the unrecorded

neurons? Parametric models that include hidden variables as part of the network

of interactions can be used to do this job. They can, for instance, explain away

correlations in the data induced by the hidden variables by disentangling direct

from indirect interactions and uncovering external covariates.

Recently the statistical physics community has come up with accurate and ef-

ficient algorithms for inference of network interactions in the presence of hidden

variables. Analyzing the inference of the symmetric connections in an equilib-

rium Ising model, [43] shows that the interactions between observed nodes can

be retrieved reliably — provided that the fraction of hidden neurons is small

enough. But again, more relevant to real biological data are those algorithms

that take into account the non-equilibrium nature of the biological systems.

Approximate algorithms [44, 45, 46] that reliably reconstruct the connectivity

on a partially observed network have been developed for the paradigmatic case

of the kinetic Ising model, a Bernoulli generalized linear model [47] with one

8



step time kernel. The algorithms take the form of a Expectation Maximization

(EM) algorithm [48]. The EM algorithm is a two step recursive algorithm that

alternates between: 1) computing the expected value of the states of the hidden

units given the data and the current values of the parameters, and 2) updating

the parameters to maximize the expected log-likelihood. Its convergence to a

local maximum of the likelihood is guaranteed. The main problem for using

the EM algorithm for reconstructing networks with hidden nodes is in the first

part, and this is where approximate methods rooted in statistical mechanics and

field theory has been used in [44, 45, 46]; see also [49, 50] where the problem of

inferring the state of hidden variables for continuous variables under Langevin

dynamics is studied.

As an example of how one can use these methods to explore the role of hidden

nodes in a real life setting, in Figure 1 we show the inference of connectivity

between grid cells in the Medial Entorhinal Cortex (MEC) of rats. Grid cells

[51] are neurons in mammalian MEC and each grid cell has the property that it

fires at a number of locations in the space that the animal navigates, and these

locations form a hexagonal pattern tessellating the space. Theoretical network

models of how grid cells achieve their hexagonal firing pattern assume that the

local network is constructed such that cells that are active in similar spatial

locations are more likely to be connected through excitation while pairs with

non-overlapping spatial selectivity inhibit each other; see [52, 53] for reviews of

grid cells and their theoretical network models.

In [54], the authors demonstrated that this connectivity scheme, known as

Mexican hat connectivity, could be recovered with a kinetic Ising model. Fur-

thermore, the trend remained stable with the inclusion of known covariates,

including space, head directionality, speed and local theta phase preference.

Figure 1 shows that this trend is maintained even when unknown covariates, i.e.

hidden units, are assumed, thus strengthening the conclusion that the required

Mexican hat connectivity exists in the MEC. While the number of assumed

hidden units did not come close to the hundreds of thousands of neurons that

were actually unobserved, the stability of the couplings is still interesting. It is
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Figure 1: Hidden units in the entorhinal network: The phase-dependent functional

connectivity for two modules of grid cells captured using the kinetic Ising model with only

constant fields (black +s in A and B) is largely maintained when hidden units are assumed

(colored⇥s in A and B). Panels C, D and E show the smoothed firing rate map of three neurons

as a function of the position in a square box that the animal was navigating. Interestingly,

the spatial tuning of the hidden units (e.g. C and D) do not show the stereotypical hexagonal

firing of the grid cells, exemplified in E. Here four hidden units with no connectivity between

them were assumed. Learning has been performed through the approximated EM algorithm

from [44]. Time bins of 10ms, a learning rate of 0.1 and 3000 learning steps were used in both

the inference with and without hidden units.

also interesting to note that the hidden neurons appear to exhibit a degree of

spatial selectivity in their response (Figure 1 C and D), something that would

be important to explore further, for instance by studying if with more hidden

neurons, one can predict (or post-dict) the existence of other spatially tuned

cell types in the MEC. This figure also serves to demonstrate that the methods,

although still at their infancy in terms of practical applications, can be applied

to real data. There are also opposite cases in the literature: for instance it has

been demonstrated that even a single hidden variable can have a dramatic e↵ect
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in the resulting interpretation of neural data [55], allowing, for example, for the

recovery of the correlation structure of the awake animal from data collected

under anesthesia.

4. Conclusions

Complex systems such as biological systems are in many ways puzzling us.

One of these puzzles is to decide which of their many degrees of freedom are

most informative about the system. For instance, if one is aiming to understand

the mammalian MEC, one should wonder which cells to record from, given the

constraint that one cannot record from all neurons nor can one record from

them forever. In our opinion, finding normative and unbiased ways to approach

this issue will be an avenue of research which can yield fruitful results in the

future for analyzing biological data and systems. We described one new method,

the Critical Variable Selection, which we think in recent years has proven very

promising. However, we believe more work and di↵erent approaches are required

to achieve a successful understanding of variable selection from big biological

systems and data. We also mentioned the problem of inferring the state of

hidden nodes and their e↵ect on the observed ones, and discussed some of the

new work that has been done in this direction. Again we think being able to use

observed data to talk about the known unknowns or even unknown unknowns

is an important topic with great potentials. We are confident that the work we

mentioned in this review is just the beginning of a successful story.
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(BOX 1): The entropy of frequencies

Emergent properties of biological complex systems, as large numbers of in-

teracting components carrying out some function as a result of their interac-

tions, can be conceived of as solutions to an optimization problem. This means

that the system state �!s = (s, s), of hidden (s), and of observed (s) variables

, maximizes an objective function U(�!s ). Although the objective function typ-

ically depends on all the variables of the system, what the observer measures

is us = E [U(�!s )], an average over the distribution of the hidden variables s.

It was proven [12] that under broad conditions the observed variables s then

follow the Boltzmann-Gibbs distribution:

p(s) / e
�us , (1)

namely the maximum entropy distribution that constrains us. The inverse tem-

perature � is controlled by the number of hidden variables in a way that, for

typical distributions, the observed subsystem is predictable only when the num-

ber of hidden variables is large enough. In a sample ŝ the empirical frequency

of states Ks, approximating p(s), provides a noisy estimate of the unknown

function us, through equation (1). Consequently the most informative samples

are those that maximize the entropy of frequencies H [K]; see the main text and

[12] for the definition of H[K]. In [12] the authors observed that the maximum

entropy of frequencies is a non monotonic function of the entropy of the data and

that the latter provides an upper bound to H [K] through the data processing

inequality [56]. In the well sampled regime H [K] = H [s], while in the under-

sampled regime the maximization of H [K], at fixed H [s] corresponds to power

law distributed sample (when looking at their Zipf’s plot), and in particular, at

the peak value that the maximum of H[K] can reach, the power law is a Zipf’s

law. This o↵ers an alternative to physical criticality as an explanation for the

observed Zipf’s laws: it follows that the Zipf’s law distributed samples are the

most informative samples that an experimentalist can come up with when the

state space is going to be poorly sampled due to experimental limitations, as
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often is the case in biology. In other words, Zipf’s law occur only when one is

looking at samples from meaningful variables or degrees of freedom of a complex

systems, with usually the majority of variables being unobserved.

(BOX 2): Bayesian model selection for data clustering

The definition of the states of a system is made by the observer that probes

the system. It is the available empirical sample ŝ of the configurations of the

system that dictates the resolution of the state space of the system. Loosely

speaking, if two states appear in the sample with frequencies that do not di↵er

much, it means that the sample does not permit the distinction of one state

from the other. Consequently our inference procedure needs to collapse them

into the same state. This problem has been tackled in [39] with a Bayesian model

selection approach: find the partition Q of the states space that maximizes the

posterior probability P [Q|ŝ]. The authors observed that the optimal partition

induces a power-law distribution on the data, which was proven to characterize

maximally informative samples in terms of H[K], the entropy of frequencies [12]

(see Box 1). In general, looking for the optimal clustering of the data can be

computationally expensive. Fortunately, it turns out that a good approximation

for the optimal partition Q
?, is clustering together only states with exactly the

same frequency. In practical applications — relevant sites selection in proteins,

clustering of financial stocks — the optimal partition Q
? significantly overlaps

with the raw one, further demonstrating that H[K] discussed in the text and

Box 1, can be used as a proxy for H[Q?].
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Highlights

• Ref. [12] (**). This is one o the first paper that relates Zipf’s law not to the

some processes, critical or otherwise, that happen in a system generating

the data, but as a consequence of sampling properties, and, in particular,

sampling in the presence of hidden variables. The authors introduce a new

approach to optimal variable selection using count distribution that has

been later implemented for critical variable selection in selecting important

amino-acid sites in a protein [38] and has further been analyzed and used

for states clustering [39].

• Ref [37](**). This paper conveys conceptual and methodological argu-

ments against the viability of the max-ent approach. Partly the skepticism

is concerned with the preferential employment of pairwise models with re-

spect to max-ent models with higher order interactions. This approach is

clearly very far from using all available information on the system, pro-

vided by the data, as the maximum entropy spirit would dictate [19].The

paper presents even more fundamental criticisms to maximum entropy

inference, regarding the implicit assumption that the samples of the sys-

tem are drawn from an equilibrium distribution, meaning that the process

under investigation is supposed to obey detailed balance. If this could

possibly be true for protein alignments, with puzzling implications on the

reversibility of evolution on long time scales, it cannot definitely hold for

systems subjected to strong perturbations as in-vivo neuronal recordings.

• Ref. [44](*). Using generating functional methods, the authors derive an

approximate expression for the likelihood of a partially observed kinetic

Ising model. The algorithm is able to retrieve the generative network of

interactions, even those between the hidden units. Importantly for its

potential applications, the number of hidden neurons does not have to be

known a priori, but can be inferred from the data.
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• Ref. [49](*). In this paper, as well as in [50], the inference error on the

time series of hidden nodes in a network of interacting continuous degrees

of freedom is studied. Its time course as well as its dependence on the

degree of symmetry of the connectivity and on the fraction of observed

to hidden degrees of freedom are investigated. Such theoretical analyses

are of great importance for assessing the potentialities and limitations of

statistical models with hidden variables.

• Ref. [38](*). This paper reports the first systematic application of the

ideas proposed in [12]. Critical Variable Selection, as called in this paper,

aims at making a ranking of the relevant sites in a protein family in terms

of their relevance to the function of the protein. The method has proven

to be robust against the number of selected sites and the sample size,

and as opposed to other methods of choosing relevant sites, goes beyond

single-site conservation or pairwise correlations.

• Ref. [39] (**). Using Bayesian model selection, this paper has provided a

solid analysis for deciding how di↵erent configurations of a system should

or should not be distinguished from each other given the number of avail-

able samples form the system. By doing this, it has also provided a more

theoretically justified account for the proposal in [12]. See Box 2 for more

details.
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