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Short Title: Modelling for prediction of hourly streamflow in ungauged basins 17 

Abstract 18 

Prediction of natural streamflow in regulated rivers for derivation of ecologically relevant 19 

streamflow metrics (ERSFMs) and prediction in ungauged basins (PUB) are important in 20 

management of water resources. However, specific studies on comparison of methods for 21 
predicting hourly flow regime relevant to ecological study in regulated (hydropeaking) rivers 22 
are rare in literature. Therefore, using catchments in mid Norway, we performed comparative 23 

evaluation of prediction of hourly streamflow series and flow duration curves (FDCs) in 24 
ungauged basins. We developed a regional regression model based on relationships among 25 

streamflow percentiles and drainage areas and performed a regional calibration of a streamflow 26 
recession based Precipitation-Runoff (P-R) model.  27 

     A leave one out cross-validation procedure was used to evaluate the regional models. The 28 
results indicate that the regional regression model with transferring of streamflow information 29 
based on the nearest neighbor performed better than both transferring optimal parameters from 30 

local calibration and regional parameter sets corresponding to maximum regional weighted 31 

average Nash-Sutcliffe efficiency of the P-R model (NSEMRWA). We also evaluated the models 32 
based on prediction of some environmental indices: the daily range, daily standard deviation, 33 
flashiness, maximum ramping rate, number of rise and falls and daily flow changes. However, 34 

both modelling strategies predicted hourly streamflow indices well and appeared stable over 35 
most indices while the largest differences occurred in the rise and fall counts.  36 
     The models were further applied for prediction of the natural streamflow time series at Sokna 37 
hydropeaking plant. The observed hydrograph exhibits continuous sudden fluctuations while 38 
the predicted natural flow hydrograph exhibits smooth pattern. The within a year FDCs for 39 

observed flow exhibits sharp transitions from high to low flows. There is clear differences 40 
between the environmental indices obtained for the observed and the modelled data series, with 41 
the general observation that the NSEMRWA computing a smaller variability than the regression 42 
model.   43 

 44 
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INTRODUCTION 49 

River regulation for hydropower may create considerable alterations of natural streamflow 50 
regime that have profound ecological, geomorphologic and hydraulic repercussions. Pre-51 
regulation or ‘baseline’ natural flow regime can be obtained from pre-regulation observed 52 
streamflow if available, which frequently is not the case. Moreover, humans have altered 53 

streamflow for a long time and hence the assumption that streamflow records prior to regulation 54 
represent a 'natural' condition can be flawed mainly due to the impacts of land use and climate 55 

change. In addition, streamflow simulation by calibration of Precipitation-Runoff (P-R) models 56 
is not possible for a regulated reach of river. Prediction of streamflow may also be required at 57 
ungauged sites where ecological data is available in order to study the impacts of hydrological 58 
alterations on the riverine ecology. Furthermore, there are interests to predict contributions from 59 

ungauged streams to the environmental flow (e-flow) and reservoir inflow.  60 
     To obtain information on temporal flow pattern alterations compared to the natural (i.e. 61 
pretending no regulation) to study the impacts of regulations, a methodology for predicting a 62 

time series of natural streamflow hydrographs and duration curves that excludes the effects of 63 
regulation are required. The concept of inflow controlled environmental flow regime (e.g. 64 

Alfredsen et al., 2012) can also be better evaluated if a continuous time series of natural flow 65 

can be predicted rather than assessed based on a pre-regulation natural flow regime. 66 

Furthermore, the predicted natural time series is the basis in the derivation of ecologically 67 
relevant streamflow metrics (ERSFMs). Alteration in the hydrographs and flow duration curves 68 

(FDCs) would indicate potential alteration in other streamflow characteristics that are relevant 69 
for assessment of ecological integrity. Comparison of the indices derived from the predicted 70 
(natural) versus the actual flow under regulation would help to characterize flow related 71 

changes and devise improved mitigation and management in regulated rivers.  72 
      Continuous streamflow Prediction in Ungauged Basins or PUB (Sivapalan et al., 2003) 73 

through regional Precipitation-Runoff (P-R) modelling is a highly researched area (e.g. He et 74 
al., 2011; Hrachowitz et al., 2013; Parajka et al., 2013; Razavi and Coulibaly, 2013). Besides 75 
the PUB, the regional modelling enables thorough and comparative study using a large number 76 

of catchments in the region. Current scientific understanding of hydrologic controls on riverine 77 

ecosystems and experience gained from individual river studies support development of 78 
environmental flow standards at the regional scale [Poff et al., 2010]. Several regionalization 79 
attempts for prediction of flow characteristics (e.g. regime, hydrograph, seasonality, frequency, 80 

extremes such as flood and drought) at ungauged basins are available in literature in both 81 
hydrological and ecological sciences. However, the task remain challenging.  82 
     A number of approaches for prediction of ERSFMs at ungauged sites are reported. In a more 83 
recent time, the two main modelling approaches for prediction of ERSFM are statistical 84 
regression (e.g. Sanborn and Bledsoe, 2006; Sickle et al., 2006; Carlisle et al., 2011; Knight et 85 

al., 2011, Murphy et al., 2012) and the P-R models ( e.g. Kennen et al., 2008; Poff et al., 2010; 86 
Murphy et al., 2012; Shrestha et al., 2014). Some applications of various statistical models for 87 
direct prediction of ERSFMs using characteristics of watershed include Nathan and McMahon 88 
(1990), Moliere et al. (2006), Engeland and Hisdal (2009), Castiglioni et al. (2011), Knight et 89 

al. (2011) and Murphy et al. (2012). However, there is no many studies that compare methods 90 
for predicting streamflow for assessment of ecological flow regime. Engeland and Hisdal 91 
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(2009) compared regional regression based on 24 potential catchment characteristics as 92 

independent variables and the HBV P-R model for prediction of low flow index for daily 93 
streamflow from 51 catchments in Southern Norway and found that the regression method 94 
generally gives better estimates. Castiglioni et al. (2011) compared physiographical space based 95 

interpolation and top-kriging and noted that both techniques provide plausible and accurate 96 
predictions of a low-flow index (Q355) in ungauged basins. Murphy et al. (2012) compared a 97 
regional regression model and a P-R model and noted limitations of the P-R model to effectively 98 
predict ecological flow regimes in ungauged basins. Farmer et al. (2014) examined 19 different 99 
statistical and P-R based streamflow prediction methods using a wide set of performance 100 

metrics for Southeast region of the United States and found that a nonlinear spatial interpolation 101 
technique using flow duration curves with the nearest-neighbor donor gauges produced the most 102 
reliable predictions of continuous records of daily streamflow. Shrestha et al. (2014) evaluated 103 

the ability of the Variable Infiltration Capacity (VIC) P-R model to replicate hydro-ecologically 104 
relevant indicators and noted a need to exercise caution in the use of model-simulated 105 
indicators. Vis et al. (2015) studied calibration criteria for the HBV-light P-R model for 106 
estimating 12 ecological flow characteristics and found that the most suitable calibration 107 

strategy varied according to the streamflow characteristic or the objectives. However, these 108 
comparisons mainly focused on daily or coarser temporal resolution. 109 
     Previous studies related to environmental flow and ecological flow regime (e.g. Schofield 110 
and Burt, 2003; Tharme, 2003; Arthington et al., 2006; Carlisle et al., 2009; Poff et al., 2010; 111 

Kennard et al., 2010; Alfredsen et al., 2012; Costa et al., 2012; Vezza et al., 2012), alterations 112 
of natural flow regime due to regulation or hydropeaking (e.g. Poff et al., 1997; Jones, 2014) 113 
and impacts of climate change (e.g. Gibson et al., 2009; Wenger et al., 2010) mainly focused 114 

on coarse temporal resolutions such as annual, monthly and daily streamflow. However, 115 

contemporary operation practices in regulated rivers such as for hydropeaking require high-116 
resolution prediction, which allows close examination of relevant ecological indicators from 117 
high-resolution hydrographs. The lists of suggested ERSFMs and softwares used to calculate 118 

the ERSFMs reported in literature (e.g. Richter et al., 1996; Poff et al., 1997; Olden and Poff, 119 
2003; Mathews and Richter, 2007; Knight et al., 2011; Thompson et al., 2014) are also based 120 

on daily or coarser time series that may not be representative for the hydropeaking flow that is 121 
variable at high resolution (e.g. hourly). To our knowledge, study on prediction of ‘unimpaired’ 122 
or natural hourly streamflow series in regulated rivers for ecological purposes is not widely 123 

reported in literature. Sauterleute and Charmasson (2014) developed a computational tool, 124 
which enables the quantification of short-term (rapid) fluctuations of flow and stage occurring 125 

in rivers resulting from hydropeaking, by means of processing the time series. However, the 126 
authors noted that the tool was not developed to enable comparisons between rivers with and 127 

without hydropeaking, or those with natural flow regimes. Bevelhimer et al. (2014) presented 128 
a variety of metrics for characterizing sub-daily (hourly) flow variation to evaluate general 129 
trends among streams affected by hydropeaking, run-of-river plants and streams that are largely 130 
unaffected by regulation. The present study is a comparative evaluation of methods for 131 
prediction of hourly streamflow series and environmental indices in ungauged or regulated 132 

basins in a region of mid Norway. In the study region, regulation of rivers is common and 133 
hydropeaking operation is increasing while environmental legislations are stringent and 134 
important aquatic ecosystems (e.g. salmonid fish) are abundant.  135 
      The main objectives and scope of this study are: (i) To develop a regional regression model 136 
for prediction of FDCs from relationship between streamflow percentiles and watershed 137 

characteristics and to propose FDCs based transfer of streamflow time series information from 138 
gauged to ungauged catchments; (ii) Comparative evaluation of the regional regression model 139 

and a Precipitation-Runoff model for prediction of natural streamflow time series at ungauged 140 
basins and; (iii) Application and comparative evaluation of the models to a regulated 141 
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hydropeaking river to predict hourly natural streamflow time series and to compute specific 142 

sub-daily ERSFMs mainly based on the work by Bevelhimer et al. (2015).  143 

STUDY REGION AND DATA 144 

The study region is located in mid Norway that has a large number of highly regulated 145 
catchments. We used hourly streamflow data from 26 unregulated catchments (40 to 3090 km2) 146 

that was obtained from the Norwegian Water Resources and Energy Directorate (NVE). Four 147 
of the catchments (catchments no. 3, 6, 8 and 14) are located inside the Gaula watershed (Figure 148 
1). The catchments, drainage areas, mean runoff and ratio of mean to median flow are listed in 149 
Table 1. Ratio of mean to median flow is greater than one for all catchments showing that the 150 
streamflow distributions are right skewed. We used the data from 2006 to 2011 to develop 151 

relationships between drainage areas and streamflow percentiles using the regional regression 152 
model and from 2008 to 2010 for calibration of the P-R model, transfer of streamflow 153 
information and associated cross-validation procedures. Hourly climate data include 154 

precipitation from 44 stations, temperature from 54 stations, wind speed from 40 stations, 155 
relative humidity and global radiation from 12 stations, which are spatially interpolated on 1x1 156 
km2 grids for calibration of the P-R model. We obtained climate data from public services and 157 
private companies. For instance, we obtained temperature data from 9 stations owned by the 158 

Norwegian Meteorological Institute, 12 stations owned by the Norwegian Institute for 159 
Agricultural and Environmental Research (Bioforsk) and the remaining from stations owned by 160 

various hydropower companies. The high flow regime for the study catchments occurs from 161 
snowmelt events in most cases, but for some of the catchments high flow is associated with 162 
rainfall on snowmelt or summer rainfall events. The dominant land use/land cover types in the 163 

study area are bare rock, low vegetation above timberline and forests. Predominant soil 164 

formation is glacial tills. We found land use and hypsography data from the NVE, and soil data 165 
from the Norwegian Geological Survey (NGU). Terrain slope was processed in ArcGIS from a 166 
Digital Elevation Model (DEM). 167 
     We applied the proposed methods in the present study to predict the ‘unimpaired’ or natural 168 
streamflow series for the regulated Lundesokna catchment at the outlet of the Sokna 169 
hydropower plant (total catchment area 243.4 km²). Lundesokna river flows from the Samsjøen 170 

reservoir to Gaula, which is one of the best salmon rivers in Norway. Sokna hydropower plant  171 

is a hydropeaking plant and has the following salient features: installed capacity of 30 MW, a 172 
gross head of 185 meters, intake regulation height of 9 meters and total catchment area at intake 173 
of 217 km². We constructed the regulated streamflow time series of the Lundesokna catchment 174 
by adding a modelled time series using the P-R model for the local catchment between Sokna 175 

intake and outlet (area = 26.4 km2) to the observed time series of discharge data from the Sokna 176 
power plant.  177 

METHODS AND MODELS 178 

There are several inherent uncertainties associated to both regional regression and P-R 179 
modelling for prediction in ungauged basins. The accuracy of predictions of streamflow 180 
characteristic is important because of the potential consequences a poor prediction can have on 181 
estimates of ecological health (Murphy et al., 2012). Some of the main problems associated 182 
with P-R models are predictive uncertainty due to uncertainty in inputs, parameter calibration, 183 
model structure and regionalization methods. Vis et al. (2015) illustrated uncertainties in 184 
various simulated ecological flow characteristics using a P-R model calibrated using different 185 
objective functions. The regression approach is also associated with several assumptions such 186 
as randomness, normality and homoscedascity of residuals, and non-collinearity among the 187 
independent variables. In addition, dependence between regression model parameters and 188 
subjectivity in selection and pre-processing of the independent variables are prevailing 189 
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challenges if large numbers of independent variables and hence parameters are used.  190 
 191 
Statistical (regression) model 192 
Nathan and McMahon (1990) and Moliere et al. (2006) illustrated regression among different 193 
catchment attributes and discharge for prediction of low flow hydrograph in ungauged basins 194 
in Australia. The regression approach in previous studies focused on deriving separate 195 
relationships among various dependent variables (i.e. each ERSFMs) and selected catchment 196 
attributes. For instance, Knight et al. (2011) conducted regional regression analyses based on 197 
16 potential independent variables (watershed characteristics) to predict 19 presupposed 198 
ecologically relevant streamflow characteristics for Tennessee and Cumberland river basins 199 
(USA).  Selection of a small number of independent variables reduces the number of regression 200 
parameters and hence the uncertainties related to dependence among parameters and 201 
collinearity among independent variables. Therefore, the regression model in the present study 202 
focus on parametrical parsimony, simplicity and consistency for a particular dependent variable. 203 
     Identification of independent variables and choice of dependent variables are important for 204 
the regression model. In the study on global environmental assessment methodologies, Tharme  205 
(2003) stated that flow duration curves and other single flow indices comprise the second largest 206 
subgroup of the hydrological approaches for environmental flow assessment in rivers. Kennen 207 
(2008) used the ratio of 25 % to 75 % exceedance flows to evaluate the effect of changes in the 208 
flow regime on aquatic-invertebrate assemblage structure. Wenger  et al. (2010) used frequency 209 
of high flows (Q95 and Q99) during winter and summer, mean annual and mean summer flows, 210 
and frequency of summer low flows (Q10 and Q20). Yin et al. (2012) used 10 % and 20 %, and 211 
30% respectively of average daily flow for baseflow in dry and wet seasons and the 25th 212 
percentile flow as a minimum high pulse discharge. Alfredsen et al. (2012) defined flow 213 
regimes based on flow percentiles (low < 25%, high > 75% and normal 25% to 75%) to 214 
represent dry, wet and normal years to develop an inflow controlled environmental flow regime. 215 
The natural flow regime paradigm of Poff et al. (1997) and Richter et al. (1997) focuses on a 216 
full range of intra-and inter annual variability of streamflow characteristics pertinent to 217 
magnitude, frequency, duration, timing and rate of change to study comparative relationships 218 
between natural and altered hydrological conditions and riverine ecology. Therefore, due to the 219 
various utilization of streamflow characteristics in environmental assessment, the main focus 220 
of the present study is to evaluate methods to derive the two main runoff ‘signatures’ namely 221 
flow duration curves and time series of streamflow for ungauged or regulated rivers from which 222 
further ERSFMs can be extracted. 223 
    To construct flow duration curves, we fitted separate linear regressions between each 224 

streamflow percentile (0 % to 100 % at 1% intervals) values as the dependent variable with the 225 
independent variable (drainage areas of catchments). Flow duration or the percentage of time 226 
flow equaled or exceeded is computed as 100-percentile. The fine interval of 1% interval was 227 

preferred to obtain better accuracy in prediction of percentiles. Coarse intervals augmented by 228 

interpolation might reduce the accuracy by introducing an additional source of uncertainty on 229 
the prediction. The drawback of estimation of large number of regression parameters at 1% 230 
intervals can be tackled by carrying out parameter estimation for all percentiles at once. The 231 

flow percentiles rather than the various ERSFMs exhibit similar relationships to watershed 232 
characteristics and make the regression approach more consistent. Mohamoud (2008) 233 
performed prediction of flow duration curves (FDCs) and streamflow for ungauged catchments 234 
by fitting multiple non-linear regression model among 15 drainage-area normalized streamflow 235 
percentiles and landscape–climate descriptors and found that the FDC-based method shows 236 

great promise for predicting streamflow in ungauged basins compared to the drainage area ratio 237 
method (e.g. Stedinger et al., 1993). Yu et al. (2002) compared polynomial regression that uses 238 
annual rainfall, altitude and drainage area as catchment descriptors with a simple regression 239 

model that uses only drainage area as catchment descriptor and found that both regional analysis 240 
methods could generate reasonable FDCs. However, the authors reported that the polynomial 241 
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regression has less uncertainty, but it resulted in unrealistic values for extrapolation beyond 242 

Q90% and Q10%.  243 
     To identify influential catchment descriptors, we performed linear correlation analysis 244 
among streamflow percentiles and several catchment characteristics. The results of the linear 245 
correlation analysis are presented in Table 2 for drainage area, lake percentage, forest 246 
percentage, minimum elevation, maximum elevation, median terrain slope and maximum 247 
terrain slope. We did not expect reliable mean annual runoff (MAR) for the catchments from 248 
the sparse precipitation gauging stations in the region and hence we did not use the MAR as a 249 
descriptor variable. In Nordic catchments, lake percentage is often used as an independent 250 
variable for both low-and high flows (e.g. Engeland and Hisdal, 2009, Sælthun, 1997). 251 
However, among the descriptor variables assessed in the present study, only drainage area 252 
exhibited marked correlations with streamflow percentiles from low- to high flow ranges. 253 
Therefore, using only drainage area as an independent variable we fitted the following simple 254 
linear regression model with the assumptions of normal and homoscedastic residuals: 255 

* * *

0 1 1
 or 

i i
Y Xβ ε Y β β x ε                                                                                                                           (1)               256 

2 * 2
0, ,and  ε N Iσ Y N Xβ Iσ                                                                                                                    (2) 257 

We estimated the set of parameters (β) using the ordinary least-square technique and their lower 258 

and upper confidence levels (UCL and LCL) from the t-statistics: 259 

10 2

/2,

1

1
'ˆ ' '  ;  UCL, LCL  = 

ˆ
ˆ

ˆ i α n p ii
X Xβ X X X Y

β
β t S

β

,                                                                                         (3)  260 

 261 

where Y is a nx1 column vector of the dependent variable, X is a nxp matrix of the independent 262 
variable, ε is a nx1 column vector of the error term that indicates the deviation of the estimate 263 
from the true value, I is the nxn identity matrix, S2 is estimate of error variance, * represents the 264 

‘true’ values, the underline represents the vector or matrix notation, n is the number of 265 
observations (data points), p is the number of model parameters, N stands for the assumed 266 

Normal distribution, (X’X)ii
-1 is the main diagonal element corresponding to ith row and ith 267 

column of a (X’X)ii
-1 matrix of size pxp, the ′ notation represents a transpose and α is the 268 

significance level.   269 
     We performed diagnostic analyses of the residuals to verify the adequacy of the regression 270 
model. We performed a significance test of the model parameters through an F-test and 271 

computed the percentage of variability in the data explained by the regression model (R2). 272 

Outlier catchments were identified by plots of drainage areas versus flow percentiles (Figure 273 
2). Randomness of the residuals were tested by plots of regression residuals versus the predicted 274 
dependent variable. We verified the normality of the residuals by probability plots and presented 275 

the model prediction error in terms of 95 % confidence intervals (CI). An outlier catchment in 276 
the present study is defined as a catchment which has streamflow percentiles and drainage area 277 
relationships that deviates from the rest and hence an outlier catchment is excluded from the 278 
regional regression model.  279 
     Streamflow percentiles or flow duration curves alone cannot provide sufficient information 280 

for ecological studies and hence prediction of complete time series of streamflow at ungauged 281 
basins is required. Various regionalization methods that are useful for either regional transfer 282 
of calibrated parameters of the P-R models or for transfer of streamflow information (e.g. 283 
Parajka et al., 2013; Hailegeorgis et al., 2015; Farmer et al., 2014) are reported in hydrological 284 

sciences literature. For the regression model in the present study, we proposed a simple method 285 
to derive streamflow time series (hydrographs) for ungauged catchments from relationships 286 
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between flow percentiles and drainage area and observed streamflow data at the gauged 287 

catchments. We transferred streamflow information among the catchments based on an 288 
assumption that a streamflow at a time T exhibit the same percentile for the donor (gauged) 289 
catchment and the recipient (ungauged) catchment using a simple lookup function in Microsoft 290 

excel: 291 
 292 

0:1:100 :
, ,ungauged Qgauged

T T

regression ungauged

PerQ lookup Per Per Q ,                                                    (4) 293 
          294 
where QT is time series of streamflow, PerT are percentiles for observed time series of 295 
streamflow at gauged basin, Per0:1:100 are percentiles from 0 % to 100 % at 1% intervals and 296 
QPer is streamflow corresponding to the percentile Per for the ungauged basin, which is 297 
calculated from the results of the regional regression model. Evaluation of various 298 

regionalization methods, strategy for selection of donors, and assessment of associated 299 

uncertainties with specific application to prediction of ERSFMs in ungauged basins require a 300 

thorough investigation, which is outside the scope of the present study. Rather we evaluated the 301 
regional transfer of streamflow information from the regression model and the look-up function 302 
for prediction in ungauged basins based on the nearest neighborhood (spatial proximity) 303 
between donors and recipients using the leave one out cross-validation procedure. The Nash-304 
Sutcliffe efficiency (Nash and Sutcliffe, 1970) or NSE performance measure was used as an 305 

evaluation metric. 306 
 307 

Precipitation-Runoff (P-R) model 308 
The P-R model allows prediction of continuous time series of streamflow from which one can 309 
derive ecological indices of interest. Following the results of assessment of performance of 310 
different P-R models for the region of study (Hailegeorgis et al., 2015), we selected a 311 
parsimonious recession based ‘top-down’ model, which was proposed by Kirchner (2009) for 312 
the present study. The model was based on inferring model structure and equations from 313 
observed streamflow during recession. The main basis of the model is a water balance equation: 314 

- -- -
dS

I AET Q
dt

I AET Q                                                                                                                  (5) 315 

,
-

I Q AET Q

dQ dQ dS dQ
I AET Q g Q I AET Q g Q Q

dt dS dt dS
,                                                           (6)    316 

where the actual evapotranspiration (AET), infiltration (I) = rainfall + snow melt (SM) and 317 
discharge (Q) are given in mm/hr, bulk catchment storage (S) is in mm, t is a time variable and 318 

g(Q) is discharge sensitivity function (Kirchner, 2009) that is the sensitivity of discharge to 319 
change in storage. However, the response routine used in the present study was based on a 1x1 320 
km2 grid cells rather than lumped for the whole catchment. The following relationship was used 321 
based on a streamflow recession analysis: 322 

, 0 1

- /
ln ln ln ln

P Q AET Q

dQ dQ dt
g Q α α Q

dS Q
,                                                                          (7)                                                                                                           

 

323 

where α0 and α1 are model parameters. Runoff computation follows integrating the following 324 
storage-discharge relationship in time: 325 

1
S Q dS dQ

g Q
                                                                                                                                                     (8)       326 

     We computed the potential evapotranspiration (PET) based on the Priestly Taylor method 327 
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(Priestley and Taylor, 1972), and actual evapotranspiration from the PET, discharge and 328 

evapotranspiration ratio parameter (EvR). We simulated a snow accumulation and snowmelt 329 
outflow (SNOWOUT) based on a gamma distributed snow depletion curve (Kolberg and 330 
Gottschalk, 2006) and implemented a simple travel time zone isochrones routing to translate 331 

the hillslope runoff response of each 1x1 km2 grid cell to the catchment outlet based on travel 332 
time lags. There are six calibrated parameters in the P-R model: threshold temperature (TX), 333 
wind speed sensitivity of snow (WS), the EvR, velocity of flow for runoff routing (V), α1 and 334 
α0. 335 
     A regional calibration of the P-R model was performed using streamflow data from the 26 336 

gauged catchments. The Differential Evolution Adaptive Metropolis algorithm or DREAM 337 
(Vrugt et al., 2009) with residual based log-likelihood (L-L) objective function implemented in 338 
an open source ENKI hydrological modelling platform (Kolberg and Bruland, 2012), which 339 

was developed at the company for industrial and scientific research or SINTEF, was used: 340 

2
( ) ( )

, ,
1

2

2
2 ( ) ( ) 2

, ,
1 1 1

/ 2log log
2 2 2

,

i

C i C

n
θ θ

t i t i
t

i

N n N
θ θ i i

i t i t i i
i t i

δ σ π σ

Qsim Qobs
n n

σ
L L Qsim Qobs f ,                    (9) 341 

where Qobs(θ) and Qsim(θ) respectively are Box-Cox (Box and Cox, 1964) transformed non-342 

missing observed time series and corresponding simulated streamflow time series of length ni, 343 
NC is the total number of catchments (NC = 26 in this case), δ is a model parameter, θ is the 344 

Box-Cox transformation parameter, f is the fraction of effectively independent observations and 345 
σ2 is the variance of error.  346 

     The objective function for the regional calibration utilizes streamflow data from all 347 
catchments in the region, but would also provide optimal parameter set for each catchment, 348 

which is termed as the local calibration. Hence, the algorithm is useful to calibrate large numb349 
er of catchments at once. Hailegeorgis et al. (2015) obtained acceptable performance of the re350 
gional calibration based on transferring regional parameter set that provides maximum regional 351 

weighted average (MRWA) NSE compared to other advanced regionalization methods. In the p352 
resent study, we also evaluated the performance of regional transfer of parameter sets that 353 

provide the best MRWA NSE compared to the regional regression model: 354 
 355 

 
1

1 CaN
ia

MRWA i
iC TS

n
NSE NSE

N N
,                                                                                             (10) 356 

 357 

where NCa is the total number of catchments included to compute the NSEMRWA (NCa = NC -1) s358 

ince a donor catchment is excluded for the leave one out cross-validation), nia is the length of t359 
imestamp with non-missing observed streamflow series for each catchment i, NTS is the total le360 
ngth of timestamp for the calibration period. The weights are the term in the parenthesis assign361 
ed for each catchment based on the length of their non-missing streamflow records during the 362 
calibration period. The term regional calibration and the NSEMRWA are interchangeably used in 363 

the present study. We used a cross-validation procedure to evaluate the performance of transfer 364 
of optimal parameter sets of the local calibration. We used a leave one out cross-validation 365 
procedure by excluding the donor catchments for the regression model and the NSEMRWA since 366 
the procedure is more appropriate to evaluate the models for prediction in ungauged basins. D367 
etailed descriptions of the evapotranspiration routine, the snow routine and the calibration 368 

algorithm can be found from Hailegeorgis et al. (2015). 369 

 370 

Environmental Flow Indices 371 
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To evaluate and illustrate the application of the regression method and the precipitation-runoff 372 

model in flow assessment we computed environmental flow indices for two cases studies. Since 373 
sub-daily prediction is a focus for this work, we used the recently proposed method by 374 
Bevelhimer et al. (2015) to compute ecologically relevant streamflow metrics (ERSFMs) with 375 

an hourly resolution. We computed the daily range and daily standard deviation as a measure 376 
of habitat variability, the flashiness as a measure of flow oscillations and the maximum ramping 377 
rate as measures of drying out habitat and potential fish stranding. Finally, we computed the 378 
number of rise and falls and the daily flow changes (10 % reversals) as a measure of flow 379 
stability and regularity in habitat access. First, we compared predicted and observed indices that 380 

was derived from the predicted and observed streamflow, which was obtained from the cross-381 
validation procedure, for Øyungen or catchment 26. Further, we compute the same indices for 382 
the Lundesokna catchment where the pre-regulation flow is now known, but where we have a 383 

rapidly changing production regime today. For Lundesokna we also computed the indicators 384 
outlined by Carolli et al. (2015) to assess if a flow regime is peaked or not. 385 

RESULTS AND DISCUSSION 386 

The study focused on evaluation of parsimonious and simple approaches for prediction of 387 
hourly streamflow for ungauged basins to derive streamflow characteristics of ecological 388 

relevance. In the first approach, we proposed a simple linear regression model with catchment 389 
area as independent variable to predict streamflow percentiles and hence flow duration curves, 390 

and transfer of streamflow time series information based on the flow duration curves. In the 391 
second approach, we tested prediction of streamflow from calibration of a P-R model.  392 
     The Trangen or catchment 22 was identified to be an outlier based on preliminary plots of 393 

streamflow percentiles versus drainage area (Figure 2), and later confirmed by the diagnostics 394 

of residuals of the regional regression model. Exclusion of the outlier catchment increased the 395 
explained variability or R2 from 0.73 to 0.80, from 0.79 to 0.88 and from 0.85 to 0.94 396 
respectively for the 10th, 25th and 50th percentiles (Figure 2 and Figure 3). Therefore, we 397 
excluded the catchment from the regional regression analysis. Outlier catchment may occur due 398 
to poor quality data, or because the drainage area is not related to the flow percentiles or 399 
drainage area versus percentiles relationships is peculiar for the catchment. Figure 3 presents 400 

results of estimated parameters along their confidence intervals for the regional regression 401 

model at 1 % percentile intervals. The β1, which is an influential parameter being the coefficient 402 
of the independent variable, monotonically increases with percentiles and the intercept 403 
parameter β0 also increases with the percentiles except for a little deviation at some higher 404 
percentiles. The lower and upper confidence intervals of parameters also exhibited the same 405 

trend. Therefore, for any drainage area the estimated higher percentile flows (e.g. 75th 406 
percentile) are found to be always greater than those estimated for lower percentile flows (e.g. 407 
74th percentile). Mohamoud (2008) reported the need for reconstruction of FDCs to ensure that 408 

percentile flows estimated for higher magnitudes are always larger than those estimated for 409 
lower magnitude percentile flows. The causes of the problem are probably due to uncertainty 410 
or identifiability issues in the estimation of regression parameters from fitting the non-linear 411 
regression to more than one and different combinations of landscape–climate descriptors for 412 
different streamflow percentiles. Such problem is not expected for the linear regression model 413 

with one and the same independent variable for all percentiles used in the present study. 414 
However, the problem needs to be checked for a non-linear regression or a linear regression 415 
that use several and different combinations of independent variables for different percentiles.  416 
     In Table 3, we presented the results from the comparative evaluation of the methods using 417 

the cross-validation procedures for the 11 catchments that have no or small amount of missing 418 
streamflow records. Table 3 presents the NSE values obtained from spatial transfer of 419 
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information when donor catchments are excluded from the regional regression model while 420 

deriving streamflow percentiles and drainage area relationships and while computing the 421 
NSEMRWA from the P-R model. Similarly, Table 3 also shows NSE values from transferring 422 
optimal local parameters from donor to recipient catchments. The NSE values along the 423 

diagonals (bold fonts in Table 3) indicate the performance of regression model and local 424 
calibration of the P-R model for a particular catchment. These NSE values indicated that for 425 
most of the catchments the regional regression model outperformed the local calibration of the 426 
P-R model. The NSE values along the diagonals for the regression model that was obtained 427 
from the leave one out cross-validation by excluding donors also indicated that the performance 428 

of percentiles-drainage area relationships for construction of flow duration curves at ungauged 429 
basins is not sensitive to the choice of donor catchment. Therefore, the proposed regression 430 
model is very useful for prediction of FDCs at ungauged basins for any water resources 431 

planning purpose. However, regional transfer of information of streamflow time series among 432 
the catchments (Eq. 4) is more sensitive to the choice of donor catchment than the P-R model 433 
does. However, the regression method with transfer of information of streamflow time series 434 
based on the nearest neighbor or spatial proximity between donor and recipient (Figure 1) 435 

resulted in regional performance better than the local calibration and regional calibration 436 
(NSEMRWA) of the P-R model. For instance, regression based prediction by transferring 437 
streamflow information from Gaulfoss (no 6) to one of its internal subcatchment of Eggafoss 438 
(no. 3) (Table 3) indicated NSE value of 0.89 versus the local calibration of the P-R model 439 

(NSE = 0.81) and the NSEMRWA (NSE = 0.68). Similarly, transfer of streamflow information 440 
from Krinsvatn (no. 12) for prediction at its nearest neighbor Øyungen (no. 26) (Table 3 and 441 
Figure 4) indicated NSE value of 0.78 versus the local calibration of the P-R model (NSE = 442 

0.71) and the NSEMRWA (NSE = 0.64). The NSE values in Table 3 further showed in most of the 443 

cases better transferability of streamflow information using the regional regression model and 444 
spatial proximity among catchments, for instance, among pairs of catchments 6 and 14 (36 km), 445 
3 and 6 (54 km), 10 and 17 (15 km), 12 and 26 (64 km), 14 and 3 (33 km), 21 and 1 (28 km), 446 

and 21 and 26 (40 km) than parameter transfer from local calibration and regional calibration 447 
(NSEMRWA) of the P-R model. The spatial proximity in the present study was defined as the 448 

shortest Euclidian distance in x and y co-ordinates spaces between catchment outlets. The 449 
parameter sets and hence the performance measure NSEMRWA are the same except slight 450 
differences when a donor catchment no. 16 is excluded that shows less sensitivity of the 451 

NSEMRWA to the choice of donors (Table 3). This is probably because all catchments were 452 
included in the regional calibration objective function (Eqn. 9) to utilize the advantages of local 453 

calibration of each catchments at once. 454 
     The better performance of the regression model in the present study comply with the results 455 

from Engeland and Hisdal (2009) and Murphy et al. (2012) who found that regression model 456 
outperformed the P-R models respectively for Southern Norway and Kentucky (USA). The 457 
results also comply with Farmer et al. (2014) who obtained that methods based on flow duration 458 
curves with the nearest-neighbor donor gages performed better. Murphy et al. (2012) and Vis 459 
et al. (2015) noted the importance of better predictions on estimates of ecological health. There 460 

are various uncertainties that need to be addressed in regionalization and prediction in ungauged 461 
basins through transfer of calibrated parameters of P-R models such as uncertainty in the model 462 
calibration (input data, model structure, and parameter uncertainty and identifiability issues) 463 
(e.g. Wagener and Wheater, 2006) and uncertainty in identification of suitable regionalization 464 
methods (e.g. Hailegeorgis et al., 2015). The regression based prediction in the present study 465 

transfers characteristics of the observed streamflow from gauged to ungauged catchments while 466 
the regional calibration of the P-R model derives regional model parameters by utilizing the 467 

available streamflow data in the region. The relationships obtained between the readily 468 
available physiographic characteristics of catchments (i.e. the drainage area) and streamflow 469 
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percentiles is also promising for the regression model for prediction in ungauged basins. 470 

However, there are marked uncertainty bounds of prediction by the regression model as 471 
demonstrated by confidence intervals of the estimated parameters (Figure 3). In addition, some 472 
catchments such as catchments 10 and 16 exhibit large prediction errors and hence poor NSE 473 

that shows poor spatial transferability of streamflow information for the catchments based on 474 
the regression model. If a large number of catchments are available, certain additional criteria 475 
can be set to exclude less performing catchments from the region or the region can be divided 476 
into several sub-regions. Evaluation of various regionalization methods, for instance, similarity 477 
of catchments in physiographic characteristics compared to the spatial proximity for prediction 478 

related to ecological flow assessment at ungauged basins is also important.  479 
     Figure 5a-f shows a comparison between computed environmental flow indices for Øyungen 480 
or catchment 26 computed for observed data, and the predicted inflow series from the regression 481 

model and the P-R model (NSEMRWA) that are presented in Figure 4. Both modelling strategies 482 
predicted the streamflow indices well and appeared stable over most indices. The largest 483 
differences occurred in the computation of the rise and fall counts (Figure 5f). 484 
     Figure 6 presents observed hydrographs and FDC under hydropeaking versus the predicted 485 

natural streamflow and FDCs for Lundesokna river downstream of the outlet of the Sokna 486 
hydropower plant. We transferred information of streamflow time series from the Gaulfoss to 487 
the Lundesokna river based on the regression model and nearest neighbor (spatial proximity) 488 
and regional calibration (NSEMRWA) of the P-R model. Both the Gaulfoss and Lundesokna are 489 

parts of the Gaula catchment and the streamflow gauging station for Gaulfoss and the outlet of 490 
the Sokna hydropower are only about 5.7 km apart (Figure 1). Even if there are similarities 491 
between the general patterns of hydrographs predicted from the regional regression model (Qest) 492 

and simulation by the P-R model (Qsim), and their corresponding FDCs, the results show that 493 

there are significant differences in predicted streamflow magnitudes for specific times and 494 
durations. The predicted hydrographs from both methods show that the catchment runoff 495 
generation responds well to the catchment-averaged precipitation events. However, based on 496 

the leave one out cross-validation results, the regional regression method was found to be more 497 
reliable than the regional calibration (NSEMRWA) for prediction of hourly streamflow series. 498 

Figure 6 shows significant hydrological alterations due to regulation and hydropeaking for 499 
Lundesokna river. The observed streamflow (Qobs. regulated in Figure 6) for Lundesokna river 500 
downstream of the outlet is highly influenced by the hydropeaking operation. The results 501 

indicate typical differences between the regulated or hydropeaking flow and the predicted 502 
natural flow. The within a year FDC for observed regulated (hydropeaking) flow exhibits sharp 503 

bend transitions from high to medium flows and from medium to low flows. High flow (e.g. Q 504 
> 22 m3/s) occurs only about 1 % of the time (< 100 hours duration), low flow (e.g. Q < 5.0 505 

m3/s) occurs for more than 68 % of the time (6000 hours) while the middle portion of the FDC 506 
that is 1%  to 60 % of the time (100-5250 hours) is characterized by a nearly constant 507 
streamflow. The observed regulated hydrograph also shows continuous sudden fluctuations of 508 
streamflow magnitudes while the predicted streamflow hydrographs and FDCs exhibit 509 
smoothly varying patterns, which are typical characteristics of natural flow. 510 

     Computing the magnitude index (HP1) of Carolli et al. (2015) for Lundesokna we obtained 511 
an average of 0.16 for the regression model and 0.12 for the P-R model while the observed data 512 
gave a value of 1.08. The threshold value for peaking has an average of 0.75. The temporal 513 
index (HP2) produced a value of 0.71 for the regression model, 0.25 for the P-R model and 1.9 514 
for the observed. Here the threshold is 1.26. Figure 7a-f shows the environmental flow indices 515 

for Lundesokna. There is clear differences between the observed (regulated) data and the two 516 
modelled data series, even if a difference also can be observed between the regression and the 517 

P-R models, with the general observation that the P-R model computing a smaller variability in 518 
indices than the regression model. Compared to the patterns seen by Bevelhimer et al. (2015) 519 
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for a number of regulated and unregulated cases, the results obtained from Lundesokna are 520 

similar. 521 
     Alteration in the FDCs and hydrographs also indicate alterations in several streamflow 522 
characteristics, which probably affect the ecological integrity in regulated rivers. However, 523 

Knight et al. (2014) noted that at sites with reference hydrology other environmental factors 524 
and their interactions with hydrology may influence fish species richness. Bevelhimer et al. 525 
(2014) illustrated that sub-daily (hourly) flow metrics reveal variation among and within 526 
streams that is not captured by daily flow statistics. The authors also noted that multiple sub-527 
daily statistics were not correlated with daily statistics despite being similar in purpose and 528 

scope, which showed the importance of assessing rapid flow variations for studies on flow-529 
ecology relationships.  530 

CONCLUSIONS 531 

The study indicate that a simple regression model to develop relationships between flow 532 

duration curves and drainage areas, and transfer of streamflow time series information based 533 
on spatial proximity between donor and recipient catchment outperformed the transfer of 534 
optimal parameter sets from local calibration and regional parameter sets corresponding to 535 
maximum regional weighted average performance (NSEMRWA) of the precipitation-runoff 536 

model. Therefore, the simple regression based derivation of natural streamflow hydrographs 537 
and duration curves at ungauged rivers would be useful for an operational environment in terms 538 

of better prediction of ecological relevant streamflow metrics to study ecological impacts of 539 
hydrological alterations. It would also relieve people working with management issues from 540 
relying on scarce or short data series. Furthermore, it contributes to the endeavors for the 541 

prediction in ungauged basins, which is one of the important but challenging tasks in hydrology. 542 

The models were applied in a boreal region but the methodologies should also be applicable in 543 
other climate regimes. Improved results for the hourly resolution are expected from regional 544 
modelling based on larger set of catchments.  545 
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Table 1. Descriptions for the study catchments 714 

Catchment 

No. 
Name of catchments  

NVE's 

Station 

No. 

Catchment 

area, km2 

Observed mean 

runoff a 

Observed 

median flow or 

P50a 

Observed 

Mean/Median 

flowa 
m3/s l/s/km2 m3/s 

1 Dillfoss 127.13 480 17.59 36.64 9.86 1.78 

2 Driva v/Risefoss 109.9 745 18.33 24.61 9.30 1.97 

3 Eggafoss 122.11 668 18.50 27.70 7.86 2.35 

4 Embrethølen  139.26 495 23.29 47.06 11.48 2.03 

5 Feren 124.13 220 10.45 47.41 7.38 1.42 

6 Gaulfoss 122.9 3090 80.31 25.99 40.70 1.97 

7 Gisnås  121.29 95 2.76 29.24 1.25 2.21 

8 Hugdal bru 122.17 546 15.62 28.60 9.42 1.66 

9 Høggås bru  124.2 495 21.16 42.75 12.86 1.65 

10 Isa v/Morstøl bru 103.2 44 3.28 73.89 1.75 1.87 

11 Kjeldstad i Garb. 123.31 145 7.74 53.36 4.06 1.91 

12 Krinsvatn  133.7 207 12.00 57.98 5.69 2.11 

13 Lenglingen 308.1 450 12.78 28.41 6.68 1.91 

14 Lillebudal bru 122.14 168 6.35 37.82 3.39 1.87 

15 Murusjø  307.5 346 7.41 21.42 5.07 1.46 

16 Osenelv v/Øren  105.1 138 6.01 43.56 4.05 1.48 

17 Rauma v/Horgheim  103.4 1100 35.99 32.72 17.73 2.03 

18 Rinna 112.8 91 4.19 45.98 2.30 1.82 

19 Skjellbreivatn  139.25 546 11.97 21.93 7.04 1.70 

20 Søya v/Melhus 111.9 138 8.75 63.52 4.26 2.05 

21 Støafoss 128.5 477 19.97 41.86 11.72 1.70 

22 Trangen 139.35 852 32.76 38.45 27.03 1.21 

23 Valen  117.4 39 1.30 33.16 0.68 1.92 

24 Valldøla v/Alstad  100.1 226 13.61 60.23 7.84 1.74 

25 Vistdal   104.23 67 4.12 61.89 2.51 1.64 

26 Øyungen 138.1 239 10.68 44.71 4.91 2.18 
 715 
a Calculated from 2006 to 2011 hourly streamflow data.  716 
 717 
 718 
 719 

 720 
 721 
 722 

 723 
 724 
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Table 2. Linear correlation coefficients between streamflow percentiles and some catchment 737 

characteristics 738 

Sreamflow (m3/s) 

at FDC (%) 0 10 20 30 40 50 60 70 80 90 100 

Catchment area 

(km2) 0.85 0.98 0.96 0.95 0.94 0.92 0.91 0.90 0.88 0.85 0.92 

Lake percentage -0.32 -0.12 -0.11 -0.07 -0.04 -0.01 0.02 0.04 0.06 0.09 -0.03 

Forest percentage -0.03 -0.02 -0.03 -0.01 0.03 0.07 0.10 0.11 0.09 0.09 0.11 

Minimum 

elevation, masl -0.22 -0.24 -0.26 -0.27 -0.26 -0.26 -0.26 -0.27 -0.28 -0.28 -0.18 

Maximum 

elevation, masl -0.03 0.15 0.18 0.19 0.16 0.14 0.13 0.14 0.17 0.17 0.14 

Median terrain 

slope (degree) -0.25 -0.22 -0.21 -0.22 -0.23 -0.24 -0.25 -0.26 -0.25 -0.24 -0.16 

Maximum terrain 

slope (degree) 0.09 0.19 0.22 0.24 0.22 0.21 0.21 0.22 0.23 0.23 0.13 
 739 
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Table 3. Cross-validation for evaluation of the regional regression and P-R models 772 

Donor 

catchments 

Recipient catchments 

1 3 6 10 12 14 16 17 20 21 26 

Regional regression modela 

1 0.94 0.31 0.39 -1.00 0.50 -0.05 -1.13 -0.42 0.42 0.69 0.48 

3 0.35 0.96 0.88 -0.35 -0.13 0.57 -2.22 0.47 0.33 0.02 -0.22 

6 0.42 0.89 0.94 0.07 -0.07 0.58 -1.75 0.38 0.37 0.12 -0.15 

10 0.04 0.39 0.42 0.38 -0.21 0.22 -2.54 0.61 0.44 -0.21 -0.36 

12 0.53 -0.32 -0.25 -1.53 0.76 -0.65 -0.43 -0.54 0.16 0.65 0.78 

14 0.23 0.80 0.77 -0.07 -0.17 0.75 -1.90 0.53 0.34 -0.07 -0.25 

16 -0.01 -0.62 -0.46 -2.32 0.28 -0.92 0.53 -1.12 -0.08 0.16 0.26 

17 -0.08 0.52 0.49 0.16 -0.31 0.32 -2.20 0.98 0.14 -0.30 -0.41 

20 0.49 0.34 0.41 -0.31 0.22 0.13 -1.36 -0.14 0.82 0.23 0.10 

21 0.71 -0.03 0.06 -1.42 0.59 -0.41 -0.77 -0.75 -0.34 0.88 0.65 

26 0.47 -0.33 -0.27 -1.78 0.71 -0.72 -0.51 -1.02 0.07 0.65 0.86 

P-R model: local calibrationb 

1 0.74 0.79 0.82 0.48 0.63 0.53 0.03 0.44 0.56 0.71 0.66 

3 0.73 0.81 0.83 0.51 0.71 0.53 0.14 0.23 0.53 0.72 0.71 

6 0.70 0.79 0.83 0.54 0.49 0.56 -0.59 0.15 0.65 0.67 0.54 

10 -0.14 0.10 0.18 0.58 0.19 0.23 -0.23 0.16 0.31 0.24 0.06 

12 0.68 0.78 0.70 0.50 0.75 0.52 0.12 0.41 0.51 0.70 0.71 

14 0.62 0.66 0.74 0.47 0.27 0.58 -0.34 0.18 0.62 0.57 0.47 

16 0.44 0.48 0.50 0.40 0.50 0.38 0.67 0.66 0.28 0.46 0.42 

17 0.29 0.31 0.44 0.35 0.29 0.28 0.56 0.77 0.20 0.30 0.21 

20 0.58 0.69 0.75 0.56 0.23 0.56 -1.16 -0.11 0.67 0.55 0.32 

21 0.69 0.73 0.74 0.56 0.69 0.54 0.17 0.35 0.53 0.71 0.63 

26 0.64 0.71 0.61 0.45 0.71 0.48 0.30 0.56 0.44 0.65 0.72 

P-R model: NSEMRWA
c 

1 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

3 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

6 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

10 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

12 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

14 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

16 0.66 0.70 0.73 0.42 0.69 0.47 0.52 0.67 0.44 0.63 0.66 

17 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

20 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

21 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 

26 0.65 0.68 0.72 0.42 0.69 0.47 0.55 0.68 0.43 0.63 0.64 
 773 
a Streamflow prediction for the recipient catchments from percentiles and catchment area 774 
relationships of 24 catchments by leaving out a donor catchment from the regional regression 775 
model (leave one out cross-validation) and transfer of streamflow time series information from 776 

the donor using the look-up function. 777 
b Streamflow simulation for the recipient catchments by transferring optimal parameters of the 778 
local calibration of the P-R model from the donor catchments. 779 
c Streamflow simulation for the recipient catchments by transferring parameter sets providing 780 
NSEMRWA of the P-R model using 25 catchments by leaving out a donor catchment while 781 

calculating the NSEMRWA (leave one out cross-validation).     782 
   783 

 784 
 785 
 786 
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 787 

Figure captions 788 

Figure 1. Locations of modelled catchments, streamflow stations, climate stations and the 789 
Sokna catchment-hydropower systems. 790 
Figure 2. Relationships between drainage areas and some streamflow percentiles to identify 791 

outlier catchments for the regional regression model. 792 
Figure 3. Estimated regional regression parameters along their 95 % confidence intervals and 793 
R2 for the percentiles. 794 
Figure 4. Observed and predicted hourly streamflow hydrographs from transfer of regional 795 
information from Krinsvatn or catchment 12 to its nearby Øyungen or catchment 26 796 

(regression) and simulation from transfer of local calibration and NSEMRWA parameters (P-R 797 
model). 798 
Figure 5. Indices from Bevelhimer et al. (2015) computed for Øyungen or catchment 26. The 799 

dashed line is for the observed streamflow, the dotted line is for the regression model and the 800 
solid line is for the P-R model (NSEMRWA). 801 
Figure 6. Regulated (observed) and predicted natural hourly streamflow hydrographs from 802 
transfer of streamflow information from Gaulfoss catchment to a nearby regulated Lundesokna 803 

river (regression) and transfer of parameter corresponding to the NSEMRWA (P-R model). 804 

Figure 7. Indices from Bevelhimer et al. (2015) computed for Lundesokna. The dashed line is 805 

for the regulated flow regime; the dotted line and solid line represent the unregulated (natural) 806 

flow regime for the regression and P-R model (NSEMRWA) respectively. 807 
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