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Abstract

Long-term monitoring data of wind velocities and accelerations on the Hardanger Bridge are used to
investigate the relationship between the wind-loading and response processes. The extensive
measurement system consisting of 20 accelerometers and 9 anemometers is described as well as the
local topography of the site. The wind and response characteristics are presented using scatter plots and
wind rose diagrams. The considerable variability observed in the bridge dynamic response is
investigated by utilizing response surface methodology. Simple parameters of the wind field are
selected as the predictor variables in the analyses. The variability in response is attributed to the variable
wind field, and the effects of the significant parameters on the response are presented in a statistical
framework. The agreement of the findings with previous considerations and the implications on the

design of long-span suspension bridges are discussed.

1. Introduction

The Norwegian Public Roads Administration (NPRA) is currently seeking solutions to replace several
ferry connections along Norway’s coastal highway E39 with road transportation. The extraordinary
terrain typical of the west coast of Norway, famous for its fjords and tall mountains, requires crossing
straits up to 5 km long and 2 km deep, which manifests a challenging task for bridge engineers. The
growing demand for longer suspension bridges around the world calls for relatively lighter and slenderer

bridge structures, which will be prone to excessive wind excitation. To this day, many bridges exhibited
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unexpected behavior due to different wind-related phenomena, such as flutter [1], vortex shedding [2]
and excessive cable vibrations [1,3], which revealed gaps in the knowledge of loading mechanisms on
such structures. To diagnose and minimize these unexpected effects, monitoring of existing structures
and analysis of field data are deemed essential [4].

Accurate prediction of wind-induced response of suspension bridges is vitally important for reliable
design and assessment of such structures. Predicting the dynamic response, however, accommodates
uncertainties due to many sources, including the modeling of gust loading. Following the work of
Davenport [5], the dynamic load effects caused by atmospheric turbulence are traditionally described
using power spectral densities (PSDs) and coherences of turbulence [6-9]. Consequently, several
expressions have been suggested for the spectral densities over the years [6,10,11], which in general
depend on basic parameters of the wind field. The results of the recent bridge monitoring efforts [12—
16] reveal that the wind field characteristics exhibit variability from site to site. Therefore, the spectral
expressions need to be adjusted for the site in question using field measurements [13,17]. The site-
specific spectra are generally deduced from single events such as typhoons or averaged over a humber
of recordings. However, neither approach seems to reflect the actual variability of the wind field present
at the particular site, making it difficult to establish design spectra, even for a specific site. Solari and
Piccardo [18] presented a collection of wind field statistics taken from field measurement results in the
literature. The variability of the results presented by [18], as well as the random and site-dependent
nature of wind loading on suspension bridges, encourage a probabilistic description of the wind field
[19-21].

The field measurement results of wind statistics and structural responses were reported by several
researchers as the outcomes of large measurement campaigns to investigate the effect of wind loading
on bridge response and modal properties [4,14,22-24] or to verify numerical simulations [17,25-27].
The studies showed that reasonable predictions of dynamic response can be achieved using the
measured turbulence spectra. Other works showed that the spectra can accommodate significant
uncertainty and that the selection can significantly influence the response estimations [9,28].

In complex terrain, the wind field is expected to be variable and not homogenous. However, modeling

the wind field using state-of-the-art methods will not reflect this variability in the dynamic response
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predictions. Consequently, safety concerns may arise when designing very long suspension bridges.
The present study aims to put forth the actual relationship between wind and the response parameters
of a long-span suspension bridge located in complex terrain using long-term field data. The thorough
analysis of wind field parameters and their effects on the dynamic response will provide insight into the
uncertainties involved in wind field modelling and response prediction. For this purpose, field
measurement results are presented from an extensive monitoring system installed on the Hardanger
Bridge in Norway. The wind and response characteristics for the measurement period are presented.
The influence of the wind field on the dynamic response is studied in a statistical framework, using
response surface methodology (RSM) with basic wind-related parameters from measurements. The
significance of the parameters is assessed using hypothesis testing techniques. Finally, the effects of the

significant wind field parameters are presented in the form of two-dimensional surface plots.

2. The Hardanger Bridge and its surroundings

The Hardanger Bridge (Fig. 1) crosses the Hardangerfjord in Hordaland county of Norway, connecting
the small towns of Bu and Vallavik (Fig. 2). Since its completion in 2013, it remains the longest
suspension bridge in Norway with its slender main span of 1310 meters. The bridge deck has a well-
streamlined box shape and guide vanes were installed underneath the deck to mitigate vortex-induced
vibrations. The bridge girder is 18.5 meters wide and 3.2 meters high, supporting two traffic lanes and
a bicycle lane, making the bridge exceptionally slender compared to existing structures with similar
scales. The bridge direction deviates approximately 25° from the north-south direction, towards the
west, perpendicular to the fjord. The bridge is surrounded by steep mountains (1000-1500 meters high)

to the north and the south. The view of the surrounding fjords and mountains is shown Fig. 3.

The dynamic characteristics of the Hardanger Bridge, namely its natural frequencies and mode shapes
are extracted from a finite element (FE) model of the bridge through eigenvalue analysis. The FE model
was provided by NPRA. According to the analysis, the first lateral symmetric mode occurs at 0.05 Hz,
followed by an antisymmetric lateral mode at 0.098 Hz. The first vertical asymmetric and symmetric

frequencies of the structure were calculated as 0.11 Hz and 0.14 Hz, respectively. The first torsional
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vibration frequency was 0.36 Hz. The fundamental frequencies of the structure under 16 m/s wind were

also identified by [29], using Operational Modal Analysis (OMA). The results were similar to the FE

analysis.

(b)

Fig. 3. View from the Hardanger Bridge (a) towards the east and (b) towards the west
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3. The Measurement System

The Hardanger Bridge was instrumented with an extensive monitoring system after its completion to
measure the wind velocities and dynamic excitation at several locations on the bridge girder and the
bridge towers. The monitoring system is shown in Fig. 4 on a scale drawing of the Hardanger Bridge.
The sensor network consists of 9 sonic anemometers and 20 triaxial accelerometers. WindMaster Pro
3D anemometers were used to measure the wind speeds; these are robust triaxial ultrasonic
anemometers capable of measuring wind gusts up to 65 m/s. CUSP-3D series strong motion
accelerometers with a £ 4g measurement range were used for the acceleration measurements. The names
and coordinates of all the sensors are listed in Table 1; the midspan of the bridge was selected as the
origin of the coordinate system. 16 of the accelerometers are located inside the bridge girder, attached
on bulkheads on both sides of the girder to capture the torsional motion, while the remaining 4 are
located inside the bridge towers. Anemometers Al-8 are attached to bridge hangers at a height of 8
meters above the girder, except for one anemometer (A6) that is attached to a light pole at the midspan.
As shown by the sensor layout presented in Fig. 4, the accelerometers were distributed uniformly along
the bridge girder, whereas the anemometers were unevenly distributed. This layout was intentionally
selected to extract more information about the spatial structure of the wind field at the site. The final

anemometer (A9) is located at the top of the Vallavik (North) Tower.

Top view
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Fig. 4. The measurement system
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Each sensor is connected to a datalogger unit, where the data are recorded locally, then the data are
transferred to a main datalogger located at the top of the Vallavik Tower (Fig. 4) by wireless
communication. A CUSP-Me series recorder was used for the main datalogger, while the other
dataloggers were of type CUSP-Ms. Both types are suitable for working with a variety of different
sensors. The time synchronization of the data was ensured by using GPS time. The data collected at the
main logger unit are then transferred to servers at the Norwegian University of Science and Technology

(NTNU) via an internet connection and are stored there. Pictures of sensors are shown in Fig. 5.

Fig. 5. Instruments on the bridge: (a) triaxial accelerometer inside the bridge deck and (b) anemometer
attached to the hanger

The wind velocities and accelerations at the Hardanger Bridge site were recorded starting from
December 2013, and the monitoring campaign is still ongoing. This study considers recordings from
December 2013 to March 2016, corresponding to a total of 28 months. During this period, the sensors
were operational; however, the data were only stored after a triggering wind speed of 15 m/s was

exceeded in any of the wind sensors. After the system was triggered, the accelerations and wind



127

128

129

130

131

132
133

134
135

velocities were recorded for a duration of 30 minutes. The system was also triggered manually several
times in a random manner during this period, to include recordings with lower wind speeds in the
dataset. The dataset which will be used throughout the rest of the paper consists of 9590 10-minute long
recordings. A histogram showing the distribution of recordings according to the mean wind velocity is

given in Fig. 6.
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Fig. 6. Histogram of 10-minute recordings

Table 1
Sensor names and coordinates
Wind sensors Accelerometers
Name x (m) y (m) z(m) Name X (M) y (m) z(m)
Al 460 7.25 0.3 H1E/HIW 480 6.33/-6.64 -8.38
A2 280 7.25 3.2 H2W 360 -6.64 -6.41
A3 240 7.25 3.9 H3E/H3W 240 6.33/-6.64 -4.45
Ad 200 7.25 4.6 H4E/HAW 120 6.33/-6.64 -2.48
A5 180 7.25 4.9 H5E/H5W -7 6.33/-6.64 -04
A6 -10 -7.25 8 H6E/H6W -120 6.33/-6.64 -2.25
A7 -180 7.25 5.2 H7E/HTW -240 6.33/-6.64 -4.22
A8 -420 7.25 1.2 H8E -360 6.33 -6.18
A9 -655 45 140 H9E/HOW -480 6.33/-6.64 -8.15
T1E/TIW 655 45/-4.5 120.5

T2E/T2W -655 4.5/-4.5 120.5
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4. Wind Characteristics

4.1 Data handling

The wind velocities at the Hardanger Bridge site were recorded in polar coordinates with a sampling
frequency of 32 Hz using the nine anemometers mentioned above. The wind data were then resampled
to 20 Hz and decomposed into static (mean wind velocity, U) and dynamic (wind velocity fluctuations)
components considering a 10-minute averaging interval, where the wind process was assumed to be
stationary [6,8]. The three wind velocity fluctuations are referred as the along-wind (u), cross-wind (v)
and vertical (w) turbulence components. All the one-point statistics used to characterize the wind field
are calculated using the wind measurements at the midspan (sensor A6).

Sample time series of the turbulence components and wind direction are given in Fig. 7 for a 10-minute
interval, which was recorded on January 12, 2015, starting at 17.43 local time. The turbulence spectra
of the along-wind and the vertical components are estimated using the same 10-minute recording.
Welch spectral estimation method is used with 8 data segments with 50% overlap. A Hamming window
is applied to each segment prior to averaging. The respective von Karman spectra [11] are also
calculated and both spectra are given in Fig. 8 to present the diversity of the spectral shapes. It is
observed that the von Karman spectra represents the along-wind turbulence reasonably well, where
some discrepancies are present for the vertical turbulence. The measured vertical turbulence is rather
flat in the 0.1-1 Hz frequency range, which is observed commonly in the rest of the database; however,
the slope of the two spectra agrees for higher frequencies. To avoid any disturbance of the wind flow
due to the presence of the bridge deck and the vehicles on travelling on it, the anemometers were
installed 8 meters above the deck. It is also important to ensure that the wind speed measurements are
not affected by the structural vibrations of the bridge deck. Any such effect would be detectable as
peaks on the wind spectra at the locations of the natural frequencies of the bridge. Looking at the
measured wind spectra (Fig. 8), no such peaks were observed, even for high response levels.
Furthermore, the maximum instantaneous velocity of the girder was calculated approximately as 0.5

m/s by integrating the accelerometer signals for the highest measured response.
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Fig. 8. Spectral density estimates of turbulence components for a 10-minute recording on 12/1/2015:

(a) along-wind turbulence and (b) vertical turbulence

A running mean is also plotted on the time series to highlight any non-stationary behavior. It is observed
that the along-wind turbulence component exhibits non-stationary behavior, which is frequently
observed also in the rest of the data. Although non-stationary models can also be used to study the wind
characteristics [30-32], the traditional stationary wind model is preferred here due to its common use
in practice. Recent case studies based on typhoon winds [30,32] also show that if there is no sudden
change in the wind direction or no rapid increase or decrease is present in the wind speed (such as in
the build-up phase of a storm), the difference between stationary and non-stationary wind characteristics
is not significant. For the strong winds recorded at the Hardanger Bridge, 10 minutes duration is

sufficient to exclude such variations in the wind speed and the wind direction is usually steady.

4.2 Mean wind speed and direction

The mean wind velocities (U) were calculated for 10-minute intervals for all recordings using the sensor
at the midspan (A6) and are presented in the wind rose plot shown in Fig. 9, using a threshold wind
speed of 3 m/s. The wind rose was plotted on top of the topographical map of the bridge site to show
the influence of local topography on the wind conditions. The 0° direction shown in Fig. 9 is the bridge
direction. The results suggest that the wind was approaching from either the east or the west and was

mainly perpendicular to the bridge girder. The easterly winds approached the bridge from a wider
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directional range compared to the westerly winds. The directions of the easterly winds were bounded
by the surrounding mountains; the highest mean speeds from this direction were approximately 18 m/s,
and no significant directional dependence was observed. The westerly winds, on the other hand, had

higher mean speeds of up to 30 m/s with mean directions almost perpendicular to the bridge direction.
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Fig. 9. Wind Rose plot of 10-min mean wind velocity (m/s)
4.3 Turbulence intensity

The turbulence intensity is a simple indicator of the intensity of the atmospheric turbulence. For the

three turbulence components (u, v, w), the turbulence intensity is defined as

(o2 O, O,
Iu:_u’lv:_v’lwz_W (1)
U U U

where oy, oy and ow denote the standard deviations of the turbulence components. The turbulence
intensity factors for each of the three turbulence components were calculated for the 10-minute
intervals, and wind rose plots were generated as shown in Fig. 10. The plots reveal that for the lower
speed winds, the results are rather arbitrary, and the turbulence intensities are scattered randomly. This
is due to the fact that the lower wind speeds accommodate more non-stationary behavior due to sudden
changes in the wind direction and mean wind speed. In addition, since the wind speed fluctuations are
divided by the mean wind speed in calculation of the turbulence intensity, similar variations in wind
fluctuations result into larger scatter in case of low wind speeds. However, when strong winds are

considered, the scatter is much smaller, and more dependence on the wind direction is observed. The
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215  wvalues, ranging between 0-15 % for the strong winds. The vertical turbulence intensity is more
216  dependent on the wind direction than the along-wind turbulence (Fig. 10c). For the easterly winds, the
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219  the foothills of Mountain Oksen, had more vertical turbulence intensity (Fig. 2).
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Fig. 10. Wind rose plots of turbulence intensities: (a) along-wind turbulence intensity, (b) cross-wind
turbulence intensity and (c) vertical turbulence intensity.
The covariance of the u and w turbulence components were plotted similar to the turbulence intensities

(Fig. 11). Covariance of the turbulence components were calculated using
l N
cov(u,w) :N_Z(ui — 1) * (W, — p2,,) (2)
4=l

where N denotes the number of observations, 4, ,, denote the mean of turbulence components and *

denotes the complex conjugate operation. The wind rose diagrams were separated into positive and
negative correlations; most of the data indicated positive correlation of the two components,
contradicting previous theoretical considerations [10,33]. However, similar observations have been
reported previously [34,35]. For the westerly winds, the covariance term was positive for the winds
blowing along the fjord (240-270°) and negative for the winds from the mountain direction (270-300°),
demonstrating good separation. Smaller values were generally obtained from the easterly winds, for

which no directional dependence was observed.
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239  Fig. 11. Wind rose plots of the covariance term of longitudinal (u) and vertical (w) turbulence

240  components (a) negative correlation (b) positive correlation

241 4.4 Turbulence length scale

242  The turbulence length scale or the integral length scale (Luvw) represents the spectral content of the
243  turbulence and can therefore be interpreted as the average eddy size of the turbulence. Theoretically,
244 nine different length scales, three for each of the turbulence components, can be defined for the three-

245  dimensional atmospheric turbulence. The length scale for the u-component in the along-wind direction

246  can be written as [6]

l o0
247 L, =—5 [ R, (x)dx (3)
C)—u 0
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where Ry(X) is the spatial cross-covariance function of the u-component. The same definition applies
to the other turbulence components. Due to their physical interpretation, the length scales are essential
parameters for describing atmospheric turbulence. In practice, the length scales cannot be calculated
using Egn. (3), so they have to be estimated using approximate techniques [6]. However, estimating
length scales from field data appears to be troublesome; the length scale estimates reported by previous
studies show enormous variability in magnitude. After studying many field estimates of length scales
in near-neutral atmospheric conditions, Solari [18] reported that the variability was not solely due to
the terrain of interest, but also due to the estimation approach adopted. To examine the variability of
estimates for the site in question, two practical estimation methods were adopted in this study. The first
method (method 1) calculates the length scale by aligning the peak of the measured turbulence spectrum

with the von Karman spectrum [11], which was given as

Lf sty 755(waﬂ
fs(h_ Yy fs,(f)_ U P u

% {1+ 70.8(Lufﬂ o {1+ 283('wfﬂ
U U

for the along-wind and vertical turbulence components. The second method (method 2) integrates the

(4)

auto-covariance function of the turbulence component up to the first zero crossing, assuming that

Taylor’s hypothesis is valid [6]. The relation for the longitudinal length scale then becomes
U ? 1T
L, :Fij(r)dr, Ruu(7) =lim — [ u@u(t+r)dr (5)
Lo T2
where Ryy(t) is the cross-covariance function of the turbulence component in time. Fig. 12 shows the
wind rose plots of the longitudinal length scales for 10-minute intervals obtained using both methods,
and the vertical length scale estimates are given in Fig. 13. Although estimating the length scales is
fundamentally important for describing the atmospheric turbulence, the results indicate significant
discrepancy in terms of magnitudes. The estimates of method 2 are systematically larger than those of
method 1. The patterns in Fig. 12a and Fig. 12b, on the other hand, are in reasonable agreement with

only minor differences. The general trends in Fig. 13a and Fig. 13b are also reasonably similar. The

estimations of method 1 were clearly larger for the winds travelling along the fjord, where the winds
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were bounded by the mountains, while method 2 gave relatively more scattered results. Considering the

values obtained using method 2, the longitudinal length scale of the strongest winds varies between 200

and 700 m, and the vertical length scale varies between 100 and 250 m. The length scale magnitudes

obtained using method 2 show better agreement with the previously reported values [6]. In general, the

longitudinal length scale was approximately 2-2.5 times the vertical length scale for both methods,

which was in agreement with the observations of [8]. The wide range of the calculated length scale

values, even for similar wind speeds and directions, implies that the spectral content of the turbulence

varied randomly and therefore cannot be represented by a deterministic length scale value.
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Fig. 13. Wind roses of the vertical length scale (Lw) estimates (in meters): (a) method 1 and (b) method

2
4.5 Angle of attack

The vertical angle of attack (B) is the angle between the mean wind velocity vector and the horizontal
plane. Since the vertical inclination of the wind can influence the structural response, a brief description
of the conditions at the site is useful. The angle of attack was calculated for each 10-minute interval,
and a wind rose plot was generated to present the results. Negligible number of recordings exhibited
negative angles with small amplitudes; therefore, only positive angles (mean wind velocity pointing
upwards) are included in the figure. The results show that the mean wind velocity vector was generally

inclined slightly upwards with angles of 1-5° for the strong winds.
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5. Response Characteristics

5.1 Data handling

The accelerations of the bridge girder were measured with a 200 Hz sampling frequency at 16 locations
along the girder, as highlighted in Fig. 4. The acceleration data were then downsampled to 20 Hz, after
applying a low-pass filter to avoid aliasing. The accelerometer pair located approximately at the
midspan, namely H5E and H5W (Table 1), were selected to study the wind-induced dynamic response
of the bridge girder. The vertical and lateral accelerations of the bridge girder were obtained by
averaging the measurements from the two sensors, and the torsional response was obtained by dividing
the difference of the two signals by the distance between the sensors. 10-minute long recordings, same
as for the wind records, were used to calculate the RMS values of the acceleration components.

To effectively study the wind-induced response, other sources of vibration, such as traffic-induced
vibrations, should be excluded from the analysis. Because the wind-induced response of a suspension
bridge is typically in the 0-1 Hz frequency range [14,17,32], the vertical high frequency vibrations are
expected to increase when there is traffic loading on the bridge [14]. Examining the acceleration data
indicated that the dynamic response was dominated by low-frequency vibrations (below 1 Hz) when
the wind speed was above 8 m/s. The recordings with low wind speed (U < 8 m/s) and high frequency

content were removed from the dataset, assuming that the vibrations were induced by other sources
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such as the overflowing traffic and are therefore outside of the scope of our analyses. Although the
traffic density on Hardanger Bridge is typically low and the dynamic response is mainly due to wind
(when wind speed is reasonably high), the effects of traffic loading could not be completely removed
from the data. Therefore, other sources of vibration may still contribute to the overall variability in the
results; however, this impact is expected to be negligible.

Spectral density estimations are given in Fig. 15 for the three response components for a 10-minute
recording recorded on 12/1/2015, for which the wind time series were already given in Fig. 7. The
spectra are estimated using Welch [36] spectral estimation method. Spectral estimates of 8 data
segments with 50% overlap are computed using Fast Fourier Transform (FFT) and averaged after
applying a Hamming window to each segment. It is seen that the responses are dominated by the
fundamental modes, with some contribution from the higher modes. The lateral response spectra
exhibits similar results for the rest of the database, with a typical large peak at the first symmetric lateral
frequency (0.05 Hz) of the structure. On the other hand, significant contributions from several modes

are commonly observed in case of the vertical and torsional responses.
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Fig. 15. Spectral density estimates of response components for a 10-minute recording on 12/1/2015: (a)

vertical acceleration, (b) lateral acceleration and (c) torsional acceleration
5.2 Dynamic response due to wind

The measured root mean square (RMS) values for the lateral, vertical and torsional accelerations are
presented in Fig. 16 in the form of wind rose diagrams. The easterly winds showed consistent patterns
for the three response components. The dynamic response was usually higher for higher mean wind
speeds and the perpendicular wind direction. Westerly winds, on the other hand, showed peculiar
response characteristics. The lateral and vertical acceleration responses induced by the westerly winds
were generally smaller than the vibrations measured for the easterly winds, where the torsional response
was high but severely scattered. The largest measured torsional vibrations were caused by moderate
winds (12 < U < 18 m/s) from the east. The most critical wind direction was apparently the range of
60°-90°, where the winds passed over a hill approximately 500-600 meters high (Fig. 2). The winds
approaching from this range typically had high vertical turbulence (Fig. 10c) and small length scales
(Fig. 12), likely due to the interaction with the terrain. This observation indicates the effect of the
relatively high surface roughness along the 60°-90° directional range on the response. However, the

easterly winds travelling along the fjord with higher length scales did not cause large vibrations.
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Fig. 16. Wind rose plots of the acceleration response: (a) RMS vertical acceleration (m/s?) (b) RMS
lateral acceleration (m/s?) and (c) RMS torsional acceleration (rad/s?)

The three response components were then plotted against mean wind velocity to demonstrate the general
trend and the variability in the measurements (Fig. 17). The results indicate vast variability in the wind-
induced dynamic response. The vertical response shows the least scatter and was greatly affected by the
vertical turbulence intensity (Fig. 17a). More severe scatter is observed in the lateral response, which
cannot be attributed to the variability in the along-wind turbulence alone (Fig. 17b). The torsional
response shows the largest scatter of all (Fig. 17c), especially for winds with mean wind speeds
exceeding 10 m/s In the moderate wind speed range (12-18 m/s), large torsional vibrations were

observed. It is also seen that for high wind speeds, the torsional accelerations are separated. Higher



361  torsional accelerations were recorded when the vertical turbulence was high, which was mostly the case

362  for the easterly winds, especially the wind approaching from the 60°-100° range, where the wind flow

363 s disturbed by the mountains. The three response components are plotted in Fig. 18 again with color-

364  coding for the easterly and westerly winds. Distinctive torsional behavior was observed for the two

365  different wind directions, whereas the lateral and vertical responses were essentially similar for the

366  easterly and westerly winds. The difference between the torsional responses for the easterly and

367  westerly directions is mainly attributed to the terrain effects. High turbulence levels generated by the

368  upwind terrain in the east resulted into larger torsional vibrations of the Hardanger Bridge deck.
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6. Influential factors for the dynamic response

The scatter plots given in Fig. 17 indicate severe variability in the wind-induced vibrations of the
Hardanger Bridge. Since dynamic wind effects are crucially important in the design of slender cable-
supported bridges, this variability should be further investigated. Identifying the sources of variability
observed in the field measurements provide insight for evaluating the previously presented theoretical
considerations. For this purpose, Response Surface Methodology (RSM), a well-known statistical tool
[37], was utilized to study the relationship between the wind field parameters and the dynamic response.
Within the framework of RSM, the physical phenomenon of wind-induced bridge response can be
treated as an empirical model where the response function, its functional form and the variables
involved are unknown. Because wind effects are the primary focus in this study, several parameters
related to the wind field characteristics (most of which are introduced in Section 2) were selected as the
variables potentially influencing the dynamic response and were included in the analysis. These are

listed as:

the mean wind speed (U, averaged over 10 mins)

the wind yaw angle (ayaw)

the standard deviations of the turbulence components (cy, v, ow)

the covariance of the u and w components of turbulence (cuw)
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o the along-wind and the vertical turbulence length scales (L, Lw)
o the vertical angle of attack (B)
o the standard deviation of the mean wind speed values measured at eight locations along the

bridge (oms)

Decay coefficients of coherence of turbulence components (C,, Cw)
The decay coefficients are calculated by fitting Davenport’s [38] coherence formula to the field data in
least-squares sense. The coherence formula can be written as:

f.AX

Coh, , (f,Ax) =exp(-C,,, ¥

) (6)

where f is frequency, Cuw are the decay coefficients and Ax is the spanwise separation. The length scale
parameters (L., Lw) used in the analyses were calculated using method 2 described in section 4.4, due
to its more common use in the practice. The final variable in the list was included to provide a crude
representation of the inhomogeneity of the wind field. These variables are referred to as the predictor
variables, adapting the terminology of RSM. Several sources of variability that were observed in the
response measurement were not included in the analysis: the traffic loading, the spatial distribution of
the wind turbulence effects, non-stationarity of the wind time series and cable vibrations. When standard
stationarity tests such as the run test [39,40] are conducted on the entire data, it is found that very few
recordings can be classified as stationary. Non-stationary winds can cause higher or lower bridge
response compared to stationary winds with similar statistics, depending on the nature of the non-
stationarity. This naturally imposes additional variability when assessing the wind and response
relationship. However, analytical studies on non-stationary buffeting response of different bridge
structures [41,42] show that the variations induced by non-stationary wind records are much smaller
than the variability observed in the response of the Hardanger Bridge, which is mainly due to terrain
effects. The wind rose plots of Fig. 16 show that the response was highly dependent on the mean wind
direction, which was presumably a topographic influence on the wind field. Because this relationship
between the mean wind direction and the response parameters could not be modeled using a quadratic
response surface, the angle between the mean wind and the perpendicular bridge directions (yaw angle,

ayaw) Was used in the analysis to represent the directional effects. Although the effects of topography
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could not be fully represented by the yaw angle, they were partly represented by other parameters, such
as the standard deviations of the turbulence and length scales, which are already dependent on the wind
direction. The anemometer A6 and the accelerometer pair H5 were selected to study the wind field —
bridge response relationship using response surface analysis, which are both located approximately at
the midspan. However, when the analysis is repeated with another accelerometer pair, say at the quarter-
span (H3 pair) considering that the first vertical mode is antisymmetric, very similar results were
obtained.

A quadratic response surface including interaction terms was then fitted to the field data. The functional

form of the model can be written as

y=ﬂ0+zn:[ﬂixi+Zn:ﬂijxixj+[)’iixi2j @)

j=
where n is the number of predictor variables and B represents the coefficients to be determined by a
least-squares fit to the measured response. The regression is still linear because the model is linear in
the coefficients [33]. The unnecessary terms should be eliminated to obtain more significant and
computationally efficient response surfaces. For this purpose, after an initial fit, the predictor variables,
which had negligible effect on the regression, were determined through hypothesis tests on the
regression coefficients. The null hypothesis of Ho: B = 0 (the term has no effect on the model) was tested
for each parameter used in the model by a t-test, and the corresponding term was deleted from the model
if the null hypothesis was not rejected at a 95% significance level.

The resulting response surfaces were then used to calculate the predicted response using the field data.
A summary of the regression analyses results is given in Table 2. The results of the response surface
prediction are given in Fig. 19 and are plotted against the mean wind velocity. The plots indicate that
most of the variability observed in the measurement data (Fig. 17) can be explained by the variability
in the wind field itself. The R? values of the regression were 0.95, 0.9 and 0.82 for the vertical, lateral
and torsional acceleration responses, respectively, which supports the previous statement. Furthermore,
the significance of the regression was assessed using an F-test with the null hypothesis of Ho: B1 = B=...
= B, = 0. The null hypothesis states that there is no linear relationship between the response variable

and any subset of the predictor variables. The F-statistics resulting from the tests on the vertical, lateral
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and torsional response surface fits were well above the test value corresponding to the 99% significance
level, implying that the regressions were very significant.

It is also beneficial to elaborate on the factors that influence the response as well as their influence and
interactions. Therefore, the significance of each term used in the final models was assessed, using an
analysis of variance (ANOVA) procedure. The p-value approach is used to present the results instead
of directly using the F-statistic due to its ease of interpretation. If the resulting p-value is less than the
significance level (a), then the null hypothesis will be rejected, meaning that the term is significant at

that level. The p-values calculated for the terms in the three response surfaces are given in Table 3.
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462  Fig. 19. Measured vs. predicted responses using the response surface models: (a) vertical response, (b)

463 lateral response and (c) torsional response

464  Table 2
465  Summary of regression analyses
Number of R? value F-statisitc for model
observations significance
Vertical acceleration 9590 0.95 7.38 x 10°
Lateral acceleration 9590 0.9 2.89 x 10°
Torsional acceleration 9590 0.82 1.55x 10°
466
467  Table3
468  Significance of terms in response surface analyses
Vertical acceleration Lateral acceleration Torsional acceleration
Term p-value Term p-value Term p-value
U.ow 0 U.ow 7.24E-206 U.oy 2.35E-164
un2 2.26E-155 Olyaw-Ou 6.97E-65 u? 4.25E-82
Gw.Olyaw 8.59E-73 ow.Lu 2.89E-33 U 1.18E-79
U.Cw 1.46E-56 U.Cy 8.65E-33 Lu.ov 8.92E-70
ou’ 7.42E-40 u? 7.50E-25 ow’ 5.58E-63
U 1.97E-35 Gw.Oms 7.87E-24 U.Cw 7.02E-58
Gw.Oms 4.62E-23 ou’ 4.35E-22 U.ow 1.92E-52

Ow.Ov 6.92E-23 Ow.Ouy 1.66E-21 U.Oyaw 1.02E-49
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ayaw.LW 113E'16 Gw. LW 201E'18 Gu.Guw 213E'37

L2 3.61E-16 UB 1.30E-17 Lw.Gv 1.18E-27
ow.Ly 3.87E-16 Oyaw.Ov 2.28E-17 U.Lw 8.04E-22
Gw.Lw 6.09E-14 Gu.Guw 4.15E-12 Cu 1.95E-13
Gv.Gms 6.97E-13 Cu 1.28E-10 Cu2 1.67E-12

Cu? 5.59E-12 L2 4.64E-10 Lu.Lw 6.77E-12
Gu.Guw 9.86E-11 yaw-Lw 5.07E-10 Oy 2.44E-10

L 3.27E-09 Cu? 7.91E-10 ayaw-Lu 1.64E-09
U.Lw 1.18E-05 C2 1.82E-08 Oyan 3.40E-09

G 3.38E-05 Lu 2.06E-08 G2 6.41E-09

cu.p 1.56E-07 L2 2.11E-08
tyaw-Lu 1.76E-07 Cu? 2.70E-06
Gow.Cus 7.37E-07 Gw.Gu 3.34E-06
U 1.07E-06 Lu.Cuw 1.01E-05
G 9.97E-06

6.1 Mean wind velocity

The tests on parameter significance showed that the mean wind velocity was the most influential factor
on the dynamic response, as expected. The response surface analyses indicate a quadratic relationship
between the mean wind velocity and the response, as shown in the scatter plots of Fig. 17. However,
considering the R? values, the mean speed alone can only explain 84%, 78% and 63% of the variability
in the vertical, lateral and torsional acceleration response, respectively. Accordingly, including other

variables in the analyses is necessary for better describing the dynamic response.
6.2 Turbulence

The effect of the turbulence components on the dynamic response was incorporated into the response
surface analyses using the standard deviations of the three turbulence components (cu, ov, ow) along

with the covariance of the along-wind and vertical turbulences (ouww). A quick inspection of the p-values
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shows that the vertical turbulence component had an important influence on all response components.
The cross-wind turbulence appeared to be important only for the torsional response, whereas the along-
wind turbulence was significant for both the lateral and vertical responses. The covariance term (cuw)
was significant for the vertical and torsional responses but not for the lateral response.
After establishing the important terms, the effect of the four turbulence terms on the dynamic response
can be investigated further. The dynamic response was predicted using the previously obtained response
surfaces for a range of turbulence values. The results shown in Fig. 20 were obtained by changing only
one variable while the other parameters in the model were taken as their mean values, except for the
mean wind velocity, which was taken as 15 m/s and the wind yaw angle, which was taken as zero
(perpendicular to the bridge). The confidence intervals (95%) for the predictions are also shown using
dashed lines. The acceleration results were normalized with the maximum observed response during
the field measurements. Although the actual behavior of the multivariate response surface model is
more complex due to the interaction of several variables, certain inferences are possible using Fig. 20.
The vertical turbulence clearly had the most profound impact on the response, while the cross-wind
turbulence was equally important for the torsional response. Other turbulence components also showed
a linear relationship with the response; however, their effects were much smaller in comparison. The
covariance term also had a slight influence on the response. For the sake of discussion, the spectral
densities of lateral, vertical and torsional forcing actions on the Hardanger Bridge section can be written
using the buffeting theory [5,6] after inserting the bridge dimensions and the force coefficient terms
previously obtained from wind tunnel tests [34,35] as

S,, = (pUB)?[0.014S , +0.03S,, +0.016S,,, |

S,, =(pUB)? [0.064Suu -0.61S,, +1.628WW] (8)

S,, = (PUB?)? [O.OOOlSuu +0.077S,, + 0.1435WW]
In the equation, p denotes the air density, Su, and Sww denote the auto-spectral densities of the along-
wind and vertical turbulences and S denotes the cross-spectral density of the u and w components and
B is the width of the girder (18.3 meters). The expressions for the buffeting actions suggest that the
cross-wind turbulence does not contribute to loading; this conclusion was supported by the response

surface predictions except for the torsional response. The cross-spectrum Sy is said to be much smaller



507

508

509

510

511

512

513

514

515

516

518

in comparison and is usually neglected, which was also in agreement with the findings. Moreover, the
expressions show that the vertical turbulence is the most influential parameter, which was also observed
in the findings. The effect of the along-wind turbulence on the lateral response was small in the response
surface predictions, whereas the expressions indicated that it would be more significant. It should also
be noted that in addition to the one-point statistics, the spanwise correlation of the wind loads will also
effect the dynamic response, which is included in the analysis with parameters C, and C.. Moreover,
due to the considerably long span of the bridge and the surrounding complex topography, wind loads
may vary along the span, due to nonhomogeneous wind conditions. This effect was attempted to be

investigated using the parameter Gms.
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Fig. 20. Effects of turbulence on the dynamic response (the dashed lines represent 95% confidence
intervals): (a) vertical response, (b) lateral response, (c) torsional response and (d) covariance of u and
w components

In many cases, the turbulence terms seem to interact with each other and with other terms in the response
surfaces (Table 3). Some of the important interactions are presented in Fig. 21 using three-dimensional
surfaces. This time, the values of two variables were altered while all others remained fixed to obtain
the results. The surfaces given in the plots were obtained by using the fitted response surfaces for a
range of mean speed and turbulence values. The correlation between wind and response parameters
were aimed to be presented using quadratic surfaces, therefore any marginal relationship or local effects
may not be captured. Because the mean wind speed was the most significant variable in the model, the
interactions of the turbulence terms with the wind speed are of particular interest. The surface plots
support the relationships given in Fig. 21 for a wide range of mean speed values. All findings indicate

that the wind velocity fluctuations had a crucial role in the dynamic excitation of the Hardanger Bridge.
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6.3 Wind yaw angle

The strong winds attacked the Hardanger Bridge was not essentially perpendicular to the bridge axis.
The mean wind directions averaged over 10-minute intervals exhibited deviations from the
perpendicular direction of up to 60° (Fig. 9). Traditionally, these skew-winds are treated as less critical
events than the perpendicular winds [9,17]. This assumption relies on the decomposition of the mean
wind vector to its components, which are parallel and perpendicular to the bridge axis. The effect of the
parallel component to the bridge response is usually neglected where the perpendicular component is
always smaller than the mean wind speed.

Instead of the traditional approach, the mean wind speed was included in the response surface analyses
without any decomposition. The yaw angle (oyaw) is the angle between the mean wind direction and the
axis perpendicular to the bridge direction and was therefore included in the analyses. However, recent
studies indicated that similar response levels can be obtained under skew-winds and perpendicular
winds with the same wind speeds [9]. The response surface predictions also showed similar response

levels under skew-winds and perpendicular winds.
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6.4 Other Factors

The remaining factors, which have not been mentioned in the previous sections, are discussed here. The
angle of attack almost completely disappeared from the response surface models after the parameter
significance tests; therefore, no significant correlation could be extracted. The length scales, on the
other hand, appeared in several model terms. The effect of the length scales on the response, however,
was not profound, with the exception of the effect of the vertical length scale on the torsional response
(Fig. 22). The models generally predicted higher responses for lower length scales, but the effect was
minor. The last parameter considered in the analyses was the standard deviation of the mean wind
speeds along the bridge. The effect of this parameter on the dynamic response was found to be

negligible.

6,max

Fig. 22. Effect of the vertical length scale on the torsional response

It is also seen that the spanwise correlation of the turbulence components, represented here by the decay
coefficients, had influence on the measured responses (Fig. 23). An increase in the parameters C, and
Cw (smaller spanwise correlation of turbulence) are associated with lower lateral and vertical responses,
respectively. A significant correlation between the torsional response component and the C,, parameter
is also observed (Fig. 23); however, with the opposite effect. When the recordings with both high Cy
values and high torsional response are inspected further, it is seen that the torsional responses in such
events were not dominated by the fundamental symmetric torsional mode, but had significant
contributions from multiple structural modes, especially the higher modes. Nevertheless, it should be

noted that correlation does not necessarily imply causation in regression analysis.
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Fig. 23. Effect of decay coefficients on the dynamic response: (a) vertical response, (b) lateral response

and (c) torsional response

7. Conclusions

The wind and dynamic response characteristics of the Hardanger Bridge as well as their relationship

were studied using field measurement data. The following conclusions were deduced from the results:

e The wind field showed large variability in the mean wind speed, mean wind direction,
turbulence intensities and length scales.

e The dynamic response of the Hardanger Bridge was governed by the low-frequency vibrations
induced by the wind effects when the mean wind speed was higher than 8 m/s. In case of lower
wind speeds, the vibrations induced by traffic and other sources were relatively more
significant.

e The measurement data and the complementary analyses showed that high response levels were
reached also under skew-wind conditions. Such wind effects should be more carefully handled
in the design stage, especially when complex topographical conditions are present.

e Response surface analyses showed that most of the variability observed in response was due to
variability in the wind field itself. In general, the mean wind speed and the turbulence intensities
are found critical to describe the response; however, other wind-related parameters also aided
in explaining the variability.

¢ High mean wind speed and turbulent fluctuations were associated with higher bridge response.
Spanwise correlation of turbulence were also found to be correlated with the bridge dynamic

response, except for the torsional response, where an inverse correlation was observed.
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Although there is significant agreement between the findings here and the prediction methods
used in practice, selection of the mean wind speed as the sole design parameter fails to capture
the actual variability in the wind field. Therefore, the uncertainty in the description of the wind
field is suggested to be considered when designing new bridges to achieve more reliable bridge
designs.

The present investigation provides insight into prediction discrepancies using Hardanger Bridge
data as an example. Further research is needed to develop methods that incorporate uncertainty

in both short- and long-term response estimation methods.
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