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SUMMARY

Marine craft feedback control systems typically require estimates of position, velocity and heading where
the wave-induced motions should be suppressed. This paper presents a strapdown inertial navigation system
with adaptive wave filtering. Wave filtering based on inertial navigation systems differ from previous vessel-
model-based designs which require knowledge of vessel parameters and mathematical models for estimation
of thruster and wind forces and moments based on auxiliary sensors. The origin of the inertial navigation
system error states is proven to be uniformly semiglobally exponentially stable (USGES). The wave-filtering
scheme uses the estimated states of the inertial navigation system to separate the low-frequency motion of
the craft from the wave-frequency motions. The observer structure also allows for estimation of the time-
varying encounter frequency by using a signal-based frequency tracker or an adaptive observer. Finally, the
structural properties of the triple-redundant sensors packages have been utilized to obtain optimal and robust
sensor fusion with respect to sensor performance and faults. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wave filtering is a vital part of dynamic positioning (DP) and marine autopilot systems. This is
applied such that only the low-frequency (LF) components of the vessel’s surge, sway and heading
motions are considered by the control system. Fossen [1, Ch. 11, p. 286] states: Wave filtering can
be defined as the reconstruction of the low-frequency motion components from noisy measurements
of position, heading and in some cases velocity and acceleration by means of a state observer or a
filter. Wave-induced craft motion, also known as the wave-frequency (WF) motion, oscillates about
the vessel’s LF motion as seen in Figure 1. By preventing the WF motion to enter the control loop,
only the mean-vessel motion is considered by the controller which will result in less fluctuations
of thrust. Hence, from a practical point of view, wave filtering has the potential to reduce wear of
mechanical equipment, such as thrusters and engines, together with reducing the fuel consumption
and emissions from the vessel’s engines.
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Figure 1. Illustration of the total (blue), LF (red) and WF (black) motion of the vessel’s heading, ψ.

Observer-based wave filtering was first introduced by Balchen et al. [2] and later extended by
Sælid et al. [3] utilizing the vessel model and the Extended Kalman Filter (EKF) algorithm. This
wave-filtering technique makes use of the knowledge of the encounter frequency of the waves, that is
the peak frequency of the wave spectra shifted due to the speed of the vessel, to separate the LF and
WF motion. See, Fossen [1, Ch. 8.2.3, pp. 210–211] for details. Fossen and Perez [4] presented an
overview of Kalman filter (KF) and model-based techniques for wave filtering in DP and autopilot
designs. One potential shortcoming of the EKF is that global stability and robustness properties are
nontrivial to prove.

Another model-based design followed with Vik and Fossen [5], which developed an uniformly
semiglobal exponential stable observer (USGES) including wave filtering. Lauvdal and Fossen [6]
presented an autopilot design with an adaptive controller in cascade with a notch filter where the
latter performed the wave filtering. Furthermore, Fossen and Strand [7] developed an nonlinear
globally exponentially stable (GES) observer, with wave filtering of horizontal position and heading
measurements. The passivity result of [7] is valid for constant encounter frequency. Later Strand and
Fossen [8] extended their work to include online estimation of the encounter frequency. Torsetnes et
al. [9] handled time-varying encounter frequencies with a globally contracting observer employing
gain-scheduling. Nguyen et al. [10] and Brodtkorb et al. [11] dealt with time-varying encounter
frequencies utilizing four passive observers, based on [7], parametrized with four different and
constant encounter frequencies employed in a hybrid framework.

Hassani et al. [12] presented an adaptive wave filtering scheme utilizing the Kalman filter and
a linearized vessel model, yielding a local result, where the encounter frequency candidates had
to be chosen in advance. Later, these results were extended by Hassani et al. [13]–[14] to include
estimation of the dominating wave frequency with a discrete-time gradient based algorithm and with
a maximum likelihood algorithm together with a bank of Kalman filters, respectively.

Bryne et al. [15] have developed a six degree of freedom (DOF), time-varying nonlinear inertial
navigation system (INS) observer, with USGES stability properties, exploiting the position reference
system’s quality indicator, customized for marine surface vessels, based on the results of Grip et al.
[16]. However, Bryne et al. did not consider wave filtering. Results related to inertial sensor-based
wave filtering of both position and heading, in part except from Lindegaard and Fossen [17] which
utilized acceleration measurements in a model-based regime, is a gap in the literature.

A radically different approach with a wave-filtering effect is provided in Veksler et al. [18]. By
allowing a dynamics window in the thrust allocation system, the thrust variation due to the wave-
induced motion, and other high-frequency consumer power variations, is reduced. This leads to less
wear on machinery, as well as reduced emission and fuel consumption from the vessel’s engines.

1.1. Main Contribution of the Paper

This paper addresses a similar problem as the nonlinear adaptive wave filter of Strand and Fossen
[8]. The wave-filtering design to be presented is based upon inertial sensors and an INS, as opposed
to exploiting the vessel model and auxiliary sensors together with mathematical models to obtain
thruster and wind generated forces and moments. The main contributions are:
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Figure 2. Definitions of the BODY and NED reference frames, denoted {b} and {n}, respectively.

• Development of a vessel-model-free INS with wave filtering. The design incorporates an
exogenous time-varying encounter frequency, ωe(t), which can be estimated using an adaptive
signal processing based algorithm, e.g. Belleter et al. [19].

• Signal processing to monitor the triple-redundant sensor packages for errors and faults,
including single fault estimation, and to perform online tuning of the observers.

2. KINEMATICS AND WAVE-FILTER MODELING

2.1. Reference Frames

This paper employs two reference frames, North, East, Down (NED) and BODY, denoted {n} and
{b}, respectively as seen in Fig. 2. NED is a local Earth-fixed frame, while the BODY frame is fixed
to the vessel. The origin of {b} is defined at the nominal center of gravity of the vessel. The x-axis
is directed from aft to fore, the y-axis is directed to starboard and the z-axis points downwards.

2.2. Kinematic Strapdown Equations

Let the NED position and linear velocity be expressed as pn = [px, py, pz]
ᵀ and vn = [vx, vy, vz]

ᵀ,
respectively, while the specific force of the vessel is denoted f b ∈ R3. The local gravity vector is
denoted gn. Moreover, the attitude of the craft is represented by an unit quaternion qnb characterizing
the rotation from BODY to the NED frame. The unit quaternion is defined as qnb := [s, rᵀ]ᵀ

where s ∈ R1 denotes the real part whereas, r ∈ R3 constitutes the vector part and is given as
r = [r1, r2, r3]ᵀ. The conjugate of a given q = qnb is denoted q∗ and is given as q∗ = [s, −rᵀ]ᵀ.
Moreover, ‖q‖ = 1, where ‖·‖ denotes the Euclidean norm. From, qnb , the rotation matrix Rn

b ∈
SO(3) can be calculated according to R(qnb ) = I3 + 2sS(r) + 2S(r)2, as in e.g. [16], where I3
is the 3× 3 identity matrix, while S(·) denotes the skew-symmetric matrix and is given such that
v1 × v2 = S(v1)v2 for two given vectors v1,v2 ∈ R3. Furthermore, the angular transformation
matrix is given as T (qnb ) = [−r, sI3 + Sᵀ(r)]ᵀ similar to Fossen [1, Ch.2.2.2] and references
therein. Moreover, ωbb/n ∈ R3 is the angular velocity given in {b}. Finally, the constant biases of the
three-axis rate gyro is denoted bbg ∈ R3. With these preliminaries stated, the strapdown equations
are given as:

ṗnI = pnz (1)

ṗn = vn (2)

v̇n = R(qnb )fb + gn (3)

q̇nb = T (qnb )ωbb/n (4)

ḃ
b
g = 0, (5)

where (1)–(5) are obtained from Bryne et al. [15], extending the formulation in Grip et al. [16] with
the integral of the vertical heave position, pnz , denoted pnI which is an auxiliary variable defined in
order to utilize a virtual vertical reference (VVR) aiding measurement presented in Section 2.4.
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The strapdown equations applied in this paper are suitable for marine surface vessels employing
local navigation. Moreover, the {n} frame is assumed to be nonrotating and fixed to the average
sea surface level. According to Fossen [1, Ch. 2.1] this is a reasonable assumption for DP where
the vessel’s motion is confided to a smaller geographical region. The local gravity vector, gn, is
assumed to be known. In practice this will not be completely valid, nevertheless the effect of the
gravity error will be small compared to the standard deviation of the position reference systems.

2.3. Modeling of First-order Wave-induced Motion

All the sensor measurements contain both the LF and WF motions of the vessel. Therefore the
estimates from a INS will contain both motion components. In order to separate the LF motion from
the WF motion, linear models, exploiting the superposition principle, can be utilized to capture the
main dynamics of the oscillatory wave-induced motion due to first-order wave-induced forces on the
hull. The models are parameterized with the dominant wave encounter frequency, ωe, the relative
damping ratio, λ, and the gain, Kwi

, where the latter is a measure of the wave excitation intensity.
The WF component of the ith measurement can be written as ywfi = hwfi(s)wi with

hwfi(s) =
Kwi

s

s2 + 2λωes+ ω2
e

, (6)

as in Fossen [1, Ch. 8.2.6], where wi ∈ Rn is assumed to be the driving noise of the WF model and
being white Gaussian noise.

The wave encounter frequency is time dependent, continuous, positive, and uniformly bounded,
0 < ωe,min ≤ ωe(t) ≤ ωe,max <∞. The relative damping ratio can be considered as a known
constant. Fossen [1, Ch 8.2] recommends λ = 0.1 and λ = 0.26 for the JONSWAP and the Modified
Pierson–Moskowitz (MPM) spectra, respectively. Furthermore, the time variation of ωe(t) is dealt
with using a the state-space representation given by:

ξ̇wfi = ywfi (7)

ẏwfi = −ω2
e(t) ξwfi − 2λωe(t) ywfi + Eiwi (8)

where (7)–(8) is a realization of (6) with Ei = Kwi . On the other hand, the dynamics of the LF
measurement component is given as:

ẏlfi = ui (9)

where ui is a given input signal. Finally, the measurement, yi, is given by:

yi = ylfi + ywfi . (10)

Eqs. (7)–(10) can be written in matrix form as:

ẋi = A(t)xi +Bui +Eiwi (11)
yi = Cxi (12)

with xi = [ξwfi , ywfi , ylfi ]
ᵀ and

A(t) =

 0 1 0
−ω2

e(t) −2λωe(t) 0
0 0 0

 , B =

0
0
1

 , C =
[
0 1 1

]
, Ei =

 0
Kwi

0

 . (13)

2.4. Sensor Configuration and Noise Models

The observer design is based upon a sensor configuration consisting of an IMU, a VVR together with
triple-redundant position and heading reference sensor packages, respectively. The measurements
are:

1. Position measurements from the triple-redundant position reference package given in the {n}
frame, pnPosRef = pn.
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2. VVR measurement: pnI = 0, for all t ≥ 0, motivated by Godhavn [20]. The mean vertical
position of the vessel is assumed zero over time since the wave-induced motion in heave
oscillates about the sea surface. Hence, the following can be stated:

pnI = lim
T→∞

1

T

∫ T

0

pnz (t)dt = 0.

For a in-depth study of the VVR concept, Bryne et al. [21] can be advised.
3. Angular velocity measurements in the {b} frame from a three-axis rate gyro with biases:
ωbIMU = ωbb/n + bbg. The biases, bbg, are assumed constant with respect to the system dynamics
of (5).

4. Specific forces measurements in the {b} frame: f bIMU = f b. We assume the accelerometer
measurements are bias compensated e.g. as in Grip et al. [22, Sec. VI].

5. Heading measurements from the triple-redundant compass package, ψc = ψ.

3. OBSERVER DESIGN AND ADAPTIVE-WAVE FILTERING

The objective of the wave-filtering design is to construct LF estimates of position, velocity and
heading from the sensor measurements available. The objective is carried out with a modular
observer design as seen in Figure 3. First, two feedback-interconnected observers, Σ1 − Σ2 are
utilized to estimate the vessels position, attitude, linear velocity and gyro bias. These two observers
constitutes the strapdown INS. Furthermore, the LF estimates are constructed utilizing the estimates
from Σ1 − Σ2 and the time-varying encounter frequency, ωe(t) provided by a wave-frequency
estimator.

p̂n, v̂n, ân

ωbIMU, fbIMU

q̂nb ,σ̂

IMU

Virtual
Vertical

Reference

pnI

PosRef
Sensor

Package

pnPosRef

f̂
n

Σ1

ψc Attitude
Observer

Translation
Motion

Observer

Compass
Sensor

Package
Wave
Filters

Σ2

ωbIMU

p̂nlf

ψ̂lf

v̂nlf

WF
Estimator

ωe(t)

q̂nb , b̂
b
g

Figure 3. The observers Σ1 − Σ2 are aided by triple-redundant compass and position reference sensor
packages and a virtual-altitude measurement. The outputs of Σ1 − Σ2 together with the encounter frequency
ωe(t) are provided to the wave-filtering block. The outputs of the wave-filtering block are the LF estimate

pnlf , vnlf and ψlf.

3.1. Estimating the Total Vessel Motion and the Gyro Bias

The total vessel motion is estimated with two feedback-interconnected observers. The first observer,
denoted Σ1, is the attitude observer, represented by the unit quaternion, qnb , between the {b} and {n}
frame and the gyro bias, bbg, in the {b} frame. The second observer, Σ2, estimates the translation
motion consisting of the specific force, the linear velocity and the position in the {n} frame by
exploiting the attitude estimate. In addition, the estimate of the specific force, f̂

n
, is fed back from

the translation motion observer, Σ2, to aid the attitude observer, as seen in Figure 3. This is important
since fn 6= −gn due to wave excitation of the vessel.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
Prepared using acsauth.cls DOI: 10.1002/10.1002/acs
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The attitude observer, Σ1, by Grip et al. [22], developed from [23], is given as

Σ1 :

{
˙̂qnb = T (q̂nb )(ωbb/n,IMU − b̂

b
g + σ̂) (14a)

˙̂
bbg = Proj

(
b̂bg,−kI(t)σ̂

)
, (14b)

with the injection term

σ̂ = k1(t)cb ×R(q̂)ᵀcn + k2(t)f bIMU ×R(q̂)ᵀf̂
n

(15)

where kI(t) > 0 in (14b) and the gains in (15) satisfies k1(t) ≥ kP and k2(t) ≥ kP for some
kP > 0. The vector measurement based on ψc, from the heading reference sensor package, is
defined as cb := [cos(ψc), − sin(ψc), 0]ᵀ whereas the reference vector is defined as cn := [1, 0, 0]ᵀ.
f b = f bIMU is measured specific force provided by the accelerometer, while f̂

n
is provided by Σ2

and is the estimated specific force in the {n} frame. Proj(·, ·) denotes the parameter projection, from
[24, App. E], such that the gyro bias estimate is confined to a compact set, ‖b̂bg‖ ≤Mg, as with the
previous results presented by Grip et al. [22], [25], [16] and [26].

The translational motion observer, Σ2, by Bryne et al. [15] is given as:

Σ2 :



˙̂pnI = p̂nz + ϑ(t)θKpIpI p̃I (16a)

˙̂pn = v̂n + ϑ(t)θ2
[
02×1
KppI

]
p̃I + ϑ(t)θCPosRefKppp̃ (16b)

˙̂vn = f̂
n

+ gn + ϑ(t)θ3
[
02×1
KvpI

]
p̃I + ϑ(t)θ2CPosRefKvpp̃ (16c)

ξ̇ = −R(q̂nb )S(σ̂)f bIMU + ϑ(t)θ4
[
02×1
KξpI

]
p̃I + ϑ(t)θ3CPosRefKξpp̃ (16d)

f̂
n

= R(q̂nb )f bIMU + ξ. (16e)

where p̂n and v̂n are the estimates of position and linear velocity, respectively in {n}, capturing
both the LF and WF motion components of the vessel. p̂nI is the estimated integrated heave of the
vessel. Moreover, ξ is an intermediate state providing information of the translation motion in the
calculation of f̂

n
. In addition, ân = f̂

n
+ gn is the estimated linear acceleration in {n}. This signal

is utilized in the wave-filtering scheme as seen in Figure 3 and Section 3.3. KpIpI , KppI , KvpI and
KξpI are scalar gains associated with the integrated heave position and the innovation signal p̃I ,
while Kpp, Kvp and Kξp are gain matrices associated with the position and the innovation signal
p̃. Furthermore, CPosRef is given as

CPosRef =

1 0 0
0 1 0
0 0 0

 or CPosRef = I3

where the first prevents the vertical position measurement to be utilized as aid if this component
has low precision compared to the horizontal position reference component as with satellites based
reference systems. In addition, ϑ(t) is a scalar time-varying gain, required to fulfill ϑ(t) ≥ τ > 0.
Finally, θ ≥ 1 is a high-gain tuning parameter used to guarantee stability. ϑ(t) can be utilized to tune
the observer online based on e.g position reference quality indicators such as calculated or reported
sensor variance.

The respective estimation errors of the translational motion are defined in the following
manner; p̃I := pnI − p̂nI , p̃ := pn − p̂n, ṽ := vn − v̂n and f̃ := fn − f̂n. The attitude and gyro
bias estimation error are defined as q̃ := qnb ⊗ q̂n∗b and b̃ := bbg − b̂bg, respectively. The constraint
of the unit quaternion yield zero estimation error when s̃ = 1 or equivalently ‖r̃‖ = 0. Hence, s̃ = 0
corresponds to the maximum attitude error of 180◦ about some axis. Let the estimation errors of
Σ1 − Σ2 be defined as χ̃ := [r̃ᵀ, b̃ᵀ]ᵀ and x̃ := [p̃I , p̃

ᵀ, ṽᵀ, f̃ᵀ]ᵀ, respectively. Then, the stability
properties of Σ1 − Σ2 are given by:
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INERTIAL NAVIGATION SYSTEM WITH ADAPTIVE-WAVE FILTERS 7

Proposition 1 (USGES INS for Marine Craft)
The equilibrium point [χ̃ᵀ, x̃ᵀ]ᵀ = 0 of the error dynamics of the interconnected system Σ1 − Σ2

is USGES.

Proof, see Bryne et al. [15].

3.2. Wave Encounter Frequency

The time-varying encounter frequency, ωe(t), is obtained using an the adaptive signal-based
algorithm, for instance the GES stable estimator of Belleter et al. [19],

ζ̇1 = ζ2 (17)

ζ̇2 = −ωfζ2 − ω2
fζ1 + ω2

fy (18)
˙̂ϕ = k(t)ζ1(ζ̇2 − ϕ̂ζ1) (19)

where y is the input signal, ωf is the embedded low pass filter’s cut-off frequency, k(t) is a positive,
smooth time-varying gain and ϕ = −ω̂e(t)2 such that ω̂(t) converges to ω(t) exponentially fast. By
using the pitch estimate, θ̂, provided by q̂nb from Σ1, as the driving input signal such that y = θ̂
result in a cascaded structure where both components have exponential stability properties.

3.3. Adaptive Wave Filtering

This section presents the wave filtering of the INS estimates such that the LF motions are
reconstructed from the available signals. The wave-filtering strategy is based on adaptive notch
filtering and a time-varying observer design utilizing the model structure from Section 2.3, the
time-varying encounter frequency, ωe(t), obtained from (17)–(19) and the estimates provided by
Σ1 − Σ2. With respect to the model (7)–(9), the estimates from Σ1 − Σ2 are utilized both as input
and measurements in the wave-filtering-observer design as illustrated in Figure 4. Reconstructing
the LF signals employing observers, together with notch filters, has the potential to yield less phase-
shift compared to utilization of pure notch filters. In addition, the WF components can also be
estimated when employing observers. Pure filtering strategies do not have this capability.

Five time-varying observers are proposed to reconstruct the LF motion for horizontal positions,
horizontal linear velocities and heading, as indicated in Figure 4. The observers are structurally
similar and given by:

˙̂xi = A(t)x̂i +Bui +Ki(t)ỹi, ỹi = yi −Cx̂i (20)

where x̂ = [ξ̂wf, ŷwf, ŷlf]
ᵀ. The matrices A(t), B and C are given in (13). The term Eiwi in (13)

is neglected in the design since the observers are solely driven by the innovation signal ỹi and the
given ω(t) at time t ≥ t0. The LF input ui is obtained by notch filtering the given signal ri obtained

ωe(t)

ωe(t)

ωe(t)

ωe(t)
v̂nx

p̂nx y1

r1

WF1
p̂nlf,x

v̂ny

p̂ny y2

r2

WF2
p̂nlf,y

ânx

v̂nx y3

r3

WF3
v̂nlf,x

âny

v̂ny y4

r4

WF4
v̂nlf,y

ωbz − b̂bg

ψ̂ y5

r5

WF5

ψ̂lf

ωe(t)

Figure 4. The wave filtering is performed with five time-varying observers. For each signal to be wave filtered
is the full-motion estimate utilized as the observer measurement and the corresponding derivative, estimate

or measurement, utilized as input to the observer.
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8 BRYNE ET AL.

Table I. Input ri and output yi of the wave-filtering observers.

Observer
Number

Measurement
yi

Input
ri

1 p̂nx v̂nx
2 p̂ny v̂ny
3 v̂nx ânx
4 v̂ny âny
5 ψ̂ ωbz − b̂bg

from Σ1 − Σ2, as:

ui = hni
(s)ri, (21)

with

hni
(s) =

s2 + 2ζni
ωns+ ω2

n

(s+ ωn)2
. (22)

The overview of the given input ri and outputs yi is presented in Table I. In order to allow for the
notch filter to be adaptive, (21)–(22) is realized in state-space form as

ẋni
= An(t)xni

+Bnri (23)
ui = Cni

(t)xni
+Dnri (24)

where

An(t) =

[
−2ωn(t) −ω2

n(t)
1 0

]
,Bn =

[
1
0

]
,

Cni
(t) =

[
2(ζni − 1)ωn(t) 0

]
, Dn = 1.

(25)

with constant ζni
. Then, by choosing ωn(t) = ωe(t) yields an adaptive notch filtering of the signal

input ri.
The observer gains are given as Ki(t) = P i(t)C

ᵀ where P i = P ᵀ
i > 0 is the positive-definite

solution of
Ṗ i(t) = A(t)P i(t) + P i(t)A

ᵀ(t) +Qi(t) (26)

with Qi(t) = Qᵀ
i (t) > 0 as the positive-definite matrix utilized as tuning parameter. The

corresponding observer error dynamics is:

˙̃xi = (A(t)−Ki(t)C)x̃i. (27)

IfQi(t),A(t) andB are uniformly bounded and the pair {A(t),C} is uniformly completely (UCO)
observable, entails that P i(t) will uniformly bounded, that is c1I3 ≤ P i(t) ≤ c2I3 for all t ≥ 0
where c1, c2 > 0 are two constants (Anderson [27, Lemma 3.2]). Furthermore, this will render the
origin of (27) to be GES.A(t) andB are naturally bounded from the model definition of (7)–(9) due
to the physical properties of ωe(t) and that λ can be chosen as a positive constant. In addition,Qi(t)
is always chosen to be bounded. The following intermediate result insures the uniform completely
observability (UCO) properties:

Lemma 1 (UCO of the pair {A(t),C})
Assume that λ and ωe(t) are positive and uniformly bounded. Then, the pair {A(t),C} is UCO.

Proof, see Appendix A.

Uniform boundlessness of P i(t) follows since {A(t),C} is UCO. Hence, the error dynamics
(27) is GES.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
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pnPosRef

Σ1 − Σ2

ψc q̂nb

Figure 5. Structure of the triple-redundant signal processing. The sensor voting and sensor weighting takes
place in the two respective Sig. Mon. Weight blocks. The output of both blocks is utilized by Σ1 − Σ2
to estimated the position, p̂n and the attitude, q̂nb . Furthermore, the prediction of these signal between
sampling are utilized by the sensor-monitoring algorithms. After passing the monitoring test, the weighted

measurements pnPosRef and ψc are utilized by Σ1 − Σ2 as aiding measurements.

Remark 1
The gain of the observer (20) is calculated similar to using the continuous Riccati equation of
the Kalman-Bucy filter [28]. However, since the given measurement yi is an smooth estimate
form Σ1 − Σ2 rather than a sensor reading with additive Gaussian-white noise, the measurement
covariance, is omitted from the observer design. Then eq. (23) of Anderson [27] takes the form of
V̇i = −ỹiCᵀ

iCỹi − x̃
ᵀP−1i (t)Qi(t)P

−1
i (t)x̃ < 0. Since V̇ remains uniformly negative, the results

of Anderson also apply for (26)–(27).

4. TRIPLE-REDUNDANT SIGNAL PROCESSING

In order to ensure that the INS and the wave filters have acceptable performance and are
fault tolerant, sensor monitoring and sensor weighting should be performed. The respective
measurements from the triple-redundant-sensor packages are monitored and processed as illustrated
in Figure 5. The signal processing consist of two main components; Signal monitoring and signal
weighting. However, first we present the modeling of sensor noise which our design is based upon.

4.1. Sensor Error Modeling and Sensor Faults

The paper will focus on detecting and isolating three type of errors and faults for a single sensor
utilizing the structural properties of the triple-redundant-sensor packages together with a high-
bandwidth strapdown INS. The typical errors and faults in question are:

• Outliers.
• Fixed bias.
• Drift.

Detection of such errors can be nontrivial due to the dynamics of the PosRefs’ measurement errors.
Related to position, systems based on dGNSS are the most common reference applied in DP.
Therefore we will base our rational on this PosRef system. The transient behavior of the dGNSS-
measurement error closely resembles a Gauss-Markov process, as stated by Mohleji and Wang [29,
p. 5], due correlation of the dGNSS observation errors in time. In discrete-time this noise model is
given by:

ei(k + 1) = a(k)ei(k) + wi(k), (28)

where wi(k) is the driving Gaussian white noise of the ith measurement and a(k) is the transition
parameter

a(k) = exp

(
− 1

T
Ts

)
, (29)
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where T is the time constant and Ts is the sensor sampling interval. For GNSS systems, with
differential correction the time constant usually lie between 4-8 minutes as suggested in [29]. The
same transient behavior can also be assumed for other DP PosRefs such as hydroacoustic positioning
reference systems. The same goes for the gyrocompass which is the nominal heading reference in
DP due to class notations such as DVN GL [30].

4.2. Sensor Monitoring and Voting based upon Fault Detection, Isolation and Identification

The fault detection and isolation together with partial diagnosis are performed by modeling the
respective faults in discrete-time and exploiting the information available form the redundant sensor
packages in a stochastic estimation setup without taking in account the vessel motions.

First the sensor information is modified by utilizing the available information from the INS. A
given fault-free measurement yi(k), at time k, contains information on the craft’s motion in addition
to the noise of (28) for each respective sensor. In order to analyze the sensor readings for faults
separately form the motion of the vessel, the predicted signals from Σ1 − Σ2 are utilized to remove
the craft’s motion components from the respective measurement at each sampling time k. Since
the INS provides estimates at significantly higher rate than the respective aiding sensors do, the
vessel-motion components can be removed by subtracting the INS prediction ȳi, at time k from the
measurement y(k) such as:

zi(k) = yi(k)− ȳi, (30)

where ȳi is the INS’s last available prediction of yi before time k. Now, ideally zi contains sensor
noise and faults, i.e zi(k) = ei(k) + fi(k), since the estimates from Σ1 − Σ2 are smooth and based
on dead reckoning (DR) from IMU data between each of the samples from the respective sensor
packages.

The dynamics of transformed measurements zi(k), zi(k + 1), . . . , zi(k +m) can modeled, for
each ith sensor reading, in discrete time as:

x(k + 1) = Φ(k)x(k) +

w(k)
0
0

+ u(k − τf )

 0
fb
fr

 (31)

z(k) = H(k)x(k) + e(k) (32)

similar to Gustafsson [31, p. 296] with

Φ(k) =

a(k) 0 0
0 1 1
0 0 1

 , H(k) =
[
1 1 0

]
, (33)

where the subscript i is omitted for simplicity. Furthermore, a(k) is given by (29) and w(k) is the
driving noise of (28). e(k) is the presumed to be Gaussian white measurement noise, while u(k − τf )
is the step function

u(k − τf ) =

{
1 for k < τf
0 else . (34)

Moreover, fb is the sensor bias or drift and fr is the rate of the bias/drift. Hence, fr is zero for a fixed
bias and is a constant for a drift with constant rate. Then, a sample is deemed fault free if fb and fr
is contained to a neighborhood around zero. All this implies that x1(k) corresponds to the sensor
noise, while x2(k) and x3(k) is the given sensor bias/drift and drift rate, respectively. The system
(31)-(32) is observable for 0 < a(k) < 1 which can be verified with the Kalman-rank-condition test.
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The senor monitoring is conducted by running a discrete-time Kalman filter with the measurement
update

S(k) = H(k)P̄ (k)H(k) + r(k) (35)

K(k) = P̄ (k)C(k)ᵀS(k)−1 (36)
x̂(k) = x̄(k) +K(k)(z(k)−H(k)x̄(k) (37)

P̂ (k) = (I −K(k)H(k))P̄ (k)(I −K(k)H(k))ᵀ

+K(k)r(k)K(k)ᵀ, P̂ (k) = P̂
ᵀ
(k) > 0

(38)

and the time update

x̄(k + 1) = Φ(k)x̂(k) (39)

P̄ (k + 1) = Φ(k)P̂ (k)Φᵀ(k) + Γ(k)Q̄(k)Γᵀ(k), (40)

respectively. Even though w(k) only enters the upper state, the process noise of the filter w(k) is
chosen w(k) = [w(k), wb(k), wr(k)]ᵀ such that the estimation scheme is able to identify biased
and drifting measurements from measurement sample k − 1 to k by not considering the fault
model to be perfect. In addition, r = E[e2(k)] is the reported covariance of the sensor noise and
Q(k) = E[w(k)w(k)ᵀ] is the covariance of the process noise. This again leads to the modified
process noise covariance matrix Q̄(k) which can be given by:

Q̄(k) = Q(k)− 1

r
M(k)M(k)ᵀ (41)

motivated by

E

[
[wᵀ(k) v(k)]

[
w(k)
e(k)

]]
=

[
Q(k) M(k)
Mᵀ(k) r(k)

]
, (42)

as given in Gustafsson [32, Sec. 7.2.3], taking in account the cross correlation between the process
noise, w(k) and measurement noise v(k) with respect to the model (28) and the measurement (30).
In this case, M(k) = [m(k), 0, 0]ᵀ is the cross covariance of the measurement and process noise,
where m(k) can be calculated offline as:

m(k) =
1

n− 1

k−1∑
l=k−n−1

(
w(l)− µw

)(
e(l)− µe

)
, (43)

and stored in a look-up table where n is the length of a window based on fault-free data.
µw and µe are the receptive means over the same window. The choice of a(k), in Φ(k),
w(k − n− 1), . . . , w(k − 1) and e(k − n− 1), . . . , e(k − 1) can be calculated prior to the operation
based upon previous data collected from the sensor in question. Moreover, this offline analysis
should take in account the possibility of changing sensor precision over time. Hence, the look-
up table containing Q̄ should be based upon process noise data w(k − n− 1), . . . , w(k − 1) and
measurement noise data e(k − n− 1), . . . , e(k − 1) corresponding to a variety sensor covariances
r(k − n− 1), . . . , r(k − 1) and a(k) such that the m(k − n− 1), . . . ,m(k − 1) data are valid for
changing sensor precision.

Sensor Outlier Detection:
Outlier detection can then be performed with innovation monitoring of the KF (35)–(40) with

T (k) =
(
z(k)−H(k)x̄(k)

)ᵀ
S−1(k)

(
z(k)−H(k)x̄(k)

)
(44)

as in Gustaffson [32, eq. (7.71)]. If T (k) is exceeds a predefined threshold, z(k) is deemed to be an
outlier.
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Sensor Bias and Sensor Drift Detection:
Sudden changes in the mean of z(k) will be detectable with (44) yielding T (k) to spike. The same
effect will present it self if the sensor recovers. Then, monitoring of x̂2(k)/x̄2(k) should be done in
parallel with outlier detection to detect a sensor bias.

Sensor drift is in general the most difficult fault to detect and identify since it not necessarily
noticeable in the innovation monitoring of (44) due to a possible low drift rate, fr. For the same
reason, by only monitoring x̂3(k)/x̄3(k), the state associated with the drift rate, can be insufficient
to detect sensor drift since the rate may be lower the than the process noise of the filter (35)-
(39). Therefore, drift detection is performed by monitoring the estimate/prediction x̂2(k)/x̄2(k),
associated with the sensor bias. Then, sensor drift is detected if the sensor bias estimate surpasses a
given threshold regardless of the result from the innovation monitoring. The fault estimation ensures
that partial fault diagnosis is obtained.

By following the methodology above instead of typical a voting strategy enables the possibility
to detected an erroneous sensor also when only two PosRefs are available. This is due to the IMU
measurements are provided at significantly higher rates than the PosRef and compass measurements.
This again, allows for zi(k) to be generated and performing the fault estimation with (35)–(39).
However, with only two position and heading references available, this strategy will only work for
faster emerging errors. For slowly drifting position reference measurement, an alternative algorithm
is presented by Rogne et al. [33]. An other framework for detecting similar faults based on particle
filtering is presented by Zhao and Skjetne [34].

4.3. Sensor Weighting

The second step of the redundant-signal processing is measurement weighting. If the given
measurement was deemed healthy by the fault-detection algorithms of Section 4.2, the
measurements should be weighted. By assuming that sensors have independent noise components,
the weighted measurement, xw, of dimension p from N sensors can be obtained from e.g.
Gustafsson [32, Ch. 2.2] by minimizing the object function

V LS =

N∑
k=1

(
y(k)−H(k)xw(k)

)ᵀ
R−1(k)

(
y(k)−H(k)xw(k)

)
. (45)

where y(k) ∈ Rp·N is the vector of measurements at time k. xw(k) ∈ Rp represents the weighted
measurement while Hw(k) =

[
Ip1 , . . . , IpN

]ᵀ
yielding,

xw(k) = Rw(k)Hᵀ
w(k)R−1(k)y(k). (46)

Here R(k) is a block-diagonal matrix of the reported covariance matrices from the respective
sensors. In this paper, these covariances are E[e2ci(k)] and E[ePosRef,i(k) ePosRef,i(k)ᵀ] with respect
to the possible sensor components of (32). Then, xw is the weighted measurement, in a least squares
sense with covarianceRw(k) =

(
Hw(k)ᵀR−1(k)Hw(k)

)−1
, and utilized in the INS measurement

updates.

Remark 2
The assumption of independent sensor noise is not true for PosRefs such as satellite based navigation
and for hydroacoustic position reference (HPR) systems. This is due to the noise being time
correlated for dGNSS receivers within the same geographical area and for each pair of HPR
transponders and transducers. In DP, differential correction regarding GNSS is applied to reduce
common-mode errors, however there are still some residual common-mode errors present after the
correction. Nevertheless, this assumption have still be proven to be useful in Kalman filter based
observer designs with position measurements from such position references.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
Prepared using acsauth.cls DOI: 10.1002/10.1002/acs



INERTIAL NAVIGATION SYSTEM WITH ADAPTIVE-WAVE FILTERS 13

5. CASE STUDY

5.1. Implementation

The sensor measurements were generated using the Marine Systems Simulator [35] simulating a
offshore supply vessel employing a DP system. The vessel’s wave-induced motions were generated
by exposing the vessel to wave forces and moments generated with the JONSWAP wave spectra.
The significant wave height and peak frequency were chosen to Hs = 7 meters and ω = 0.8 [rad/s],
respectively. The IMU and the respective observers where simulated at 100 Hz. The chosen heading
and position reference were three gyrocompasses and three dGNSS, simulated at 10 Hz and 1 Hz,
respectively.

All the sensors were simulated with noise. The dGNSS and gyrocompasses noise were simulated
with a first-order Gauss-Markov process of (28), where Table II present parameters related to the
transient noise for the respective sensor packages. When the compasses were not sampled, the
injection term of Σ1 was implemented as

σ̂ = k2(t)f bIMU ×R(q̂)ᵀf̂
n
. (47)

Because of the slow dynamics of DP vessels, this will not affect the performance of Σ1 even
though the stability analyses of Bryne et al. [15] and the reference therein requires two vector
measurements. The quaternion unity constraint was enforced with q̂nb = q̂nb /‖q̂nb ‖ after every
quaternion update. Σ2 was implemented with the discrete-time corrector-predictor scheme presented
in Fossen [1, Ch. 11.3.4] such that the dGNSS measurement update of Σ2 was carried out every
100th IMU sample.

The implementation of time-varying wave filters were carried out with exact discretization at 100
Hz. The design parameter ζni

of (23)–(25) was chosen ζni
= 0.05 for all five adaptive notch filters.

5.2. Tuning and Gain Structure

The gains of Σ1 was tuned with ga = [k1(t), k2(t), kI(t)]
ᵀ, and

ġa = − 1

T
ga +

1

T
ka,

{
ka = [20, 20, 1]ᵀ if t ≤ 100

ka = [0.55, 0.55, 0.01]ᵀ else.

with T = 25 s to speed up the initial convergence of the q̂nb and b̂bg. This is similar to [15] such that
unnecessary amplification of sensor noise is avoided when the attitude estimates have converged.
The fixed gains of Σ2, on compact form,

Kt =
[
KpIpI 01×2 KpzpI 01×2 KvzpI 01×2 KξzpI
02×1 K̄

ᵀ
pp 02×1 K̄

ᵀ
vp 02×1 K̄

ᵀ
ξp 02×1

]ᵀ
,

with K̄pp = TKppT
ᵀ, K̄vp = TKvpT

ᵀ, K̄ξp = TKξpT
ᵀ and T = [1, 0, 0; 0, 1, 0] were calcu-

lated as Kt = P tC
ᵀ
t where P t is the solution of

AtP t + P tA
ᵀ
t +Qt−2τP tC

ᵀ
tCtP t = 0 (48)

Table II. Parameters of dGNSS and gyrocompass error model.

Parameter dGNSS (hor. comp.) Compass
Time Constant T = 240 [s] T = 60 [s]
Std. v(k) 1.10 [m] 0.14 [◦]
Std w(k) 0.1 [m] 0.025 [◦]
Covariance w(k), v(k) 0.01 [m] -
Std. v(k) (low precision) 2.17 [m] -
Std w(k) (low precision) 0.2 [m] -
Covariance w(k), v(k) (low precision) 0.04 [m] -
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Table III. PosRef and gyro compass validity threshold

Thresholds PosRef (north and east comp.) Compass
Outlier 8 [m] 4 [◦]
Bias/drift 2 [m] 1.2 [◦]

where At and Ct is given in [15, Eq. (11)]. The numerical values of Qt and τ were chosen as:

Qt = 1 · 10−3diag{2.5 · 10−3, 1, 1, 2.5 · 10−3, 1, 1, 2.5 · 10−3, 1, 1, 2.5 · 10−3}

and τ = 1/2 which resulted inKpIpI = 0.5222,KpzpI = 0.1363,KvzpI = 0.0208,KξzpI = 0.0016,
K̄pp = 0.6387 · I2, K̄vp = 0.2035 · I2 and K̄ξp = 0.0316 · I2. Furthermore, the time-varying gain
component, ϑ(t), of Σ2 was implemented as

ϑ̇ = − 1

T
ϑ+

1

T
ktv, ktv =


0.5 (low) if GNSSrms > lhigh

0.75 (med) if GNSSrms > llow and GNSSrms < lhigh

1 (high) if GNSSrms < llow or time < 100

(49)

where GNSSrms = (Rw,xx(k) +Rw,yy(k))0.5 is obtained from the weighting algorithm of (46), such
that ϑ(t) remains smooth even though the gain is modified over time. Furthermore, llow = 0.9 and
lhigh = 1.7 where chosen as the gain thresholds, together with T = 5, such that ϑ(t) will be adaptive
with respect to PosRef quality. Moreover, θ = 1 was chosen. The two position wave filters were
tuned with Qi = diag(0.01, 2.52, 0.5), while the velocity and heading wave filters were tuned as
Qi = diag(0.01, 22, 0.5). Finally, different Q̄i(k) were precalculated for each axis of the dGNSS
and the compass measurements. These were based on the parameters of Table II including different
Q̄i(k) for low and high dGNSS variance. Regarding the gyrocompass, Q̄(k) = Q(k) was chosen
since the cross correlation between the process noise and the measurement noise was deemed
negligible based on the parameters of Table II. The fault-detection thresholds were chosen as
presented in Table III.

5.3. Simulation Results

This section presents the simulation results of the combined INS, with wave filtering and the triple-
redundant signal processing as presented in Section 3–4. In order to illustrate the effect of the time-
varying wave filters and the triple-redundant signal processing the following situations regarding
the dGNSS and compass measurements were simulated:

• At time 350 and 400 seconds the position of dGNSS3 spiked with minus five meters north
and five meters south.

• Between 400-500 seconds the precision of dGNSS2 was reduced where the standard deviation
doubled as described in Section 5.1. In addition, dGNSS2 began to drift 0.1 m/s in the same
time period. According to Chen et al. [36], such drift can be due to differential link error.

• Between 450-500 seconds dGNSS3 did not provide any measurements.
• Between 600-700 seconds the quality of all three dGNSS deteriorated as described in Section

5.1, Table II.
• At 800 seconds the third gyrocompass began to lag before recovering when time approached

1000 seconds.
• At 1000 seconds dGNSS reference was lost due to e.g. powerful ionospheric scintillation.

Figure 6 shows the estimated pitch, from Σ1, feeding the WF estimator together with output of
the WF estimator, ωe(t). The fast convergence of the pitch estimated, seen in Figure 6a, was due to
the time-varying tuning scheme presented in Section 5.2. The estimate of ωe(t) began to settle to
the wave-encounter frequency after 250 seconds as seen in Figure 6b.

Figure 7 shows the high-performance gyro bias estimate together with the respective estimation
error. The z-axis of the gyro bias estimate was further fed to the heading wave filter, as illustrated
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Figure 6. Evolution of the pitch estimate which acts as the driving signal in the estimation of ωe(t) together
with the wave-encounter frequency provided by (17)–(19).
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Figure 7. Evolution of the gyro bias estimate, provided by Σ1.

in Figure 4, to compensate for the gyro bias before the yaw rate measurements entered the heading
wave filter. The transient performance of the gyro bias estimates are achieved, as with the pitch
estimate, due to the time-varying tuning as presented in Section 5.2.

Figure 8 present the position, velocity, and attitude estimation errors. One can observe that the
vertical position and velocity errors are considerably smaller than then horizontal counterparts.
This is due to only the VVR measurement was utilized to stabilize the vertical axes. Since the
vertical axes are self contained, while the horizontal axes are dependent of dGNSS quality with
the respective transient measurement errors, the horizontal estimation errors are bigger then the
vertical. From this and the fact that the vertical GNSS measurements are worse than the horizontal
counterparts, one can argue that the inclusion of the VVR to the INS is beneficial, compared to
vertical aiding from dGNSS. The velocity error is less effected by the transient dGNSS error since
the gains, associated with the velocity, are smaller than the position gains as presented in Section
5.2. The transient heading error, in Figure 8c, is due to the gyrocompass measurement error.

In Figure 9, the wave-filtered heading, ψ̂lf , together with the adaptive notch-filtered gyro
measurement, rf is presented. The effect of the heading wave filtering, seen in Figure 9a, is evident
where the majority of the WF motion is not present in the LF estimates. The bias-compensated and
notch-filtered yaw rate measurements are shown in Figure 9b.

The adaptive notch-filtered acceleration input to the velocity wave filters are shown in Figure 10
together with the estimated acceleration, ân = f̂

n
+ gn. The effect of the adaptive notch filter is

obvious where the filtered acceleration estimates are significantly smoother than the signal which
they are based upon.

This leads to the wave filtering of velocity and position. Figure 11 show the LF estimates of
position, p̂nlf , and linear velocity, v̂nlf , versus both the estimated vessel’s position and linear velocity
provided by the INS. The transient of the LF estimates seen in the first seconds are due to the
encounter frequency estimate has not yet converged. Furthermore, this resulted in the observers of
(20) and the notch filters of (23)–(24) were not performing optimally before ω̂e(t) converged to
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ṽy

ṽz
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Figure 8. Position, velocity and attitude estimation errors.
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Figure 9. The estimated yaw angle from Σ1 together with the wave-filtered yaw estimate, estimated WF
heading motion and gyro bias compensated filtered yaw rate.
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Figure 10. Estimated and filtered estimated acceleration an = fn + gn in North and East where the filtered
estimates enter the linear velocity wave filters. Blue: Estimated. Red: Filtered.

ωe(t). After the transients settled, one can clearly observe that the wave filters reconstructed the LF
positions and velocities adequately.
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velocity provided by Σ2.

Figure 11. LF position and LF velocity estimates versus the estimates provided by the INS.

Results regarding the dGNSS sensor package, related to signal monitoring and weighting can
be seen in Figures 12–13. In Figure 12a one can observe that the measurements from dGNSS3 at
time 300 seconds and at 350 seconds are outliers. Furthermore, from Figure 12b one notices that
measurements from GNSS2 slowly drifts between 400 and 500 seconds. The outliers of GNSS3
and the drift of dGNSS2 were detected with the innovation monitoring and bias/drift detection,
respectively. This is indicated by Figure 12d, showing how the status of the respective dGNSS
receivers evolved with the faults described above. The results of the dGNSS wild-point detection is
seen in Figure 12c, while the drift estimation of dGNSS2 is seen in Figures 12e–12f, respectively.
dGNSS2 was rejected when the drift estimate surpassed the bias/drift thresholds level of Table III.
In addition, one can observe in Figure 12c that the innovation monitoring spikes multiple times after
the measurements from dGNSS2 were rejected. This is due to ȳi of (30), now only is based on fault-
free information since the INS estimates are only aided with non-erroneous dGNSS measurements.
Then, zi[k] will have an offset compared to ȳi since yi[k], related to dGNSS2 drifts. This again
verifies that it was correct to dismiss the measurements from dGNSS2 in the given time period.
In addition, the rejection of dGNSS2 and dGNSS3, seen in Figure 12d at approximate 650 and
700 seconds, respectively were due to the bias monitoring incorrectly estimated biases/drift at these
instances in time due to the transient error dGNSS measurement surpassed the bias/drift threshold.

Figure 13 shows the weighted dGNSS measurements and the weighed covariance, The former is
almost unaffected by the simulated errors as seen in Figure 13. The resulting effects of the sensor
monitoring related to the weighted dGNSS covariance can be seen in Figure 13b. An increase is
seen when dGNSS2 and dGNSS3 were rejected. Furthermore, it can be seen that the weighted
covariance increases at 450 seconds since dGNSS3 fails to provide measurements. At approximately
500 seconds both dGNSS2 and dGNSS3 recovered, as seen in Figure 12d, such that the weighted-
dGNSS covariance decreased. Figure 13b also shows an increase in the weighted dGNSS covariance
in the time frame of 600 to 700 seconds, however, with larger magnitude than before. This is due
to the increase of noise in the measurements provided by all three receivers. In addition, Figure 13b
also shows the evolution of the time-varying gain ϑ(t) based on the weighted covariance provided by
the dGNSS triple-redundant sensor packages. One can observe that ϑ decreases when the weighted
covariance increases and vice versa.

Figure 14 illustrates signal monitoring and weighting of the triple-redundant gyrocompass sensor
package. Figure 14a shows how the third gyrocompass begins to lag after 800 seconds, while the
weighted measurements in Figure 14d are unaffected by the this fault. This is due to the sensor
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Figure 12. dGNSS faults and fault monitoring. dGNSS2 provided erroneous measurements between 400-
500 seconds of simulation, while the dGNSS3 measurements spiked at 350 and 400 seconds of simulation.

All of the GNSS measurements becomes less accurate between 600-700 seconds of simulation.

monitoring excludes the third gyrocompass approximately 30 seconds after the compass fails to
capture the change in heading, as seen in Figure 14c, since the bias/drift estimate surpassed the
threshold of Table III. The bias/drift estimates related to the compass measurements are presented
in Figure 14b. In addition, one can see that compass1 was rejected at approximately 200 and 280
seconds and the compass3 was rejected at approximately 150 seconds. These are falsely-detected
compass errors induced by the low-threshold value in Table III and the transient measurements error
of the compasses at the given instances in time.

Figure 15 show results related to GNSS loss. Figure 15a displays the drift of the LF position
estimates relative the actual ship’s position. This is reasonable since the INS, which the LF estimates
are based upon, will drift when the aiding sensor is lost. In Figure 15b one can see that the heading
estimates are unaffected by this. This is due to three factors. First, the heading estimate is mainly
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Figure 13. Results of the dGNSS sensor weighting.
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Figure 14. Results of the triple-redundant signal possessing of the heading sensor package where compass3
provided lagging measurements after 800 seconds of simulation

based on the compass measurements, secondly, the ξ term in f̂n, from Σ2, will in general be small
after Σ1 − Σ2 have converged. This makes the attitude observer robust to loss of position references
for shorter time periods. This statement is supported by Figure 15c. The third factor is that the gyro
bias is still estimated with high accuracy, as seen in Figure 15d. An other possible reason for the
attitude estimation performance persists, is that the vertical axis of Σ2 is stabilized independently
of position reference with the VVR. Because of this, the kinematic coupling between heave and
roll/pitch, together with wave excitation, probably also contribute to the adequate performance of
Σ1 even though the feedback from the horizontal position is lost.
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Figure 15. Effects of loss of position reference at 1000 seconds. Figure 15a shows the drifting LF position
estimates, while Figure 15c show the attitude estimation performance, in large extent, is still maintained.
Figure 15d shows the gyro bias estimation error remains small. The same goes the estimates of the ωe(t)

(Figure 15e). The LF heading estimates are seen in Figure 15b relative the estimated heading from Σ1.

6. CONCLUDING REMARKS

A marine vessel wave-filtering strategy for INS aided by triple-redundant position and heading
reference systems have been presented. This includes two observers with exponential stability
properties, designed with Lyapunov stability theory. The additional wave filtering is performed
with five time-varying GES observers separating the low-frequency and wave-frequency motion
components of position, linear velocities and heading estimates, respectively obtained from the
INS. The wave filtering is adaptive with respect to the time-varying wave encounter frequency.
Furthermore, triple-redundant sensor monitoring and weighting were performed to monitor the
sensor packages, employing the possibility to exclude faulty measurements.
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Simulations show how the time-varying wave-filtering strategy successfully generates low-
frequency estimates from the noisy measurements. In addition, the IMU based triple-redundant-
sensor monitoring and weighting scheme, proposed in this paper, proved to be successful in
detecting and estimating realistic sensor errors. Also fault tolerance related to position reference
loss is achieved since heading was maintained independent of position.

A. PROOF OF LEMMA 1

Since A(t) is time-varying, the rank condition for observability does not directly apply.
Observability for time-varying system can, among others, be obtained through calculating the
observability co-distribution applying Lie derivatives L0, L1, . . . , Ln−1 for a system of dimension
n. See, e.g. Nijmeijer and Schaft [37, Ch. 3.1] for details.

Theorem 3.32 of Nijmeijer and Schaft [37, Ch. 3.1] entails that the pair {A(t),C} is uniformly
observable if and only if the observability co-distribution, dO has full rank, e.i

rank(dO) = n (50)

for all t ≥ 0.
The observability co-distribution takes the form of

dO =

L0(t)
L1(t)
L2(t)

 =

 C
CA(t)

CA2(t) +CȦ(t)

 (51)

=

 0 1 1
−ω2

e(t) −2λωe(t) 0
2λω3

e(t)− 2ωe(t)ω̇e(t) 4λ2ω2
e(t)− 2ωe(t)− 2λ 0

 . (52)

Suppose that, at an instance in time, ω̇e(t) = λω2
e(t) such that

dO =

 0 1 1
−ω2

e(t) −2λωe(t) 0
0 4λ2ω2

e(t)− 2ωe(t)− 2λ 0

 . (53)

By investigation of the null space of dO, i.e. dOx = 0, where x is the state vector, yields

x2 + x3 = 0 (54)

−ω2
e(t)x1 − 2λωe(t)x2 = 0 (55)(

4λ2ω2
e(t)− 2ωe(t)− 2λ

)
x2 = 0. (56)

resulting in

eq. (56) implies: x2 = 0,

eq. (54) implies: x3 = −x2 = 0,

eq. (55) implies: x1 =
2λ

ω2
e(t)

x2 = 0

from the properties of 0 < ωe,min ≤ ωe(t) ≤ ωe,max <∞, and that λ > 0 is a constant. Now suppose
that ω̇e(t) = 0. Then,

dO =

 0 1 1
−ω2

e(t) −2λωe(t) 0
2λω3

e(t) 4λ2ω2
e(t)− 2ωe(t)− 2λ 0

 . (57)
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Again, by investigation of the null space, dOx = 0, results in

x2 + x3 = 0 (58)

−ω2
e(t)x1 − 2λωe(t)x2 = 0 (59)

2λω3
e(t)x1 +

(
4λ2ω2

e(t)− 2ωe(t)− 2λ
)
x2 = 0. (60)

The validity of (59)–(60) hold if and only if x1 = x2 = 0 which implies that (58) can only be zero
for x3 = −x2 = 0. Then, since C is constant, ωe(t) is positive and uniformly bounded and λ is a
positive constant, dO cannot take any other form than presented in (53) and (57). Hence, the pair
{A(t),C} is uniformly observable for all t ≥ 0 since

dim null(dO) = 0⇒ rank(dO) = 3,∀t ≥ 0,

for all constellations of dO.

ACKNOWLEDGEMENT

This work has been carried out at the Centre for Autonomous Marine Operations and Systems (AMOS)
and supported by the The Research Council of Norway and Rolls-Royce Marine. The Research Council of
Norway is acknowledged as the main sponsor of AMOS.

References

1. Fossen TI. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd., 2011.
2. Balchen J, Jenssen NA, Sælid S. Dynamic positioning using Kalman filtering and optimal control theory. In the

IFAC/IFIP Symposium On Automation in Offshore Oil Field Operation, Bergen, Norway, 1976; 183—186.
3. Sælid S, Jenssen NA, Balchen JG. Design and analysis of a dynamic positioning system based on the Kalman

filtering and optimal control. IEEE Transactions on Automatic Control 1983; 28(3):331 – 339.
4. Fossen TI, Perez T. Kalman filtering for positioning and heading control of ships and offshore rigs. IEEE Control

Systems Magazine 2009; 29(6):32–46, doi:10.1109/MCS.2009.934408.
5. Vik B, Fossen TI. Semiglobal exponential output feedback control of ships. IEEE Transaction On Control System

Technology 1997; 5(3):360–370, doi:10.1109/87.572132.
6. Lauvdal T, Fossen TI. Robust adaptive ship autopilot with wave filter and integral action. Special Issue on Marine

Systems Control, International Journal of Adaptive Control and Signal Processing 1998; 12(8):605–622, doi:
10.1002/(SICI)1099-1115(199812)12:8<605::AID-ACS516>3.0.CO;2-1.

7. Fossen TI, Strand JP. Passive nonlinear observer design for ships using lyapunov methods: full-scale experiments
with a supply vessel. Automatica 1999; 35(1):3 – 16, doi:10.1016/S0005-1098(98)00121-6.

8. Strand JP, Fossen TI. Nonlinear passive observer design for ships with adaptive wave filtering. New Directions in
Nonlinear Observer Design, LNCIS, vol. 244, Nijmeijer H, Fossen TI (eds.). Springer-Verlag, 1999; 113–134.

9. Torsetnes G, Jouffroy J, Fossen TI. Nonlinear dynamic positioning of ships with gain-scheduled wave filtering.
Proc. IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004, doi:10.1109/CDC.2004.
1429657.

10. Nguyen TD, Sørensen AJ, Quek ST. Design of hybrid controller for dynamic positioning from calm to extreme sea
conditions. Automatica 2007; 43(5):768–785, doi:10.1016/j.automatica.2006.11.017.

11. Brodtkorb AH, Sørensen AJ, Teel A. Increasing the operation window for dynamic positioned vessels using the
concept of hybrid control. Proc. of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic
Engineering, OMAE2014, San Francisco, California, USA, 2014.

12. Hassani V, Sørensen AJ, Pascoal AM, Aguiar A. Multiple model adaptive wave filtering for dynamic positioning
of marine vessels. Proc. of the American Contr. Conf., Fairmont Queen Elizabeth, Montréal, Canada, 2012; 6222–
6228, doi:10.1109/ACC.2012.6315094.

13. Hassani V, Pascoal AM, Sørensen AJ. A novel methodology for adaptive wave filtering of marine vessels:
Theory and experiments. Proc. IEEE Conference on Decision and Control, Florence, Italy, 2013; 6162–6167, doi:
10.1109/CDC.2013.6760863.

14. Hassani V, Sørensen AJ, Pascoal AM. Adaptive wave filtering for dynamic positioning of marine vessels using
maximum likelihood identification: Theory and experiments. Proc of the 9th IFAC Conference on Control
Applications in Marine Systems, Osaka, Japan, 2013, doi:10.3182/20130918-4-JP-3022.00041.

15. Bryne TH, Fossen TI, Johansen TA. Nonlinear observer with time-varying gains for inertial navigation aided by
satellite reference systems in dynamic positioning. IEEE Mediterranean Conference on Control and Automation,
Palermo, Italy, 2014; 1353–1360, doi:10.1109/MED.2014.6961564.

16. Grip HF, Fossen TI, Johansen TA, Saberi A. Nonlinear observer for GNSS-aided inertial navigation with
quaternion-based attitude estimation. Proc. of the American Contr. Conf., Washington, DC, 2013; 272–279, doi:
10.1109/ACC.2013.6579849.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
Prepared using acsauth.cls DOI: 10.1002/10.1002/acs



INERTIAL NAVIGATION SYSTEM WITH ADAPTIVE-WAVE FILTERS 23

17. Lindegaard KP, Fossen TI. A model based wave filter for surface vessels using position, velocity and partial
acceleration feedback. Proc of the 40th IEEE Conference on Decision and Control, 2001; 946–951, doi:10.1109/
.2001.980231.

18. Veksler A, Johansen TA, Skjetne R. Transient power control in dynamic positioning - governor feedforward and
dynamic thrust allocation. Proc. IFAC Conference on Manoeuvring and Control of Marine Craft, Arenzano, Italy,
2012; 158–163, doi:10.3182/20120919-3-IT-2046.00027.

19. Belleter DJ, Galeazzi R, Fossen TI. Experimental verification of a globally exponentially stable nonlinear wave
encounter frequency estimator. Ocean Engineering, Elsevier 2015; 97(15):48–56, doi:10.1016/j.oceaneng.2014.12.
030.

20. Godhavn JM. Adaptive tuning of heave filter in motion sensor. OCEANS ’98 Conf. Proc., vol. 1, Nice, France, 1998;
174–178, doi:10.1109/OCEANS.1998.725731.

21. Bryne TH, Fossen TI, Johansen TA. A virtual vertical reference concept for GNSS/INS applications at the sea
surface. Proc. IFAC Conference on Manoeuvring and Control of Marine Craft, Copenhagen, Denmark, 2015.

22. Grip HF, Fossen TI, Johansen TA, Saberi A. Attitude estimation using biased gyro and vector measurements with
time-varying reference vectors. IEEE Trans. Automat. Contr. 2012; 57(5):1332—1338, doi:10.1109/TAC.2011.
2173415.

23. Mahony R, Hamel T, Pflimlin JM. Nonlinear complementary filters on the special orthogonal group. IEEE Trans.
Automat. Contr. 2008; 53(5):1203–2018, doi:10.1109/TAC.2008.923738.
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