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Abstract— This paper presents an approach to obtain fault
tolerance in the nonlinear longitudinal motion control of an
aircraft. The approach uses an L1 adaptive backstepping
controller and fault-dependent control allocation to obtain such
tolerance. In the nominal fault-free case, only the elevator will
be active. The L1 adaptive backstepping controller provides
some robustness to the system by handling uncertainties,
which is utilized for fault accommodation if a partial fault
occurs. Also, control allocation is used to redistribute control
to other available healthy actuators to make the system fault
tolerant against more severe faults and even to a total loss of
the elevator. Simulations have been conducted on a model of
a Cessna 182 and show excellent results for both the nominal
and faulty scenarios.

Index Terms— Longitudinal motion control, Fixed-wing UAV,
Fault-tolerant control, L1 adaptive backstepping, Control allo-
cation

I. INTRODUCTION

Critical safety issues must be considered when dealing
with aircraft such as unmanned aerial vehicles (UAVs). In
order to minimize risk, comprehensive checks are performed
and meticulous maintenance is done regularly. Failures
nevertheless occur, and actuator and control surfaces have
particularly high criticality. Actuator redundancy can deal
with some of the safety issues for small UAVs and fault-
tolerant control (FTC) strategies can be employed to utilize
redundancy in the actuators.

Many different control techniques have been applied for
safety critical systems to tackle the problem of improving
aircraft reliability. An overview of recent developments of
FTC methods for aircraft is provided in [1], [2] and [3].
Specific fault diagnosis approaches are treated in [4], [5],
[6] and [7] related to control surface fault diagnosis, and
[8] for the airspeed sensor system. Two control techniques,
namely sliding mode control (SMC) [9], [10] and the recent
L1 adaptive control method [11], offer robust properties
against matched uncertainties. The performance of SMC
for attitude control for a fixed-wing UAV is investigated
in [12]. The L1 adaptive control technique was shown in
[13] to be robust against faulty actuators. The L1 adaptive
backstepping control technique (L1-AB) was used in [14]
as the pitch autopilot for an agile missile. The combination
of L1-AB and control allocation (CA) was explored in [15]
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to control an F16 in a fault-free case.

The CA approach can manage the redundancy of an
over-actuated system [16]. CA is based on separating the
control law from the control allocation task in a modular
manner, where the control allocation task decides which
actuator should receive a given control signal. This gives CA
the possibility to be combined with any type of controller
design. The combination is done by designing a controller
to provide a “virtual high-level control” which is mapped to
the actual control signals sent to the actuators. One of the
benefits of using CA for systems where faults can occur, is
that the controller structure does not have to be redesigned in
the case of faults. It has the properties to deal directly with
actuator faults without reconfiguring the controller since the
allocation redistributes the control signal to healthy actuators.

Many small UAVs are not over-actuated and hence using
CA to obtain redundancy in the actuators, as in [1] and [17],
is not possible. Instead, this paper investigates CA of the
forces and moments acting on the aircraft. The paper finds
that it is not possible to maintain all forces and moments
if a fault occurs since the aircraft has only one set of
each control surface. The paper suggests how to prioritize
forces and moments needed to stabilize a UAV where CA
is combined with the L1-AB technique to obtain FTC for
longitudinal UAV motion control [18].

The structure of the paper is as follows: A mathematical
model and assumptions are presented in Section II; Section
III deals with control allocation; Section IV presents control
laws as applied to a fixed-wing UAV; Section V includes
simulation results obtained from the combination of the
control laws and the control allocation; and Section VI
concludes the paper.

II. AIRCRAFT DYNAMICS

Longitudinal aircraft motion is considered, where the state
vector xlon

4
= [θ,Q, α, Vt]

> is defined, with the components
pitch angle θ [rad], pitch rate Q [rad/s], angle of attack α
[rad] and true airspeed Vt [m/s]. A controller is designed to
control the angle of elevator deflection for the longitudinal
nonlinear system. The dynamics of the longitudinal aircraft
model can be stated as [19]:

θ̇ =Q (1)
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Fig. 1: Schematic of an aircraft

IyQ̇ =m̄(Q,α, α̇, Vt, δe)

=q̄S̄c̄

(
cm0 + c∗mαα+ cmδeδe

+
c̄

2Vt

(
c∗mα̇α̇+ c∗mQQ

))
(2)

mVtα̇ =mg cos(θ − α)− T sin(α)− L+mVtQ (3)

mV̇t =T cos(α)−D −mg sin(θ − α), (4)

where m > 0 [kg] represents the mass of the aircraft, g =
9.81 [m/s2] the acceleration of gravity, Iy the y-moment of
inertia, q̄ = 1

2ρV
2
t the dynamic pressure, S̄ wing area, c̄

the mean aerodynamic chord of the wing, ρ air density, δe
deflection angle of the elevator [rad] and T engine thrust
[N], which is modelled as

T =
ηδt
Vt
, (5)

where η and δt are the propeller efficiency [%] and input
power [W]. Furthermore, the relations between the drag D,
lift L, side force Y , roll moment l̄, pitch moment m̄, yaw
moment n̄ and the deflection of the control surfaces are [19]

D = q̄S̄[cD(xlon, δe) + ∆D(xlon, δe)] (6)
L = q̄S̄[cL(xlon, δe) + ∆L(xlon, δe)] (7)
Y = q̄S̄[cY (xlat, δa, δr) + ∆Y (xlat, δa, δr)] (8)
l̄ = q̄S̄b[cl(xlat, δa, δr) + ∆l(xlat, δa, δr)] (9)
m̄ = q̄S̄c̄[cm(xlon, δe) + ∆m(xlon, δe)] (10)
n̄ = q̄S̄b[cn(xlat, δa, δr) + ∆n(xlat, δa, δr)], (11)

where xlat
4
= [φ, ψ, P,R, β]> represents the lateral aircraft

states, b wing span, δa deflection angle of the ailerons and
δr the deflection angle of the rudder. The ∆i(x, δ) terms,
where the index i refers to forces and moments of (6)-
(11), are unmodelled dynamics caused by uncertainty of the
aerodynamic coefficients. It is assumed that ∆i(x, δ) are
unknown but bounded, as

||∆i(x, δ)|| ≤ υi(x, δ), (12)

where υi(x, δ) > 0 is a known function.

A. Assumptions

The control objective is to track a reference signal of
the pitch angle θd, see Section IV. In order to design
this controller, it is assumed that the true airspeed can be
controlled separately and therefore can be neglected from
the pitch controller design.

The angle of attack α is considered to be a function of
time. Furthermore, the angle of attack and true airspeed need
to meet the conditions:

|α| ≤ αmax (13)
|α̇| ≤ α̇max (14)

0 < Vt,min ≤ Vt ≤ Vt,max. (15)

It is assumed that uncertainties only exists in the coefficients
of the pitch moment m̄ and that the aerodynamic coefficients
cm0 and cmδe are perfectly known. For the rest of the
aerodynamic coefficients, the relationship between the real
and considered coefficients is parametrised as

c∗mα = σcmα (16)
c∗mα̇ = ωcmα̇ (17)
c∗mQ = ϕcmQ, (18)

where c∗mi represents the real coefficients, σ ∈ R+ is the
uncertainty associated with the coefficient of pitch moment
with respect to the angle of attack, ω ∈ R+ is the uncertainty
associated with the coefficient of pitch moment with respect
to the derivative of angle of attack, and ϕ ∈ R+ is the
uncertainty associated with the coefficient of pitch moment
with respect to the pitch rate. Additionally, it is assumed
that σ̇ = 0, ω̇ = 0 and ϕ̇ = 0, i.e., that the uncertainties are
constant or slowly varying relative to the aircraft dynamics.

Remark 1: In [21] and [22], it is shown through system
identification that the aerodynamic coefficients cm0 and cmδe
are almost perfectly identified, which gives the basis for
the assumption about these coefficients. In [23], uncertainty
for the control signal and an external disturbance is also
considered.

Using the assumptions together with (6)-(11), the longitu-
dinal motion in (1)-(4) can be written as

θ̇ =Q (19)

IyQ̇ =q̄S̄c̄

(
cm0 + σcmαα+ cmδeδe

+
c̄

2Vt
(ωcmα̇α̇+ ϕcmQQ)

)
. (20)

III. FAULT-DEPENDENT CONTROL ALLOCATION

For the analysis of the control allocation, it is assumed
that only the elevator can be faulty. The partial loss
of actuator effectiveness is a high-severity event and is
commonly occurring in small aircraft. A decrease in the



effectiveness of an actuator is referred to as a partial
actuator loss fault.

The fault on the actuator can be modelled as

δa(t) = W(t)δ(t), (21)

where δa ∈ Rm is the actual control vector, δ ∈ Rm is the
control vector and W(t) represents the effectiveness of the
actuators. The matrix W(t) ∈ R3×3 is defined as

W(t)
4
= diag(w1(t), w2(t), w3(t)) = I−K(t), (22)

where I ∈ R3×3 is the identity matrix and K(t) ∈ R3×3

is the multiplicative fault matrix which is defined for
the aircraft as K(t) = diag(k1(t), k2(t), k3(t)) with
ki(t) ∈ [0, 1], which is associated with the elevator, ailerons
and rudder control surfaces. Here, ki = 0 indicates that the
ith control surface is in a fault-free condition, while ki = 1
indicates that a total loss of effectiveness on the ith control
surface has occurred.

Before the fault is introduced into the control allocation,
it is necessary to determine the nominal angle of deflections
on the control surfaces such that the aircraft can produce
the commanded forces and moments from the controller
in fault-free conditions, see Fig. 3. It should be noted that
the control allocation does not take into account that there
exists uncertainties in the pitch moment and therefore the
following calculation only uses the nominal values of the
aerodynamic coefficients.

Three equations are considered important to derive the
nominal angle of deflections on the control surfaces for the
considered forces and moments. These are the lift force,
roll moment and yaw moment. The lift force is considered
important since otherwise the aircraft is not able to stay
airborne. It is desirable to stabilize the aircraft by keeping a
certain moment when the aircraft is rolling or yawing, which
is the reason for choosing the roll and yaw moment. Omitting
the uncertainties ∆i(x, δ), the lift force, roll moment and
yaw moment in (7), (9) and (11) can be written as

L = q̄S̄

(
cL(xlon) +

∂cL
∂δe

δe

)
(23)

l̄ = q̄S̄b

(
cl(xlat) +

∂cl
∂δa

δa +
∂cl
∂δr

δr

)
(24)

n̄ = q̄S̄b

(
cn(xlat) +

∂cn
∂δa

δa +
∂cn
∂δr

δr

)
. (25)

The required angles of deflections on the control surfaces in
the nominal cases are then determined to be:

δe,nom = 1

q̄S̄
∂cL
∂δe

(
L− q̄S̄cL(xlon)

)
, (26)

δa,nom = 1

q̄S̄b
∂cl
∂δa

(
l̄ − q̄S̄b

(
cl(xlat) + ∂cl

∂δr
δr

))
, (27)

δr,nom =
1

q̄S̄b
(
∂cl
∂δa

∂cn
∂δr
− ∂cl

∂δr
∂cn
∂δa

) (
∂cn
∂δa

(
q̄S̄bcl(xlat)

−l̄
)

+
∂cl
∂δa

(
n̄− q̄S̄bcn(xlat)

))
, (28)

where it is assumed that the aerodynamic coefficients
∂cl
∂δa

, ∂cl
∂δr

, ∂cn
∂δa

and ∂cn
∂δr

are constant and nonzero around
a stationary condition. This assumption is based on the
measurements of various aircraft in a wind tunnel [20].

For the CA technique, the limitation on the angle of
deflection on δi is considered as

δi,min ≤ δi ≤ δi,max, (29)

where δi,min < 0 and δi,max > 0, and where the index i
refers to the elevator, ailerons or rudder, respectively.

A. Fault on the Elevator

A fault on the elevator is introduced to the system. To
compensate for loss of effectiveness on the elevator δe when
a partial-loss fault occurs, the angle of deflection for the
reconfigured ailerons δa is recalculated for the drag force,
lift force and pitch moment. Since it is the elevator that is
faulty, it is desirable to control the pitch moment. This will
of course affect the other inputs in the longitudinal system.
The recalculation of the angle of deflection for the ailerons
δa is a function of effectiveness on the elevator δe, where the
goal is to maintain the pitch moment, which can be stated
as

δa =
1

q̄S̄c̄∂cm∂δa

(
m̄− q̄S̄c̄

(
cm(xlon) +

∂cm
∂δe

δew1(t)

))
.

(30)

The fault-dependent control allocation approach is tested
with the set point values from δi,min to δi,max for the
elevator δe for the nominal case and with an effectiveness
loss on the elevator. The inputs for the test are the nominal
and not the actual angle of deflection on the elevator δe,nom
and effectiveness of the elevator.

The calculated pitch moments for both the nominal case
and the case where the elevator has lost 50%, 70%, 90% or
100% of its effectiveness are displayed as plots in Fig. 2.
This figure also displays the difference between the nominal
and faulty cases. From Fig. 2, it can be determined from
which set point it is possible to maintain the same pitch
moment by compensating the loss of the elevator with the
ailerons. The span where the error is zero will decrease with
the effectiveness of the elevator.

This allocation method using only the ailerons to
compensate for the loss of effectiveness on the elevator is
not the most effective solution to the allocation problem,
but gives a description of the performance of the allocation
by using only the ailerons if elevator fault has occurred.
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Fig. 2: Plots of the nominal, faulty and difference between
the nominal and faulty cases for the pitch moment

Recalculating the angle of deflection for the elevator δe
to compensate for some of the lost effectiveness before
recalculating the angle of deflection on the ailerons δa
shows less stress on the ailerons. This gives the opportunity
to maintain the same forces and moments for a wider range
and therefore is a better solution to the allocation problem.
The recalculated angle of deflection on the elevator δe
after computations is δe =

δe,nom
w1+ε , where ε is a small

positive constant. This new approach has been tested in
the same manner as the former approach and gives a small
improvement where the pitch moment of the normal and
faulty cases are the same.

It is assumed in this paper that we have perfect knowledge
of the faults, which is not the case in real-world systems.
However, W(t) from (22) can be obtained by a separate
fault identification scheme, see e.g. [1], [3], [8] and [24].
Also in order to compensate for the uncertainties that may
occur in the relationship between the control surfaces and the
actual forces and moments, L1-AB control is implemented.
This will be discussed further in the following section.

IV. L1 ADAPTIVE BACKSTEPPING CONTROL
In this section, a step-by-step design procedure for the

design of an L1 adaptive backstepping controller will be
presented. It is assumed that both the pitch angle θ and
pitch rate Q can be measured.

The control objective is to make |θ(t) − θd(t)| → 0,
where θd(t) is the desired pitch angle, which is C2 and

bounded. This reference signal is typically defined by a
human or generated by a guidance system. For notational
simplicity, the time t is omitted in the following.

The design of the L1 adaptive backstepping controller is
divided into two stages. The first stage concerns the design
of the adaptation laws and the second stage of the control
law. The design is inspired by the approach in [14].

A. State Predictor and Adaptive Laws

First, we discuss the state predictor design. The prediction
errors θ̃ and Q̃ are defined as

θ̃
4
= θ̂ − θ, Q̃

4
= Q̂−Q, (31)

where θ̂, Q̂, θ and Q represent the estimated pitch angle,
estimated pitch rate, real pitch angle and real pitch rate, re-
spectively. The desired prediction error dynamics are chosen
to be

˙̃
θideal = −L1θ̃,

˙̃Qideal = −L2Q̃,

to ensure that their origins are exponentially stable, where
the convergence rate is defined through the positive gains
L1 > 0 and L2 > 0. From the latter, the state prediction
dynamics are given as

˙̂
θ =− L1θ̃ +Q (32)

˙̂
Q =− L2Q̃+

q̄S̄c̄

Iy

(
cm0 + σ̂cmαα+ cmδeδe

+
c̄

2Vt
(ω̂cmα̇α̇+ ϕ̂cmQQ)

)
, (33)

where σ̂, ω̂ and ϕ̂ are the estimates of uncertainties on the
aerodynamic coefficients. The design of adaptation laws for
the uncertainties is based on Lyapunov stability analysis.
Substituting (19), (20), (32) and (33) into (31), the prediction
error dynamics become

˙̃
θ =− L1θ̃ (34)

˙̃Q =− L2Q̃+
q̄S̄c̄

Iy

(
σ̃cmαα+

c̄

2Vt
(ω̃cmα̇α̇

+ϕ̃cmQQ)

)
. (35)

Let’s consider the positive definite Control Lyapunov Func-
tion (CLF)

Vpred =
1

2

(
1

γσ
σ̃2 +

1

γω
ω̃2 +

1

γϕ
ϕ̃2

)
+

1

2
θ̃2 +

1

2
Q̃2, (36)

where γσ , γω and γϕ are the adaptation gains for the
estimation of σ, ω and ϕ, respectively. Taking the time



derivative of (36) yields

V̇pred =
1

γσ
σ̃ ˙̂σ +

1

γω
ω̃ ˙̂ω +

1

γϕ
ϕ̃ ˙̂ϕ− L1θ̃

2 − L2Q̃
2

+ Q̃

(
q̄S̄c̄

Iy

(
σ̃cmαα+

c̄

2Vt
(ω̃cmα̇α̇

+ϕ̃cmQQ)

))
=− L1θ̃

2 − L2Q̃
2 + σ̃

(
1

γσ
˙̂σ + Q̃

q̄S̄c̄

Iy
cmαα

)
+ ω̃

(
1

γω
˙̂ω + Q̃

q̄S̄c̄

Iy

c̄

2Vt
cmα̇α̇

)
+ ϕ̃

(
1

γϕ
˙̂ϕ+ Q̃

q̄S̄c̄

Iy

c̄

2Vt
cmQQ

)
. (37)

To eliminate the uncertainty terms σ̃, ω̃ and ϕ̃, the adaptive
update laws are then chosen as

˙̂σ = γσProj
(
σ̂,−Q̃ q̄S̄c̄

Iy
cmαα

)
(38)

˙̂ω = γωProj
(
ω̂,−Q̃ q̄S̄c̄

Iy

c̄

2Vt
cmα̇α̇

)
(39)

˙̂ϕ = γϕProj
(
ϕ̂,−Q̃ q̄S̄c̄

Iy

c̄

2Vt
cmQQ

)
, (40)

where Proj(·) denotes the projection operator [11]. Then (37)
becomes

V̇pred = −L1θ̃
2 − L2Q̃

2 ≤ 0 ∀θ̃, Q̃ 6= 0. (41)

B. Control Law

We start by defining the error variables z1 and z2 as

z1
4
= θ − θd (42)

z2
4
= Q− α1, (43)

where α1 is a stabilising function which is to be designed.
Consider the positive definite CLF

Vctrl,1 =
1

2
z2

1 , (44)

whose derivative with respect to time along the z1 dynamics
becomes

V̇ctrl,1 = z1ż1

= z1(θ̇ − θ̇d)
= z1(Q−Qd). (45)

By substituting (43) into (45), the CLF becomes

V̇ctrl,1 = z1(z2 + α1 −Qd)
= z1z2 + z1(α1 −Qd).

The stabilising function can now be chosen as

α1 = −K1z1 +Qd, (46)

where K1 > 0, which gives

V̇ctrl,1 = −K1z
2
1 + z1z2. (47)

The z2 dynamics can be described as

ż2 =Q̇− α̇1

=
q̄S̄c̄

Iy

(
cm0 + σcmαα+ cmδeδe

+
c̄

2Vt
(ωcmα̇α̇+ ϕcmQQ)

)
− α̇1.

The CLF is then extended to

Vctrl,2 =
1

2
z2

2 + Vctrl,1, (48)

such that it includes both z1 and z2. The derivative of the
new CLF is

V̇ctrl,2 =z2ż2 + V̇ctrl,1

=z2

(
q̄S̄c̄

Iy

(
cm0 + σcmαα+ cmδeδe

+
c̄

2Vt
(ωcmα̇α̇+ ϕcmQQ)

)
− α̇1 + z1

)
−K1z

2
1 .

The control law can now be chosen as

δe =− 1

cmδe

(
cm0 + σ̂cmαα+

c̄

2Vt
(ω̂cmα̇α̇

+ϕ̂cmQQ) +
Iy
q̄S̄c̄

(z1 − α̇1 +K2z2)

)
, (49)

where K2 > 0, which leads to

V̇ctrl,2 =−K2z
2
2 −K1z

2
1 + z2

(
q̄S̄c̄

Iy

(
σ̃cmαα

+
c̄

2Vt
(ω̃cmα̇α̇+ ϕ̃cmQQ)

))
. (50)

For sufficiently large K1 and K2, the system is stable since
the estimates are bounded. Vctrl,2 shows is input-to-state
stable (ISS).

The adaptation of the uncertainties may contain high-
frequency signals. To avoid introducing such frequencies into
the control input, a lowpass filter is introduced to the control
signals such that

δe,c = C(s)δe,

where

C(s) =
k

s+ k
,

is applied to the control signal and the gain k > 0 represents
a design parameter of the lowpass filter.

V. SIMULATION RESULTS

This section starts by stating the aircraft model parameters,
initial conditions and control parameters used in the Matlab
simulations. Subsequently, the simulation results are shown
and discussed.



A. Simulation Setup
The aircraft model of a Cessna 182 from [20] will be

used to demonstrate the effectiveness and fault tolerance
of the proposed technique. The aerodynamic constants for
the reconfigured ailerons are chosen to be cLδa = 2cLδe
and cmδa = 1

2cmδe. The initial conditions of the aircraft
correspond to that it is flying straight and level, which
means Q̇ = θ̇ = α̇ = V̇t = 0 and θ = α = −0.0036. The
uncertainties are chosen as σ = 0.7, ω = 1.3 and ϕ = 0.9,
whose values are based on the result of system identification
in [22].

Table I shows the parameters for the control law, state
predictor and the adaptation laws. These were obtained after
iterative tuning.

Control law State predictor Adaptation gains
K1 : 0.9 L1 : 0.5 γσ : 4000
K2 : 130 L2 : 100 γω : 4000

γϕ : 4000

TABLE I: Controller, state predictor and adaptation gains

A general schematic of the proposed actuator FTC technique
is displayed in Fig. 3.

PI-Controller

Adaptive ControllerForce/moment

Control Allocation

Effectiveness
δae (t) = w1(t)δe(t)

UAV

δe,c(t)

L, D, m̄
δe(t)

δa(t)

δae (t)

xlon(t)

Vt(t)δt(t)

Fig. 3: Schematic of the actuator FTC implementation

Here, the effectiveness matrix W(t) from (22) is assumed to
be known. To control the airspeed during the simulation, a
PI-controller has been implemented in a separate loop with
gains KP = 0.3 and Ki = 1.

B. Simulation Results
The simulation starts at an altitude and true airspeed of

1524 [m] and 67 [m/s], respectively. The aircraft starts to
pitch up to 10 [deg] at 0 [s] and maintains such a pitch
angle. It is also desirable to lower the true airspeed to the
optimal climb speed of 50 [m/s]. The elevator actuator fault
is set to occur at 30 [s]. In the following, the subscript ff
and f refer to the fault-free and faulty system, respectively.
Additionally, the system has been tested without having the
FTC enabled, which is referred to f0 in the subscript. Fig. 4
illustrates the performance of the L1 adaptive backstepping
controller for both a fault-free and faulty case.
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(c) Aircraft pitch angle and rate errors

Fig. 4: Aircraft performace for both the fault-free and faulty
cases

1) Fault-free case:
Fig. 4a shows a good pitch tracking performance, while

the PI speed controller needs more time to reach its desired
value. Since there is no fault, there is no control signal



distribution to the ailerons as shown in Fig. 4b. The tracking
errors of Fig. 4c show that the aircraft tracks the pitch
rate fast but need some more time for the pitch angle to settle.

2) 100% Effective Loss of the Elevator without FTC:
In the faulty case, the elevator goes to zero at 30 sec. The

states in Fig. 4a show that the aircraft is no longer able to
track the desired pitch angle and true airspeed after the fault
has occurred. From Fig. 4b it can be concluded that this
scenario has a high risk of going into an irreversible stall
or spin. Since the elevator is stuck, there is no redundancy
and the engine is already producing the maximum amount
of power.

3) 100% Effective Loss of the Elevator with FTC:
Here, Fig. 4a shows only a change in angle of attack α

when the fault occurs. By inspecting the inputs in Fig. 4b,
the reason for this change in angle of attack is due to the
amount of power the engine applies. Additionally, Fig. 4b
shows that when the effect of the elevator is lost, the ailerons
become active since the control signal is reallocated to them.
Comparing the results in Fig. 4c of the fault-free and faulty
cases shows no degradation in the performance when the
elevator is faulty as long as the fault-tolerant controller is
active.

VI. CONCLUSION

This paper has presented an approach to obtain fault
tolerance in the nonlinear longitudinal motion of an aircraft.
The proposed approach combines L1 adaptive backstepping
control with fault-dependent control allocation, and allows
the controller to operate in faulty conditions where the main
actuator, which is the elevator, experiences a partial or total
loss of its effectiveness. Since adaptive control can handle
uncertainties, it provides some robustness to the system
such that it can be controlled even if a partial fault has
occurred. By adding control allocation that redistributes
the control signal to a redundant control input, the system
becomes fault tolerant against a total effective loss of
the main actuator. Simulations conducted on a model
of a Cessna 182 indicate excellent tracking performance
for both the nominal and faulty cases when the FTC is active.

Future work includes a comparison of the performance
between the proposed adaptive control algorithm and a robust
control algorithm. Additionally, it is desirable to experimen-
tally verify the results by implementing the methods on a
hardware-in-the-loop simulator. To implement the proposed
method in practice, it is also required to consider how to
identify the fault and measure its magnitude, see e.g. [1],
[3], [8] and [24].
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