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The quark-meson model is often used as an effective low-energy model for QCD to study the chiral
transition at finite temperature T and baryon chemical potential μB. The parameters in the quark-meson
model can be found by expressing them in terms of the sigma mass mσ , the pion mass mπ , the constituent
quark mass mq and the pion decay constant fπ . In practice, this matching is done at tree level, which is
inconsistent once loop effects of the effective potential are taken into account. We show how to properly
perform the matching in the quark-meson model by using the on-shell and the minimal subtraction
renormalization schemes relating the physical masses and the pion decay constant to the running mass
parameter and couplings. We map out the phase diagram in the μB–T plane and compare our results with
other approximations.
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I. INTRODUCTION

The first phase diagram of quantum chromodynamics
(QCD) appeared in the 1970s, where it was suggested that it
consists of a confined low-temperature phase of hadrons
and a deconfined high-temperature phase of quarks and
gluons. Since the appearance of this phase diagram, large
efforts have been made to map it out in detail. The only
existing first-principles method used to calculate the
properties of finite-temperature QCD below the chiral
transition are lattice simulation. However, due to the sign
problem, it is difficult to perform lattice simulations at finite
baryon chemical potential. Mapping out the phase diagram
is therefore based on model calculations, in particular in the
region of low temperature and large baryon chemical
potential. See Refs. [1,2] for reviews.
The Oð4Þ-symmetric linear sigma model (LSM) is

probably the simplest low-energy model of QCD. The
degrees of freedom are the pions and the sigma particle.
Often this model is augmented by an isospin doublet of
fermions. In the old days, the fermionic doublet was
identified with the neutron and proton. Now the isospin
doublet consists of a u and a d quark. This extended model
is referred to as the quark-meson (QM) model or the linear
sigma model with quarks (LSMq). One may object to
having both quark and mesonic degrees of freedom present
at the same time. At very low temperatures, this is a valid
objection since quarks are confined. This has led to the
introduction of the Polyakov loop in these models in order

to mimic confinement in QCD in a statistical sense by
coupling the chiral models to a constant SUðNcÞ back-
ground gauge field Aa

μ [3]. One can express this background
gauge field in terms of the complex-valued Polyakov loop
variable Φ and consequently the effective potential
becomes a function of the expectation value of the chiral
condensate and the expectation value of the Polykov loop.
The latter then serves as an approximate order parameter
for confinement [4]. Finally, one adds the contribution to
the free energy density from the gluons via a phenomeno-
logical Polyakov loop potential [5,6]. At finite temperature
and chemical potential, the (P)QM is often treated in the
large-Nc limit which implies that one takes into account
the one-loop correction to the effective potential from the
fermions, but treats the mesonic degrees of freedom at tree
level [7]. In some cases, one also neglects the vacuum
fluctuations from the fermions and therefore renormaliza-
tion issues altogether. This is sometimes referred to as the
“no-sea” approximation.
The Lagrangian of the QMmodel has several parameters

that can be expressed in terms of the physical quantitiesmσ,
mπ , mq, and fπ . In this way one can fix the parameters of
the model such that it reproduces the vacuum physics
correctly. However, in most renormalization schemes,
the tree-level relations between the parameters in the
Lagrangian and physical quantities receive radiative cor-
rections. It is therefore inconsistent to use tree-level values
for these parameters in for example the calculation of the
effective potential. While the on-shell parameters take their
tree-level values, the parameters in MS scheme are running
and depend on the renormalization scale Λ, which has been
introduced to keep the canonical dimension of the loop
integrals. The idea is then to calculate the counterterms in
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the on-shell scheme as well as in the MS scheme and relate
the renormalized parameters in the two. The calculation
of the effective potential is then carried out using (modi-
fied) minimal subtraction and the relations between the
running parameters and the on-shell parameters, i.e. physi-
cal quantities are then used as input. This procedure has
been well-known for decades by people doing loop
calculations in the standard model, [8–11], but seems
not to have been appreciated by practitioners in finite-
temperature field theory, see however Refs. [12–16].
The paper is organized as follows. In Sec. II we briefly

discuss the quark-meson model. We also calculate the self-
energies and extract the counterterms in the on-shell
scheme. In Sec. III, we derive relations between the
physical quantities and the running parameters. In
Sec. IV, we apply our results to the quark-meson model
to map out the phase diagram in the μ–T plane. In the
appendix, we list the integrals that are necessary in our
calculations.

II. QUARK-MESON MODEL

In this section we briefly discuss the quark-meson model
and calculate the one-loop self-energies in the large-Nc
limit. We also derive the counterterms in the on-shell
scheme.

A. Lagrangian and self-energies

The Lagrangian of the two-flavor quark-meson model in
Minkowski space is

L ¼ 1

2
½ð∂μσÞ2 þ ð∂μπÞ2� −

1

2
m2ðσ2 þ π2Þ

−
λ

24
ðσ2 þ π2Þ2 þ hσ þ ψ̄

�
i∂ þ

�
μþ 1

2
τ3μI

�
γ0

− gðσ þ iγ5τ · πÞ
�
ψ ; ð1Þ

where ψ is a color Nc-plet, a four-component Dirac spinor
as well as a flavor doublet

ψ ¼
�
u

d

�
: ð2Þ

Moreover, μB ¼ 3μ ¼ 3
2
ðμu þ μdÞ and μI ¼ ðμu − μdÞ are

the baryon and isospin chemical potentials expressed
in terms of the quark chemical potentials μu and μd, τi
(i ¼ 1, 2, 3) are the Pauli matrices in flavor space, and
π ¼ ðπ1; π2; π3Þ.
Apart from the global SUðNcÞ symmetry, the Lagrangian

(1) has a Uð1ÞB × SUð2ÞL × SUð2ÞR symmetry for h ¼ 0
and a Uð1ÞB × SUð2ÞV symmetry for h ≠ 0. When
μu ≠ μd, this symmetry is reduced to Uð1ÞB × UI3Lð1Þ ×
UI3Rð1Þ for h ¼ 0 and Uð1ÞB × UI3ð1Þ for h ≠ 0. In the

remainder of this paper we take h ¼ 0, i.e. we work in the
chiral limit. We also set μI ¼ 0.
In the vacuum, the sigma field acquires a nonzero

expectation value ϕ0. We can therefore write

σ ¼ ϕ0 þ ~σ; ð3Þ
where ~σ is a quantum fluctuating field with a zero expect-
ation value. At tree level, the masses of the sigma, the pion,
and the quark are

m2
σ ¼ m2 þ λ

2
ϕ2
0; ð4Þ

m2
π ¼ m2 þ λ

6
ϕ2
0; ð5Þ

mq ¼ gϕ0: ð6Þ
The tree-level potential V tree is

V tree ¼
1

2
m2ϕ2

0 þ
λ

24
ϕ4
0; ð7Þ

and whose minimum is being identified with the pion decay
constant fπ . The relations (4)–(6) can be solved with
respect to the parameters of the Lagrangian (1). This yields

m2 ¼ −
1

2
ðm2

σ − 3m2
πÞ; ð8Þ

λ ¼ 3
ðm2

σ −m2
πÞ

f2π
; ð9Þ

g2 ¼ m2
q

f2π
: ð10Þ

The Eqs. (8)–(10) are the parameters determined at tree
level and are often used in practical calculations. However,
as pointed out in the introduction, this is inconsistent in
calculations that involve loop corrections unless one uses
the on-shell renormalization scheme. In the on-shell
scheme, the divergent loop integrals are regularized using
dimensional regularization, but the counterterms are chosen
differently from the minimal subtraction scheme. The
counterterms in the on-shell scheme are chosen so that
they exactly cancel the loop corrections to the self-energies
and couplings evaluated on shell, and as a result the
renormalized parameters are independent of the renormal-
ization scale and satisfy the tree-level relations (8)–(10).
We need to introduce the counterterms for the parameters

in the Lagrangian (1), δm2, δλ, and δg2, the wave function
counterterms δZσ, δZπ , and δZψ . We then write

σB ¼
ffiffiffiffiffiffi
Zσ

p
σ; πiB ¼

ffiffiffiffiffiffi
Zπ

p
πi; ð11Þ

ψB ¼ ffiffiffiffiffiffi
Zψ

p
ψ ; m2

B ¼ Zmm2; ð12Þ
λB ¼ Zλλ; g2B ¼ Zg2g

2; ð13Þ
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where Zσ ¼ 1þδZσ etc. The counterterms δm2, δλ, and δg2

are expressed in terms of the counterterms δm2
σ , δm2

π , δmq,
and δf2π . From Eqs. (4)–(6), using Eqs. (11)–(13), one finds

δm2 ¼ −
1

2
ðδm2

σ − 3δm2
πÞ; ð14Þ

δλ ¼ 3
δm2

σ − δm2
π

f2π
− λ

δf2π
f2π

; ð15Þ

δg2 ¼ δm2
q

f2π
− g2

δf2π
f2π

: ð16Þ

In the large-Nc limit δmq ¼ 0 and (16) directly relates δg2

and δf2π. In this limit there are also no loop corrections
to the pion-quark vertex, which means that the associated
counterterms must cancel as well, leading to δg2 ¼
−g2δZπ . Together with (16) we can rewrite (15) as

δλ ¼ 3
δm2

σ − δm2
π

f2π
−λδZπ: ð17Þ

In the Feynman diagrams below, a solid line represents a
sigma, a dashed line represents a pion, and the solid line
with an arrow represents a quark. We work in the large-Nc
limit, which implies that we are taking into account only
fermion loops in the self-energies. The one-loop Feynman
diagrams contributing to the self-energy of the sigma are
shown in Fig. 1.
The corresponding contributions to the sigma self-

energy are given by

Σσðp2Þ ¼ −8g2Nc

h
Aðm2

qÞ −
1

2
ðp2 − 4m2

qÞBðp2Þ
i

þ 4λgϕ0Ncmq

m2
σ

Aðm2
qÞ; ð18Þ

where the integrals Aðm2Þ and Bðp2Þ are defined in
Appendix A.
The diagrams contributing to the self-energy of the pion

are shown in Fig. 2.
The corresponding contributions to the pion self-energy

are given by

Σπðp2Þ ¼ −8g2Nc

h
Aðm2

qÞ −
1

2
p2Bðp2Þ

i
þ 4λgϕ0Ncmq

3m2
σ

Aðm2
qÞ: ð19Þ

The counterterm diagrams are shown in Fig. 3.
We do not need the quark self-energy since it is of order

N0
c. Thus Zψ ¼ 1 and δmq ¼ 0 at this order.
The one-loop diagram that contributes to the one-point

function together with the counterterm are shown in Fig. 4.
It reads

δΓð1Þ ¼ −8g2NcAðm2
qÞϕ0 þ iδt; ð20Þ

where δt is the counterterm for the tadpole, which can be
expressed in terms of the other counterterms.

B. On-shell renormalization conditions

The inverse propagator for the sigma or pion can be
written as

p2 −m2
σ;π − iΣσ;πðp2Þ þ counterterms: ð21Þ

In the on-shell scheme, the physical mass is equal to the
renormalized mass in the Lagrangian, i.e.m ¼ mpole.

1 Thus
we can write

FIG. 1. One-loop self-energy diagrams for the sigma particle.

FIG. 2. One-loop self-energy diagrams for the pion.

FIG. 3. Counterterm for the two-point functions for the sigma
and pion.

FIG. 4. Tadpole diagram for the sigma particle and the
counterterm.

1In defining the mass, we ignore the imaginary parts of the
self-energy.
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Σosðp2 ¼ m2
σ;πÞ þ counterterms ¼ 0: ð22Þ

The residue of the propagator on shell equals unity, which
implies

∂
∂p2

Σσ;πðp2Þ
����
p2¼m2

σ;π

þ counterterms ¼ 0: ð23Þ

The equation of motion is that the one-point function
vanishes. At tree level, the equation of motion is
t ¼ m2

πϕ0 ¼ 0, and in the broken phase the pion mass is
zero in accordance with Goldstone’s theorem. The renorm-
alization condition is then

δΓð1Þ ¼ 0: ð24Þ
The counterterms that correspond to Figs. 3 and 4 are
given by

Σct
σ ðp2Þ ¼ i½δZσðp2 −m2

σÞ − δm2
σ�; ð25Þ

Σct
π ðp2Þ ¼ i½δZπðp2 −m2

πÞ − δm2
π�; ð26Þ

Σct2
σ ¼ 3Σct2

π ¼ iλϕ2
0

2m2
σ
δm2

π; ð27Þ

δt ¼ −ϕ0δm2
π:

The on-shell renormalization constants are given by the
self-energies and their derivatives evaluated on shell.
Combining Eqs. (22)–(26), we find

δm2
σ ¼ −iΣσðm2

σÞ; ð28Þ
δm2

π ¼ −iΣπð0Þ; ð29Þ

δZσ ¼ i
∂

∂p2
Σσðp2Þ

����
p2¼m2

σ

; ð30Þ

δZπ ¼ i
∂

∂p2
Σπðp2Þ

����
p2¼m2

π

: ð31Þ

From Eqs. (18) and (19), we find2

δm2
σ ¼ 8ig2Nc

�
Aðm2

qÞ −
1

2
ðm2

σ − 4m2
qÞBðm2

σÞ
�
; ð32Þ

δm2
π ¼ 8ig2NcAðm2

qÞ;
δZσ ¼ 4ig2Nc½Bðm2

σÞ þ ðm2
σ − 4m2

qÞB0ðm2
σÞ�;

δZπ ¼ 4ig2NcBð0Þ: ð33Þ
Using Eqs. (14)–(16), we find expressions for the counter-
terms δm2

OS, δλOS, and δg2OS,

δm2
OS ¼ 8ig2Nc

�
Aðm2

qÞ þ
1

4
ðm2

σ − 4m2
qÞB0ðm2

σÞ
�

¼ δm2
div þm2

4g2Nc

ð4πÞ2
�
log

�
Λ2

m2
q

�
þ 4m2

q

m2
σ
þ
�
1 −

4m2
q

m2
σ

�
F0ðm2

σÞ
�
; ð34Þ

δλOS ¼ −
12ig2Nc

f2π
ðm2

σ − 4m2
qÞBðm2

σÞ − 4iλg2NcBð0Þ

¼ δλdiv þ
12g2Nc

ð4πÞ2
m2

σ

f2π

��
2 −

4m2
q

m2
σ

�
log

�
Λ2

m2
q

�
þ
�
1 −

4m2
q

m2
σ

�
Fðm2

σÞ
�
;

δg2OS ¼ −4ig4NcBð0Þ ¼ δg2div þ
4g4Nc

ð4πÞ2 log

�
Λ2

m2
q

�
; ð35Þ

δZOS
σ ¼ δZσ;div −

4g2Nc

ð4πÞ2
�
log

�
Λ2

m2
q

�
þ Fðm2

σÞ þ ðm2
σ − 4m2

qÞF0ðm2
σÞ
�
; ð36Þ

δZOS
π ¼ δZπ;div −

4g2Nc

ð4πÞ2 log

�
Λ2

m2
q

�
; ð37Þ

where Fðm2Þ and F0ðm2Þ are defined in Appendix A, and the divergent quantities are

δm2
div ¼ m2

4g2Nc

ð4πÞ2ϵ ; ð38Þ

2The self-energies are without the tadpole contributions.
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δλdiv ¼
8g2Nc

ð4πÞ2ϵ ðλ − 6g2Þ; ð39Þ

δg2div ¼
4g4Nc

ð4πÞ2ϵ ; ð40Þ

δZσ;div ¼ δZπ;div ¼ −
4g2Nc

ð4πÞ2ϵ : ð41Þ

The divergent parts of the counterterms are the same in the
two schemes, i.e. δm2

div ¼ δm2

MS
and so forth.

III. RELATIONS BETWEEN PARAMETERS IN
THE TWO SCHEMES

Since the bare parameters are independent of the
renormalization scheme, we can immediately write down

the relations between the renormalized parameters in the
on-shell and MS schemes. We find

m2

MS
¼ ZOS

m

ZMS
m

m2 ≈ m2 þ δm2
OS − δm2

MS
; ð42Þ

λMS ¼
ZOS
λ

ZMS
λ

λ ≈ λþ δλOS − δλMS; ð43Þ

g2
MS

¼
ZOS
g2

ZMS
g2

g2 ≈ g2 þ δg2OS − δg2
MS

: ð44Þ

Using Eqs. (34)–(35), we find the running parameters in the
MS scheme

m2

MS
¼ m2 þ 8ig2Nc

�
Aðm2

qÞ þ
1

4
ðm2

σ − 4m2
qÞBðm2

σÞ
�
− δm2

MS

¼ −
1

2
m2

σ

�
1þ 4m2

qNc

ð4πÞ2f2π

�
log

�
Λ2

m2
q

�
þ 4m2

q

m2
σ
þ
�
1 −

4m2
q

m2
σ

�
Fðm2

σÞ
�	

; ð45Þ

λMS ¼ λ − 4iλg2Nc

��
1 −

4m2
q

m2
σ

�
Bðm2

σÞ þ Bð0Þ
�
− δλMS

¼ 3m2
σ

f2π

�
1þ 4m2

qNc

ð4πÞ2f2π

��
2 −

4m2
q

m2
σ

�
log

�
Λ2

m2
q

�
þ
�
1 −

4m2
q

m2
σ

�
Fðm2

σÞ
�	

; ð46Þ

g2
MS

¼ g2 − 4ig4NcBð0Þ − δg2
MS

¼ m2
q

f2π

�
1þ 4m2

qNc

ð4πÞ2f2π
log

�
Λ2

m2
q

�	
; ð47Þ

where the physical on-shell values are related to the meson
and quark masses given by Eqs. (8)–(10).
The running parameters m2

MS
ðΛÞ, λMSðΛÞ, and g2

MS
ðΛÞ

satisfy a set of renormalization group equations, which in
the large-Nc limit are

Λ
dm2

MS
ðΛÞ

dΛ
¼

8m2

MS
ðΛÞg2

MS
ðΛÞNc

ð4πÞ2 ; ð48Þ

Λ
dg2

MS
ðΛÞ

dΛ
¼

8g4
MS

ðΛÞNc

ð4πÞ2 ; ð49Þ

Λ
dλMSðΛÞ

dΛ
¼ 16Nc

ð4πÞ2 ½λMSðΛÞg2MS
ðΛÞ−6g4

MS
ðΛÞ�; ð50Þ

The solutions to Eqs. (48)–(50) are

m2

MS
ðΛÞ ¼ m2

0

1 − 4g2
0
Nc

ð4πÞ2 log
Λ2

m2
q

; ð51Þ

g2
MS

ðΛÞ ¼ g20

1 − 4g2
0
Nc

ð4πÞ2 log
Λ2

m2
q

; ð52Þ

λMSðΛÞ ¼
λ0 −

48g4
0
Nc

ð4πÞ2 log Λ2

m2
q

ð1 − 4g2
0
Nc

ð4πÞ2 log
Λ2

m2
q
Þ2
; ð53Þ

wherem2
0, g

2
0, and λ0 are the values of the running mass and

couplings at the scale Λ ¼ mq. They are found by evalu-
ating Eqs. (45)–(47) at this scale.
In the Nambu-Jona-Lasinio model, we have the relation

mσ ¼ 2mq [17], while there is no such relation between the
sigma mass and quark mass in the quark-meson model.
However, it is interesting to note that for mσ ¼ 2mq, the
tree-level relation λ ¼ 12g2 is valid at the one-loop level in
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the large-Nc limit; using λ0 ¼ 3 m2
σ

f2π
¼ 12g20, we find

λMSðΛÞ ¼ 12g2
MS

ðΛÞ.

IV. RESULTS AND DISCUSSION

In this section, we calculate the one-loop effective
potential and study the phase diagram. We are working
in the large-Nc limit, which implies that only fermion loops
are taken into account. This is often referred to as the mean-
field approximation. The one-loop contribution to the

effective potential is straightforward to calculate in this
limit and reads

V1 ¼ −4Nc

XZ
fPg

log ½P2 þ Δ2�; ð54Þ

where the sum-integral is defined in Appendix A.
After redefining the field ϕ0 and renormalizing the
mass parameter m2 and coupling constants g2 and λ,
we find

V1−loop ¼
1

2
m2

MS
ðΛÞ Δ2

g2
MS

ðΛÞ þ
λMSðΛÞ
24

Δ4

g4
MS

ðΛÞ þ
2NcΔ4

ð4πÞ2
�
log

Λ2

Δ2
þ 3

2

�

− 4NcT
Z
p
flog ½1þ e−βðE−μÞ� þ log ½1þ e−βðEþμÞ�g; ð55Þ

where μ ¼ μu ¼ μd is the quark chemical potential, and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

p
. Substituting the running parameters

Eqs. (51)–(53) into Eq. (55), the effective potential becomes independent of the renormalization scale Λ and reads

V1−loop ¼ −
1

4
m2

σf2π

�
1þ 4m2

qNc

ð4πÞ2f2π

��
1 −

4m2
q

m2
σ

�
Fðm2

σÞ þ
4m2

q

m2
σ

�	
Δ2

m2
q

þ 1

8
m2

σf2π

�
1 −

4m2
qNc

ð4πÞ2f2π

�
4m2

q

m2
σ

�
log

�
Δ2

m2
q

�
−
3

2

�
−
�
1 −

4m2
q

m2
σ

�
Fðm2

σÞ
�	

Δ4

m4
q

− 4NcT
Z
p
flog½1þ e−βðE−μÞ� þ log½1þ e−βðEþμÞ�g: ð56Þ

In the remainder of the paper, we set Nc ¼ 3.
Moreover, the mass of the sigma particle is not known
very accurately [18]. It is therefore common to vary it
within the range of 400–800 MeV to study the effects on
the phase diagram.
In Fig. 5, we show the normalized tree-level (dashed line)

as well as the one-loop (solid line) effective potential in the
vacuum (μ ¼ T ¼ 0) as a function ofΔ formσ ¼ 600 MeV.
This corresponds to the NJL relation between the sigma
mass and the constituent quark mass, mσ ¼ 2mq. Both
potentials have a minimum at Δ ¼ 300 MeV, but the
one-loop effective potential is significantly deeper.
In Fig. 6 we also show the normalized tree-level (dashed

line) as well as the one-loop (solid line) effective potential in
the vacuum (μ¼T¼0) as a function ofΔ formσ ¼ 800MeV.
Qualitatively, the potential looks the same as in Fig. 5.
In Fig. 7, we show the phase diagram in the μ–T

plane for mσ ¼ 600 MeV. If one excludes the vacuum
fluctuations of the fermions and hence ignores renormal-
ization issues altogether, the model predicts a first-order
transition in the entire μ–T plane. For vanishing chemical
baryon potential μ, universality arguments suggest that it is
second order [19], and strongly suggests that one should

take the vacuum fluctuations of any model seriously
[20–22]. Moreover, the first-order transition that starts at
T ¼ 0, ends at the tricritical point indicated by a red dot and
located at ðμ; TÞ ¼ ð303.24 MeV; 55 MeVÞ.

0 50 100 150 200 250 300 350

–6

–4

–2

0

Δ (MeV)

V
tr

ee
/f

4
,V

1–
lo

o
p
/f

4

mσ

π
π

= 600 MeV

FIG. 5. Vacuum effective potential normalized to f4π as a
function of Δ for mσ ¼ 600 MeV. Dashed line is the tree-level
potential and the solid line is the one-loop effective potential in
the large-Nc limit.
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In Fig. 8, we show the phase diagram in the μ–T plane
for mσ ¼ 800 MeV. The transition is now of second order
in the entire μ–T plane, if one includes vacuum fluctuations
and first order if they are neglected. For both values of mσ,
the critical temperature increases significantly by including
the vacuum fluctuations and one-loop corrections to the
parameters of the Lagrangian (1). Our results for a sigma
mass of 600 MeVand 800 MeVare in very good agreement
with those of Ref. [16], where the authors use Pauli-Villars
regularization and the pole mass definition to study the
phase diagram of the QM model. There are a number of
other studies of this model; however, a quantitative com-
parison is difficult since the curvature of the effective
potential is used to define the sigma mass (see discussion
below) or because matching is done at tree level.
Qualitatively, the functional-renormalization group (FRG)

study in Ref. [23] predicts a more complicated phase
structure at low T. The second-order line starting at μ ¼ 0
ends at a tricritical point. The first-order transition bifurcates
at larger values of μ where one of the branches is first order,
while the second branch initially is first order and then
second order. This more complicated structure may very
well be related to the fact that the FRG includes mesonic
fluctuations.
A common, but incorrect definition of the sigma mass is

the second derivative of the effective potential in the
minimum. This is often referred to as the curvature mass.
The effective potential is the generator of the n-point
functions of the theory at vanishing external momenta
and so the curvature mass is equivalent to defining the
sigma mass using the self-energy evaluated at vanishing
momentum. The difference between the two masses is
finite, but a priori difficult to quantify. In hot gauge
theories, the correct way of defining the mass has a long
history, and we emphasize that the pole definition is the
physical and gauge invariant one [24,25]. If different
definitions of masses are used or if tree-level relations
are applied at the loop level, one cannot compare different
model predictions quantitatively. It is therefore important
to determine the parameters in the Lagrangian in the
correct way.
To summarize, we have calculated the running param-

eters m2, λ, and g2 at one loop by relating the MS and on-
shell schemes and the experimental values for the meson
and quark masses and pion decay constant. We used this as
input to the one-loop effective potential that was used to
map out the phase diagram in the μ–T plane. We will
present a more complete analysis including the Polyakov
loop variable Φ and the possibility of inhomogeneous
phases in a forthcoming publication [26]. The correct
determination of the parameters in the quark-meson model

FIG. 8. The phase diagram in the μ–T plane for
mσ ¼ 800 MeV. A dashed line indicates a second-order tran-
sition, while a solid indicates a first-order transition. The blue
solid line is the phase boundary in the no-sea approximation.

FIG. 7. The phase diagram in the μ–T plane for
mσ ¼ 600 MeV. A dashed line indicates a second-order tran-
sition, while a solid indicates a first-order transition. The red dot
shows the tricritical point. The blue solid line is phase boundary
in the no-sea approximation.
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FIG. 6. Vacuum effective potential normalized to f4π as a
function of Δ for mσ ¼ 800 MeV. Dashed line is the tree-level
potential and the solid line is the one-loop effective potential in
the large-Nc limit.
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should be useful in other contexts. For example, the SUð3Þ
quark-meson model has been used to study the phase
diagram of QCD and quark stars.

ACKNOWLEDGMENTS

The authors would like to thank the Niels Bohr
International Acedemy for its hospitality during the early
stages of this work. J. O. A. would like to thank
S. Carignano and M. Buballa for useful discussions.

APPENDIX: INTEGRALS AND SUM-INTEGRALS

The divergent loop integrals are regularized using
dimensional regularization. We define the dimensionally
regularized integrals by

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z dDp

ð2πÞD ; ðA1Þ

where D ¼ 4 − 2ϵ, γE is the Euler-Mascheroni constant,
and Λ is the renormalization scale associated with the MS
scheme. Specifically, we need the integrals

Aðm2Þ ¼
Z
p

1

p2 −m2

¼ im2

ð4πÞ2
�
Λ2

m2

�
ϵ
�
1

ϵ
þ 1

�
; ðA2Þ

Bðp2Þ ¼
Z
k

1

ðk2 −m2Þ½ðkþ pÞ2 −m2�

¼ i
ð4πÞ2

�
Λ2

m2

�
ϵ
�
1

ϵ
þ Fðp2Þ

�
;

B0ðp2Þ ¼ i
ð4πÞ2 F

0ðp2Þ; ðA3Þ

where the functions q, Fðp2Þ, and F0ðp2Þ are

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

p2
− 1

s
; ðA4Þ

Fðp2Þ ¼ −
Z

1

0

dx log

�
p2

m2
xðx − 1Þ þ 1

�

¼ 2 − 2q arctan

�
1

q

�
; ðA5Þ

F0ðp2Þ ¼ 4m2q
p2ð4m2 − p2Þ arctan

�
1

q

�
−

1

p2
: ðA6Þ

In the imaginary-time formalism for thermal field
theory, a fermion has Euclidean 4-momentum P¼ðP0;pÞ
with P2 ¼ P2

0 þ p2. The Euclidean energy P0 has discrete
values: P0 ¼ ð2nþ 1ÞπT þ iμ, where n is an integer. Loop
diagrams involve a sum over P0 and an integral over spatial
momenta p. With dimensional regularization, the integral is
generalized to d ¼ 3 − 2ϵ spatial dimensions. We define
the dimensionally regularized sum-integral by

XZ
fPg

¼ T
X
fP0g

Z
p
; ðA7Þ

where Λ is the renormalization scale in the modified
minimal subtraction scheme MS and

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd : ðA8Þ

Specifically, we need the sum-integral

I0 ¼
XZ

fPg
log ½P2 þm2�: ðA9Þ

Summing over the Matsubara frequencies P0, we obtain

I0 ¼ −
Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
− T

Z
p
flog ½1þ e−βðE−μÞ�

þ log ½1þ e−βðEþμÞ�g: ðA10Þ

The first term is ultraviolet divergent and in dimensional
regularization it reads

Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
¼ −

2m4

ð4πÞ2
�
Λ2

m2

�
ϵ
�
1

ϵ
þ 3

2

�
: ðA11Þ
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