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Abstract: This paper reports selected results from full-scale sea trials, along with the description of the
digital version implemented in practice, of a Motion Control System (MCS) previously proposed by the
authors in the continuous-time domain, which has station keeping, i.e. dynamic positioning, and trajec-
tory tracking capabilities for navigating observation class Remotely Operated Vehicles (ROV) used to
carry out automated high-resolution image capturing missions, e.g. assessments, inspections, mappings,
and surveys. Such capabilities are a key feature to enable the end-users of the ROV technology to acquire
sequential high-quality images at proper pace to constructconsistent representations of the objects or of
the environments of interest. Four degrees-of-freedom arecontrolled, namely surge, sway, heave, and
yaw. The MCS consists of an output feedback control system based on a high-gain state observer and a
MIMO PID controller aided by reference feedforward. Feedback linearisation of the plant dynamics is
also performed by the MCS. Satisfactory performance for suitable and sufficiently smooth reference tra-
jectories are attained despite the presence of unmodelled dynamics, plant parameter variations, measure-
ment noise, and environmental disturbances.

Keywords:Dynamic Positioning, Feedback Linearisation, High-Gain Observer, MIMO PID Control,
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1. INTRODUCTION

This paper reports selected results from full-scale sea trials,
along with the description of the digital version implemented in
practice, of the MCS proposed by Fernandes et al. (2013) navi-
gating the NTNU’s ROV Minerva in Trondheimsfjorden, Nor-
way, in 2013. The MCS was initially studied in the continuous-
time domain in Fernandes et al. (2013), where promising results
based on computer simulations were presented; however, exper-
imental results to validate those simulation results were miss-
ing. The present work thus aims at extending that performance
appraisal. The performance of a High-Gain State Observer
(HGSO) used to reconstruct and filter the measurements fed
into the MCS is the main focus here.

The MCS has station keeping, i.e. Dynamic Positioning (DP),
and trajectory tracking capabilities to navigate observation class
ROVs. This type of ROV is used worldwide as an important
carrier of imagery devices, e.g. cameras, sonars, echo sounders,
and hyperspectral imagers, for industrial, military, and research
activities, e.g. assessments, inspections, mappings, andsurveys
(Marsh et al., 2013; Christ and Wernli, 2007; Ludvigsen et al.,
2007; Singh et al., 2007). The output feedback MCS shown in
Fig. 1 essentially consists of the HGSO and a MIMO PID con-
troller aided by reference feedforward. Feedback linearisation
of the plant dynamics is implemented in the MCS. Suitable and
sufficiently smooth reference trajectories are generated by the
guidance subsystem of the MCS based on the reference model
proposed by Fernandes et al. (2012), which synthesises class
C2, C1, andC0, position, velocity, and acceleration references,

respectively, to parameterise the reference trajectories. Refer-
ence models are usually employed in reference tracking control
systems to improve their closed-loop transient responses;sys-
tem constraints and input limits (bandwidths and amplitudes)
are concerned, thereby avoiding performance deterioration and
instability, in more severe cases (Åström and Hägglund, 2011;
Franklin et al., 2009; Khalil, 2002). The guidance subsystem
is not further detailed in this paper. The locally inertial North-
East-Down (NED) coordinate frame (Fossen, 2011) is used for
locally flat Earth navigation.

The HGSO has the ability to robustly estimate the unmeasured
plant states, while asymptotically attenuating disturbances. It
behaves approximately like a differentiator, hence fitting well
applications where velocities may not be directly measured, but
reconstructed from noisy position and/or attitude measurements
(Khalil, 2002; Atassi and Khalil, 2000; Esfandiari and Khalil,
1992). A HGSO is tried out for the MCS as an alternative to the
benchmark Extended Kalman Filter (EKF), which is an exten-
sion into nonlinear systems of the celebrated optimal linear-
quadratic estimator Kalman filter (Fossen, 2011; Friedland,
1986). Despite the outstanding merit of the EKF, tuning it may
be a hard and time-consuming task due to its quite numerous
covariance parameters. Also, it often needs more memory space
to be stored in a digital system, and runs slower, than alternative
asymptotic state estimation techniques. An EKF is successfully
used for motion control of ROVs in Sørensen et al. (2012).
Other alternatives to the EKF, e.g. integrator backstepping and
passivity, can be found in Fossen (2011), for instance.



Fig. 1. Block diagram of the complete closed-loop system. The
ROV (illustrated by Minerva) is the only subsystem evolv-
ing in the continuous-time domain, whereas all the other
blocks compose the MCS and evolve in the discrete-time
domain. The variables are introduced in Sections 2 and 3.

The classical PID controller is often preferred for motion con-
trol of ROVs, and likewise for industrial applications in gen-
eral (Åström and Hägglund, 2011; Smallwood and Whitcomb,
2004; Hsu et al., 2000), despite the availability of severalmod-
ern and advanced control techniques. Although it has limita-
tions to cope with highly coupled multivariable plants, it is of-
ten preferred due to its synthesis and implementation simplicity
(Åström and Hägglund, 2011; Franklin et al., 2009; Friedland,
1986). It cannot provide exact tracking of time-varying refer-
ences alone, neither can it dynamically compensate for unmod-
elled plant dynamics; nonetheless, such limitations can becir-
cumvented by combining other techniques with the PID algo-
rithm. A number of successful PID-based marine applications
can be found in the literature, e.g. Omerdic et al. (2012),
Sørensen et al. (2012), and Smallwood and Whitcomb (2004).

Position and heading angle measurements at least are required
by the MCS. The (digital) navigation sensors feed data into the
MCS at different rates. The horizontal position measurements,
usually generated by hydroacoustic positioning systems based
on either the (Super) Short Base Line or Long Base Line prin-
ciple (Christ and Wernli, 2007), have (much) lower update rates
(<1 Hz) than the sampling frequency of the MCS, imposing the
major limitations to the overall motion control accuracy. The
pressure gauge and gyrocompass providing the MCS with depth
and heading angle measurements, respectively, present fairly
high update rates. The MCS may also be provided with velocity
measurements for enhanced motion control accuracy. Such
measurements, typically coming from Doppler Velocity Logs
(DVL) (Christ and Wernli, 2007), are also generated at lower
update rates (�1 Hz) than the sampling frequency of the MCS.

The paper is organised as follows. Section 2 reviews the plant
model. Section 3 presents the MCS. Section 4 presents results
from full-scale sea trials. Section 5 presents concluding re-
marks. Appendix A introduces the NTNU’s ROV Minerva.

2. CONTROL PLANT MODEL

The proposed Control Plant Model (CPM) (Sørensen, 2013)
follows the formulations and nomenclature defined by SNAME
(1950). It is based on the models found in Sørensen (2013), Fos-
sen (2011), and Lewandowski (2004). Its explicit dependence
on the timet is omitted for the sake of simplicity. It is built
on the following premisses: (i) the ROV is fully actuated in the
configuration space (Breivik and Fossen, 2009), i.e. the four

controlled Degrees-of-Freedom (DoF) are actuated; (ii) the re-
maining two DoFs are self-stable by the design of the ROV;
(iii) the Centre of Gravity (CG) and the Centre of Buoyancy
(CB) are both fixed; (iv) the ROV operates below the wave-
affected zone; (v) the velocity and orientation of the sea current
vary slowly enough to be taken as constant; and (vi) the fluid is
irrotational, of constant density, and of infinite extent.

The CPM is given by

{

η̇ = J(ψ) ν

M ν̇ = −C(ν) ν −DL ν −DQ |ν |ν + g + c + τ
(1)

whereJ(ψ) ∈ SO(4) (Special Orthogonal group of order 4) is
a transformation matrix from the BF (Body-Fixed) coordinate
frame to the NED frame, andν = [u, v,w, r]T is the relative vel-
ocity vector given in the BF frame. The vector of signed squares
|ν |ν := [|u|u, |v|v, |w|w, |r |r]T represents quadratic relative vel-
ocities. The position and heading angle vectorη = [n, e, d, ψ]T

gives the position from the chosen origin of the NED frame, and
the heading angle with respect to the N-axis of the NED frame.
The inertia matrixM ∈ R4×4 |M :=MRB+MA > 0 embodies
the mass and the inertia tensor of the rigid-body (MRB ∈ R

4×4 |

MRB > 0), and the hydrodynamic added masses and the corres-
ponding inertia tensor (MA ∈ R

4×4 |MA > 0). The Coriolis-
centripetal matrixC(ν) :=CRB(ν) + CA(ν) ∈ SS(4) (Skew-
Symmetric group of order 4) is directly derived fromM . The
matrix DL ∈ R

4×4 |DL > 0 collects linear hydrodynamic
damping coefficients regarding linear skin friction (laminar
flow). The matrixDQ ∈ R

4×4 |DQ > 0 collects quadratic hy-
drodynamic damping coefficients regarding quadratic skin fric-
tion and vortex shedding (turbulent flow). All elements ofM ,
DL, andDQ are expected to be nonzero and distinct, as the
ROV has an open-frame structure with asymmetries in the
shapes and distribution of its internal parts and components.
Besides, every element of these matrices may split into a pair
of relatively close values regarding positive and negativevel-
ocities for each DoF, and may yet vary about the nominal
values (Lewandowski, 2004; Caccia et al., 2000). The vectorof
hydrostatic restoring forcesg = [0, 0, (W− B), 0]T collects the
weight forceW = m g acting upon the CG, and the buoyancy
forceB = ρ∇ g acting upon the CB, wherem is the ROV’s (dry)
mass,g is the acceleration of gravity,ρ is the fluid density, and
∇ is the total volume of fluid displaced by the ROV. A safer
design ensures that the ROV is slightly positive buoyant, i.e.
B > W, whereupon the ROV is able to emerge to the surface
without the aid of the MCS, if necessary. The vectorc ∈ R4

represents unmeasured (nonestimated either) current-generated
perturbing forces and moment, as the speed and direction of
the sea current are neither measured nor estimated in this work.
Notice that (1) is based only on body-fixed velocities. The vec-
tor τ ∈ R4 | τ :=TP [T1,T2, . . . ,Tp]T represents the propulsion
and steering forces and moment delivered by the propulsion
system, whereTi := kTi (ωi) |ωi |ωi , i ∈ N | i = {1, . . . , p}, is the
thrust delivered by thei-th thruster, under the common simpli-
fying assumption that the static mappingskTi (ωi), which also
encompass all the losses, hold from the revolution rates of the
propeller discsωi to the developed thrustsTi (Sørensen et al.,
2012; Fossen, 2011; Caccia et al., 2000),TP ∈ R

4×p is the thrust
configuration matrix of the propulsion system, andp > 4 is
the number of thrusters which actuate the configuration space
(Breivik and Fossen, 2009). The matrixTP is typically constant
because the ROV typically has thrusters with fixed pitch pro-
pellers installed at fixed locations.



3. MOTION CONTROL SYSTEM

3.1 Introduction

The MCS runs synchronously at the constant sampling fre-
quency fs. This implies that the vectorµ(·) controlling the
thrusters through zero-order-hold circuits (Franklin et al., 2009;
Åström and Wittenmark, 1997) located in the thrust allocation
block, i.e. interfacing the MCS and the plant, see Fig. 1, is up-
dated at every sampling instant, and also that the HGSO simul-
taneously takes the most recent navigation data stored in a data
buffer created in the MCS to serve this purpose. The updates of
µ(·) are then computed in between two consecutive sampling
instants based on the most recently taken data from the buffer.
The different navigation sensors and the hydroacoustic pos-
itioning system feed data into the data buffer asynchronously.
The sensors having update rates higher thanfs renew the corres-
ponding portion of the data buffer several times per sampling
periodh := f −1

s . The sensors having update rates (much) lower
than fs cause the same data stored in the corresponding portion
of the data buffer to be reused for multiple sampling periods.

3.2 Controller

The controller subsystem, see Fig. 1, essentially consistsof
a MIMO PID controller aided by reference feedforward. It
also includes feedback linearisation of the plant dynamics. The
control vectorv(·) ∈ R4 controls the HGSO. The control vector
u(·) ∈ R4 controls the plant through the thrust allocation block.

The control vectorsv(·) andu(·) are defined as
{

v(k) :=uPI D(k−1)+ uFF(k)

u(k) :=v(k) + uLIN(k)
(2)

wherek ∈ N | k > 1, uPI D(·) implements full state feedback,
uFF(·) provides reference feedforward, anduLIN(·) tackles to
cancel out the nonlinearities in the dynamics of (1). The term
uPI D(·) is taken one sampling period delayed to preclude the al-
gebraic loop between the MIMO PID controller and the HGSO,
as they feed each other. All terms are detailed in the sequence.

The feedback linearisation termuLIN(·) is defined as

uLIN(k) :=C(ν̂(k)) ν̂(k) +DQ |ν̂(k)|ν̂(k) − g (3)

whereC(ν̂(·)),DQ ∈ R
4×4, andg ∈ R4 are the nominal expres-

sions ofC(ν), DQ, andg, andν̂(·) ∈ R4 is the vector of esti-
mated velocities. It is properly introduced in Subsection 3.3.

The state feedback termuPI D(·) is defined as

uPI D(k) :=KP eη(k) +KI eI(k) +KD eν(k) (4)

whereKP,KI,KD ∈ R
4×4 |KP,KI,KD > 0 are (typically di-

agonal) matrices holding the proportional, integral, and deriva-
tive gain sets of the MIMO PID controller, and the error vectors
eη(·), eI(·), eν(·) ∈ R4 are defined as



























eη(k) :=JT(ψ̂(k−1)) (ηR(k) − η̂(k))

eI(k) := eI(k−1)+ (h/2) (eη(k) + eη(k−1))

eν(k) :=νR(k) − ν̂(k)

(5)

whereψ̂(·) is the estimated heading angle used everywhere in
the MCS to keep the coordinate transformations synchronised,

η̂(·) ∈ R4 is the vector of estimated position and heading angle
whose last component iŝψ(·), ηR(·) ∈ R4 is the vector of ref-
erence position and heading angle whose last component is the
reference heading angleψR(·), νR(·) ∈ R4 is the vector of refer-
ence velocities, such thatνR(t) :=JT(ψR(t)) d

dt [ηR(t)]. This con-
tinuous-time representation is used for the sake of simplicity.
The vector̂η(·) is properly introduced in Subsection 3.3.

The bilinear Tustin’s approximation method is used for numer-
ical integration in (5), as it maps the whole left-hands-plane
into the unit circle in thez-plane, hence always yielding stable
discrete-time approximations from originally stable continu-
ous-time systems. Also, it typically provides pretty closere-
sponse approximations between the continuous- and discrete-
time domains (Franklin et al., 2009; Åström and Wittenmark,
1997). A numerical differentiator is advantageously unneces-
sary in (5), as the error vectoreν(·) is directly available. Numer-
ical differentiation algorithms can be quite sensitive to noise.

Remark:Other functionalities, e.g. reset and anti-windup, can
also be added to the basic integrator algorithm in (5) to enhance
the integration performance and make it more robust.

The reference feedforward termuFF(·) is defined as

uFF(k) :=DL νR(k) +M ν̇R(k) (6)

whereDL, M ∈ R4×4 are the nominal expressions ofDL and
M , and ν̇R(·) ∈ R4 is the vector of reference accelerations,
whereν̇R(t) := d

dt [νR(t)]. This continuous-time representation is
employed here only for the sake of simplicity.

Proper initialisation of the vectors is an important precaution
in order to avoid unpredictable initial behaviour. It is suggested
that eη(0) = eI(0) = uPI D(0) = v(0) = 0, ηR(1) = η̂(1),
νR(1) = ν̂(1), andν̇R(1) = 0. The initialisation of̂ν(·) andη̂(·)
is discussed within Subsection 3.3.

The thrust allocation block converts the vectoru(·) into p indi-
vidual signalsµi(·) (either voltages or currents) controlling the
thruster servos, whereµ(·) ∈Rp |µ(·) := [µ1(·), µ2(·), . . ., µp(·)]T .
Therefore, these signals ultimately produce the vectorτ in (1).
They are computed asµi(·) := θi sgn(Ti)

√

|Ti | / kTi (ωi) , i = {1,
. . . , p}, whereTi andkTi (ωi) are described in Section 2,θi ∈

R>0 | θi := µi(·)/ωi are scaling factors (inverse servo gains) re-
lating the signalsµi(·) to the propeller angular velocitiesωi ,
and [T1,T2, . . . ,Tp]T :=T ⋆

P u. The thrust allocation algorithm
consists of the mappingT ⋆

P :=W −1
P T T

P (TP W
−1
P T T

P )−1, which
is essentially the Moore-Penrose pseudo-inverse of the thrust
configuration matrixTP described in Section 2. The (typically
diagonal) matrixWP ∈ R

p×p |WP =W T
P >0 weights the thrust

usage, so that it is possible to reach an optimal thrust allocation
through the minimisation of the quadratic cost functionJ :=
min
|Ti |

([T1, ...,Tp]WP [T1, ...,Tp]T) subject toτ =TP [T1, ...,Tp]T .

3.3 High-gain state observer

The vector of estimated states [η̂T(·), ν̂T(·)]T ∈ R8 is given by

[

η̂(k)
ν̂(k)

]

= Φ(ψ̂(k−1))

[

η̂(k−1)
ν̂(k−1)

]

+ ΓV(ψ̂(k−1)) (v(k) + v(k−1))

+ ΓY(ψ̂(k−1))

([

η̄m(k)
νm(k)

]

+

[

η̄m(k−1)
νm(k−1)

])

(7)



wherev(·) is defined in (2),νm(·) ∈ R4 is the vector of measured
velocities, and̄ηm(·) ∈ R4 is the vector of measured position
and accumulated heading angle obtained partially directlyfrom
the vector of measured position and heading angleηm(·) ∈ R4

and partially through a heading angle accumulation algorithm
enabling the MCS to keep track of the number of turns the
ROV performs. The algorithm and the vectorη̄m(·) are further
described ahead. The vectorνm(·) = 0 ∀ k ∈ N whenever vel-
ocities are not measured. The system matrixΦ(ψ̂(·)) ∈ R8×8, the
control input matrixΓV(ψ̂(·)) ∈ R8×4, and the output injection
matrixΓY(ψ̂(·)) ∈ R8×8 are defined as

Φ(ψ̂(k−1)) :=∆(ψ̂(k−1))
(

I8 +Λ(ψ̂(k−1))
)

(8)

ΓV(ψ̂(k−1)) :=∆(ψ̂(k−1))

[

04

(h/2)M−1

]

(9)

ΓY(ψ̂(k−1)) :=∆(ψ̂(k−1))T (ψ̂(k−1))
h
2
LT T(ψ̂(k−1)) (10)

whereT (ψ̂(·)) :=blockdiag(J(ψ̂(·)), I4) ∈ SO(8) (Special Or-
thogonal group of order 8) is a transformation matrix, where
Ii ∈ R

i×i , i ∈ {4, 8}, are identity matrices,04 ∈ R
4×4 is a zero

matrix, and the matrices∆(ψ̂(·)),Λ(ψ̂(·)) ∈ R8×8 are defined as

∆(ψ̂(k−1)) :=
(

I8 −Λ(ψ̂(k−1))
)−1

(11)

Λ(ψ̂(k−1)) :=T (ψ̂(k−1))
h
2

(A −L) T T(ψ̂(k−1)) (12)

where

A :=

[

04 I4

04 −M
−1DL

]

and L :=

[

ǫ−1 L11 γ ǫ−1 L12

ǫ−2 L21 γ ǫ−2 L22

]

(13)

whereLi j ∈ R
4×4, i, j = {1, 2}, are constant tuning submatrices,

the constantǫ ∈ R>0 | ǫ ≪ 1 is a global tuning parameter yield-
ing the high gains, and the constantγ ∈ N | γ ∈ {0, 1}, where
γ = 1 indicates that velocities are measured.

The bilinear Tustin’s approximation method is used for numer-
ical integration in (7), for the same previously stated reasons.
Notice thatψ̂(k− 1), which is used to perform synchronised
coordinate transformations throughout the MCS, is taken one
sampling period delayed to preclude an algebraic loop in the
HGSO, since the HGSO also feedsψ̂(·) into itself. Notice
also thatηm(·), η̄m(·), andνm(·) are manipulated, i.e. read and
written, by the HGSO, whereas the data buffer described in
Subsection 3.1 is only read by the HGSO.

The heading angle measurementψm(·), which is the last element
of ηm(·), is typically commercially obtainable in the ranges: (i)
ψm(·) ∈ [0, 2π); and (ii)ψm(·) ∈ (−π, π]. In either case the range
is discontinuous and limited, so that the heading angle is not
accumulated along consecutive turns. The simplest occurrence
example happens when a turn is completed regarding the range
(i). The Algorithm 1 can then be used to overcome this condi-
tion, for instance, wherecounter(·) ∈ Z is to be initialised as
counter(0) = counter(1) = 0, andrange ∈ N | range∈ {1, 2},
whererange= 1 corresponds to the range (i), andrange= 2
corresponds to the range (ii). Finally, the three position meas-
urements inηm(·), i.e. its three first elements, are just copied
into η̄m(·) and the accumulated heading angleψacc(·) coming
out from Algorithm 1 completes̄ηm(·).

if range= 2 ∧ ψm(k) < 0 then
ψm(k)← 2π + ψm(k)

end
if range= 2 ∧ ψm(k−1) < 0 then

ψm(k−1)← 2π + ψm(k−1)
end
if |ψm(k) − ψm(k−1)| > π then

if ψm(k−1) > ψm(k) then
counter(k)← counter(k−1)+ 1

else
counter(k)← counter(k−1)− 1

end
end
ψacc(k)← 2π counter(k)+ ψm(k)

Algorithm 1. Heading angle accumulation

It is suggested for proper initialisation of the HGSO that the
estimation vectors agree with the measurement vectors, i.e.
η̂(0) = η̂(1) = η̄m(0) = η̄m(1) andν̂(0) = ν̂(1) = νm(0) =
νm(1), in order to zero the initial estimation errors. The ROV
must preferably be at rest during the initialisation procedure,
so that it is reasonable to assume thatν̂(1) = νm(1) = 0. This
action is essential to preclude, or at least to drastically atten-
uate, the characteristic initial high-valued short-duration peaks
occurring in the vector [̂ηT(·), ν̂T(·)]T (peaking phenomenon).

4. RESULTS FROM FULL-SCALE SEA TRIALS

The sampling periodh = 150 ms was held during all trials.

The first step performed was tuning the HGSO for the condition
without velocity measurements. The values reported in Fernan-
des et al. (2013), i.e.L11 = L21 =M−1 andL12 = L22 = 04,
were initially tried, followed by fine-tuning. After some interac-
tions, it was realised that the option yielding the best results was
L11 = L21 = 2M−1. Different values were also interactively
assigned toǫ, and the valueǫ = 0.1 turned out eventually to be
the best. These values indicate a reasonable adherence between
the real and the modelled closed-loop systems.

It was confirmed during the tuning exercise that the output
injection matrixL in (13) damps the observed response in such
a manner that a trade-off is established between relying more
upon the response that is predicted based on the CPM, or rely-
ing more upon the incoming measurements instead. The greater
the amount of damping represented by greater submatricesLi j,
the slower the estimation response with regard to changes in
the measurements. On the other hand, the lesserǫ, the higher
the magnitude of the eigenvalues ofL, whereupon the faster the
estimation response. This happens because the reaction velocity
(sensitivity) to fast changes in the measurements is proportional
to the magnitude of such eigenvalues, and so is the sensitivity
to measurement noise. Nevertheless, studying this problemin
the framework of marine control systems is very interesting,
because the controlled plants typically have (very) slow and
overdamped dynamics. Therefore, a HGSO can be satisfacto-
rily tuned, being assigned gains relatively much higher than
those of the closed-loop systems formed by the controllers and
the controlled plants, without actually holding too high gains
in absolute terms. The peaking phenomenon is concomitantly
attenuated if the gains of the HGSO are not too high.

Fig. 2–4 depict results from a station keeping trial (DP), where
the heading angle was changed twice±π/2 rad (±90◦). Ve-
locity measurements were not used by the HGSO, in spite of



Fig. 2. DP trial: Position and heading angle.

Fig. 3. DP trial: Velocities.

Fig. 4. DP trial: Absolute velocity errors w.r.t. references.

being available for comparison purposes. Fig. 2 shows stable
and fairly satisfactory performance. The position measurements
were reasonably well filtered, even without the support of ad-
ditional velocity measurements. It is clear that the depth and
the heading angle were more effectively kept closer to the de-
sired set-points, due to their inherently favourable measurement
characteristics, i.e. high update rates, yielding small differences
between consecutive measurements. Fig. 3–4 show fairly good
velocity reconstruction, in particular of the heave and yaw
DoFs, reconfirming that better results can be attained under
more reliable measurements. It is important to consider that
part of the delay observed between the reconstructed and the
measured velocities is caused by the differences between the
hydroacoustic positioning system and the DVL.

Later, the HGSO was tuned for the condition with velocity
measurements. After some interactions, the valuesL11 = L21 =

2M−1, L21 = L22 = 5M−1, and ǫ = 0.1 were adopted.
The tuning of the MIMO PID controller was held the same as

Fig. 5. Tracking trial: Position and heading angle.

Fig. 6. Tracking trial: Velocities.

Fig. 7. Tracking trial: Absolute velocity errors w.r.t. references.

before. It was verified that the sensitivity to measurement noise,
in particular, due to the unfavourable inherent characteristics of
the horizontal position measurements, diminished considerably.

Fig. 5–7 depict results from a lawn-mower pattern tracking trial
with simultaneous bottom profile tracking at constant altitude
comprising two parallel legs of 20 m separated by a distance of
2 m. Velocity measurements were used by the HGSO this time.
Fig. 5 shows that the MCS performed stably and satisfactorily
in response to the suitable and sufficiently smooth references
generated by the guidance subsystem. The position measure-
ments were filtered better than in the previous DP trial. Fig.
6–7 show that the velocities were also well filtered. The maxi-
mum absolute position error was less than 20 cm, whereas the
maximum absolute heading angle error was less than 0.0873 rad
(5◦). This is indeed a satisfactory result attained by the MCS.
In practice, such result would enable the end-users of the ROV
technology to acquire sequential high-quality images to con-
struct representations of objects or environments of interest.



5. CONCLUDING REMARKS

The proposed output feedback MCS based on a HGSO was
successfully tested in practice. It attained stable and satisfac-
tory station keeping and trajectory tracking performancesunder
challenging operating conditions, i.e. unmodelled dynamics,
plant parameter variations, measurement noise, and environ-
mental disturbances, validating the previously presentedsim-
ulation results. In particular, the results presented in this paper
encourage further research towards using the HGSO to replace
the benchmark EKF. Further work is still needed in order to
achieve harmonious tuning between the MIMO PID controller
and the HGSO.
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Appendix A. NTNU’S ROV MINERVA

Minerva is a SUB-fighter 7500 ROV made by Sperre AS in
2003 for NTNU. The NTNU’s Research Vessel (R/V) Gunnerus
(http://www.ntnu.edu/marine/gunnerus) is the support vessel
used to carry out operations with Minerva. The ROV is pow-
ered from, and communicates with, Gunnerus via a 600 m-long
umbilical cable. It has five thrusters with fixed pitch propellers.
The starboard and port thrusters are oriented 10◦ towards the
longitudinal axis of Minerva. The lateral thruster has one pro-
peller at each end of its shaft, whilst all the others have a sin-
gle propeller each. A high-precision hydroacoustic positioning
system HiPAP 500 by Kongsberg determines the position of
Minerva relative to Gunnerus. The MCS is implemented on a
cRIO, and programmed via LabVIEW, both by National Instru-
ments. Further details can be found in Sørensen et al. (2012)
and Dukan et al. (2011), for instance.


