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High electrical conductivity is one of the main obstacles for advances of bulk BiFeO3 ceramics in

piezoelectric applications. Here, we demonstrate that the electrical conductivity of BiFeO3 can be

lowered by compositional modification with Bi0.5K0.5TiO3 and further reduced by annealing in

oxidizing or reducing atmospheres. These manipulations also allow for tailoring of other functional

properties. In particular, we demonstrate that the electric field induced strain performance of bulk

bismuth ferrite can be significantly improved by addition of 30% Bi0.5K0.5TiO3 and thermal annealing

in an inert atmosphere. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869976]

Bismuth ferrite, BiFeO3 (BFO), possesses the essential

prerequisites for high electromechanical performance in a

wide temperature range, such as large bipolar strain of up

to 0.36% (peak-to-peak value),1 high spontaneous polariza-

tion (�90 lC/cm2),2,3 and high Curie temperature TC

(�820 �C).3,4 However, practical exploration of these

attractive features is limited by several factors including

thermodynamic phase instability at the temperature range

of ceramics processing,5 high conductivity,2,3,6 and large

coercive field (�100 kV/cm) coupled with strong domain

wall pinning effects.6 Owing to these limitations, applica-

tion of pure bismuth ferrite in piezoelectric devices is chal-

lenging, but as a perovskite modifier it can be very

prospective for compositional engineering. Recently, tailor-

ing of BFO-related compositions for high-temperature elec-

tromechanical applications has been proposed for a wide

range of solid solutions with lead-free Bi0.5K0.5TiO3

(BFO-BKT),7–10 and further along morphotropic phase

boundary towards lead titanate (BFO-BKT-PT).11,12

The understanding of the origins of the undesired con-

ductivity in BFO has been a topic of several theoretical13,14

and experimental15–17 studies. The first principle calcula-

tions13,14 based on density functional theory (DFT) consid-

ered formation of vacancies as main intrinsic point defects in

pure bismuth ferrite. Depending on oxygen partial pressure

(pO2), the dominating point defects were suggested to be Bi

and Fe vacancies at oxidizing conditions and Bi and O vacan-

cies at reducing conditions. Thus, the conductivity of BFO

was suggested to be of p-type with a tendency to decrease

with oxygen partial pressure and become n-type.13,14

Recently, the p-type conductivity in BFO has been rational-

ized by polaron hopping that is strongly influenced by the ox-

idation state of Fe.16,17

BKT is expected to possess n-type conductivity, analo-

gously to Bi0.5Na0.5TiO3,18 and therefore, can be an appropri-

ate modifier to suppress p-type conductivity of bismuth ferrite.

In spite of several successful attempts to suppress con-

ductivity and dielectric losses of pure bismuth ferrite by

reducing the oxygen partial pressure during synthesis19,20 or

by appropriate donor dopants,15,21,22 no significant advance

in exploration of high electromechanical performance of this

material has been reported yet.

In this contribution, we provide an in-situ study of the

conductivity of BKT–BFO ceramics during thermal cycles

in oxidizing and reducing atmospheres. Additionally, we

report ferroelectric softening of BFO ceramics by composi-

tional modification with 30% BKT. We also demonstrate the

suppression of the electronic conductivity by heat treatment

of this ceramic in inert atmosphere, which enabled the inves-

tigation of the electric field–strain hysteresis at high electric

field amplitudes (�100 kV/cm) and various frequencies.

Phase pure and dense (�98%) ceramics of (1-x)

BKT–xBFO or BKTF-x(%) were prepared by conventional

solid state processing, as described elsewhere.23 The sinter-

ing temperatures varied within 980–1080 �C, depending on

the composition; and the sintering time was 2 h.

Cylindrical samples with diameter �8 mm and thickness

1–4 mm with gold sputtered electrodes were subjected to im-

pedance analysis using an Alpha-A analyzer (Novocontrol,

Germany). The oxygen partial pressure and temperature were

controlled using external gas sources and a Probostat (Norecs,

Norway) testing chamber. The chamber was flushed with the

controlled atmosphere with a flow rate of �20 ml/min. The

impedance measurements were performed every 30 s during

heating and cooling with a ramping of 2 �C/min.

Estimation of the dc conductivity was performed at

“low enough” frequencies (mainly at 1 Hz or below, depend-

ing on temperature), where the dispersion of the real part of

ac conductivity forms a so-called “dc plateau.”

Prior to the measurements the samples were thermally

annealed in dry synthetic air to eliminate the barrier-type

Maxwell-Wagner relaxation recently reported for these mate-

rials.24 The measurements along with the heating-cooling

cycles were performed in the following order: first in nitrogen

(5.0, pO2� 10�5 atm), then in pure oxygen (5.0) atmospheres.

Characterization of the electric field-induced strain was

performed on a BKTF-70 ceramic sample of 0.4 mm thick-

ness, using an aixPES-Piezoelectric Evaluation System

(aixACCT, Germany). The electroded sample was thermally

annealed in nitrogen at 580 �C for 2 h.a)Electronic mail: maxim.morozov@ntnu.no
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The temperature dependencies of the conductivity dur-

ing the sequence of heating-cooling cycles, first in nitrogen

and then in oxygen, are shown in Fig. 1 for several BKT-

BFO compositions. The results demonstrate distinctive ten-

dencies for changes in the concentration of the major charge

carriers caused by the redox processes related to the partial

pressure of oxygen (pO2) in these two atmospheres.

All the ceramics examined in N2 showed the rise of con-

ductivity as the temperature reached 600 �C. After the anneal-

ing cycles, the conductivity of BKTF-10 ceramics showed no

significant change with respect to variation of temperature

and pO2 (Fig. 1(a)). The other materials, with a higher con-

centration of iron, showed notable and reversible variation of

the conductivity r(pO2) within the reduction-oxidation cycles

(Figs. 1(b)–1(d)).

The BKTF-40 and BKTF-70 ceramics, along with the

other BFO-rich compositions (not shown) demonstrated

another distinctive feature-a local drop of conductivity when

treated in nitrogen in the temperature range of 400–500 �C
(Figs. 1(c) and 1(d)). This drop was followed by the rise of

the conductivity above 600 �C, as observed for all the other

BKT-BFO compositions.

Thermal treatment in pure oxygen returned the conduc-

tivity to the original value, demonstrating the complete re-

versibility of the r(pO2) in the selected temperature ranges.

Broad band dielectric spectroscopy performed at room tem-

perature after each of the thermal cycles showed no barrier

type of Maxwell-Wagner relaxation; thus, demonstrating

equilibration of the bulk material with respect to the partial

pressure of oxygen above �700 �C.24

In order to elucidate the conditions required for estab-

lishing the equilibrium state in these ceramics, the kinetics

of the dc conductivity relaxation has been investigated for

the case of BKTF-70 ceramics. The conductivity relaxation

under reducing atmosphere is shown in Fig. 2(a), while the

reverse oxidation kinetics is shown in Fig. 2(b). Both proc-

esses appeared to be reasonably fast at temperatures above

500 �C. Furthermore, the dc conductivity data measured

upon cooling from 550 �C down to 400 �C in nitrogen in

both dynamic (2 �C /min) and static (equilibrium) regimes

did not show any significant divergence (Fig. 2(c)). Thus, the

observed changes of conductivity resulting from thermal

cycles with amplitudes above 600 �C in the reducing and oxi-

dizing atmospheres are justified to ensure nearly equilibrium

conditions for the experimental data illustrated in Fig. 1.

Fig. 2(d) illustrates the potential of the dc conductivity

suppression in bulk BKTF-70 ceramics by thermal anneal-

ing under low pO2. At room temperature, this suppression

may count almost 4 orders of magnitude. Similar variations

of dc conductivity upon treatments at oxidation and reduc-

tion conditions have been reported for BFO thin films25 and

for barrier layers at the surface of BKTF-x ceramics

(x� 40%).24

The observed changes of the conductivity can be ration-

alized by point defect equilibria. In the most general case for

pure BFO, the principle of electroneutrality yields

FIG. 1. Real part of ac conductivity (1 Hz) for BKTF-x ceramics during the sequence of thermal cycles in (1) nitrogen and in (2) oxygen: (a) x¼ 10%; (b)

x¼ 25%; (c) x¼ 40%; and (d) x¼ 70%. The arrows show the heating and cooling directions.

FIG. 2. (a)–(b) Electrical dc conductivity relaxation of BKTF-70 due to changes in the partial pressure of oxygen (r0 designates the dc conductivity in the equi-

librium state with pO2¼ 1): (a) O2 to N2 and (b) N2 to O2. (c) Arrhenius plot of the bulk dc conductivity (r0 at 1 Hz) in the temperature range of 400–550 �C.

(d) The frequency dependence of the real part of the ac conductivity after annealing in various atmospheres (measurements performed at room temperature in

dry synthetic air).
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2 V••
O

� �
þ p• ¼ 3 V000Bi

� �
þ 3 V000Fe

� �
þ n0;

where V
••

O

� �
, V000Bi

� �
, and V000Fe

� �
are the concentrations of O, Bi,

and Fe vacancies. The origin of p• and n0 major charge car-

rier concentrations depends on the charge localization within

Fe 3d and O 2p bond covalency. In iron containing perov-

skites p• and n0 have traditionally been associated with the

Fe
•

Fe

� �
and Fe0Fe

� �
minor point defects, whose plausible pres-

ence has been established for this class of materials.26–28

Thus, in the case of localized charge carriers, the electrical

conduction can be realized through the polaron hopping

mechanism.16,17,27,28 Alternatively, in recent DFT stud-

ies14,15,29 the possibility of band-like semiconductor behav-

ior has been suggested for the same class of materials in

which the case of delocalized charge carriers can also be

feasible.29

In our experiments, the strong dependence of the con-

ductivity with respect to partial pressure of oxygen was

observed for x> 10% BFO, see Figs. 1(b)–1(d). This gives

support to the polaron hopping since the scenario assumes a

marginal limit of iron concentration sufficient for electron

percolation, and this margin is seemingly achieved only at

x> 10%.

The apparent increase of conductivity in all the

ceramics under study above 600 �C in nitrogen is possibly

a result of enhanced ionic mobility, as evidenced by Figs.

2(a) and 2(b). Only in the case of BKTF-25 this increase

of conductivity was irreversible during the nitrogen anneal-

ing cycle, see Fig. 1(b), while at higher BFO content the

conductivity decreased after processing in nitrogen up to

700 �C, see Figs. 1(c) and 1(d). These observations suggest

that p-type conductivity is dominating in ceramics with

higher BFO content (x� 40%) and there is a tendency

towards n-type conductivity under low pO2 and lower

BFO content. In a recent report,24 we have demonstrated

that the n-type conductivity may be induced in BKTF-70

ceramics by heat treatment in significantly lower pO2. The

origin of the p- and n-types of conductivity can therefore

be rationalized by the polaron hopping mechanism involv-

ing the Fe
•

Fe

� �
and Fe0Fe

� �
minor point defects controlled

by oxygen partial pressure. As mentioned before, the tend-

ency of increasing n-type conductivity associated with

Fe0Fe

� �
along with decreasing the BFO content is princi-

pally limited by the marginal content of Fe sufficient for

charge percolation, and seemingly does not cover the case

of BKTF-10 ceramics.

The activation energies of conductivity in BKTF-70

ceramics measured in oxygen and nitrogen are found to be

0.36 eV and 0.62 eV (Fig. 2(c)) and consistent with the val-

ues and tendencies previously reported for Ca-doped BFO

ceramics and attributed to the p-type and ionic conduction

mechanisms.16

The suppression of conductivity in the BKTF-70 ce-

ramic was essential to enable characterization of the ferro-

electric switching properties under high coercive fields. In

our previous work,9 the electric field–strain hysteresis loops

were reported only for the relaxor part of the system

(x< 70%), while no notable strain was induced in BKTF-70

ceramics at electric field amplitude of 50 kV/cm. In other

works,7,10 relatively low piezoelectric strain was reported

for BKTF-70 ceramics at amplitudes of electric field

80–100 kV/cm. It is worth mentioning that relatively weak

strain responses were also reported for bulk BFO ceramics

under such relatively low electric fields.6,19 In this study, we

were able to characterize the field-induced strain in BKTF-

70 ceramics at electric field amplitude of 130 kV/cm. The

piezoelectric performance of this ceramics under this field

amplitude is comparable and even superior with respect to

pure BFO,1 as shown in Figs. 3(a) and 3(b). Compared to

BFO ceramics, the electric field induced stain in BKTF-70

ceramics has more regular shape with sharp edges and lower

coercive value (EC� 75 kV/cm, in good agreement with the

previous report by Matsuo et al.7).

The strain–electric field hysteresis loops of the BKTF-

70 ceramic were also characterized at various frequencies

(1–20 Hz) and a fixed electric field amplitude of 100 kV/cm.

The result is shown in Fig. 3(c). This ceramic demonstrated

better frequency stability of the electric field induced strain

compared to BFO (Fig. 3(a)). With respect to frequency of

the driving field, the amplitude of negative strain in BKTF-

70 ceramics appeared to be more stable than the positive

maxima. This suggests that the strain relaxation is likely

determined by domain wall motion dynamics, rather than by

mechanisms of polarization switching. This is in contrast to

the case of soft lead-based ferroelectrics demonstrating the

opposite effect.30,31

The origin of the strong frequency dependence and gen-

eral instability of strain response in BFO was suggested to be

FIG. 3. Comparison of strain–electric field hysteresis loops for pure and modified BFO ceramics: (a) BFO ceramics. Reprinted with permission from T. Rojac

et al., J. Am. Ceram. Soc. 94, 4108 (2011). Copyright 2011 American Ceramics Society.1 (b)–(c) BKTF-70 ceramics annealed in nitrogen at 580 �C character-

ized at 130 kV/cm and 2 Hz (b); and 100 kV/cm with various frequencies (c).
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strong domain wall pinning by charged point defects,1,6

whose electrostatic rearrangement and collective pinning

ability may be affected by application of strong ac electric

field. This is a common feature of so-called “hard” ferroelec-

trics,32,33 among which BFO seemingly demonstrates a supe-

rior position in the “hardness” ranking. Our preliminary

study indicates that hardening-softening of ferroelastic

domains may occur in BKTF ceramics as well.

Ferroelectric softening achieved by modification of bis-

muth ferrite with 30% of BKT can presumably be caused by

randomization of pining centers and/or reduction of their

concentration. Partial substitution of trivalent ions by aliova-

lent K and Ti causes structural disorder that is proposed to

induce softening, i.e. enhancing the irreversibility of domain

wall motion in ferroelectrics.34,35 In addition, the decrease of

potentially mobile charge species associated with [V••
O] and

[Fe
•

Fe] along with BKT concentration implies reducing of do-

main wall pinning centers responsible for hardening. We

shall note, however, that the role of Fe
•

Fe in ferroelectric

hardening has never been addressed and is presently not

known.

In summary, a systematic study of the conductivity of

BKT-BFO ceramics with respect to variation of the composi-

tion, temperature, and oxygen partial pressure has been per-

formed. The ceramics showed a tendency of increasing p-

type conductivity along with increasing BFO content. The

behavior of the conductivity in ceramics with a relatively

high BFO content (x� 25%) was consistent with the hypoth-

esis of polaron hopping mechanism, previously suggested

for bismuth ferrite and related materials.16,17 Annealing of

the BKTF-70 ceramics in nitrogen was shown to suppress

the electrical conductivity, facilitating characterization of the

large bipolar strain at high electric fields. The ceramics dem-

onstrated better stability of the bipolar strain response com-

pared to undoped bismuth ferrite. The improved electric

field induced strain performance by modification of BFO

ceramics with BKT was discussed in relation to ferroelectric

“softening” of the material.

The work was carried out within the LEADFREE

research project financed by the Norwegian Research

Council, FRINATEK Grant No. 197497.
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