Published in Journal of Physical Chemistry B, 2017, 121 (45), 10429-10434

Thermodynamics Far From the Thermodynamic Limit

Rodrigo de Miguel*

Department of Teacher Education
Norwegian University of Science and Technology, 7491 Trondheim, NORWAY.
rodrigo.demiguel@ntnu.no

J. Miguel Rubi

Departament de Fisica de la Matéria Condensada, Facultat de Fisica
Universitat de Barcelona, 08029 Barcelona, SPAIN.
mrubi@ub.edu

Abstract

Understanding how small systems exchange energy with a heat bath is important to describe how
their unique properties can be affected by the environment. In this contribution, we apply Landsberg's
theory of temperature-dependent energy levels to describe the progressive thermalization of small
systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small
system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a
final state of thermal equilibrium. This produces standard thermodynamic results without invoking
system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a
system with a quantized spectrum than can be embedded in a thermal environment. A description of
how the thermal environment affects the spectrum of a small system can be the first step in using
environmental factors, such as temperature, as parameters in the design and operation of nanosystem
properties.
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1. Introduction

Modern fabrication techniques are producing ever smaller systems that escape the paradigms of
classical thermodynamics®. This has stimulated interest in a quantum description of nonequilibrium
processes, a phenomenon which has been studied using fluctuation relations®?, quantum Brownian
motion®, and the eigenstate thermalization hypothesis (see e.g. ref. 7). Indeed, the often appealing (see
e.g. refs. 8-10) physical properties of small systems are intimately related to the discrete nature of their
energy spectrum. Nevertheless, quantum systems do have thermal properties which are conditioned by
the energy of the available eigenstates and the information these energies provide about the state of
the system. Thus, understanding how a small system exchanges energy with a heat bath is crucial to
describe how its properties can be affected by the environment.

Models have been proposed that treat the heat bath as a large collection of oscillators connected
to the small system through springs (see e.g. refs. 11, 12 and references therein). A simpler approach
that may be used to describe how energy spectra, and the resulting physical properties, are affected by
thermal environments is extending the theory of temperature-dependent energy levels®® that Pathria
and Beale refer to in their landmark textbook in Statistical Mechanics (see footnote in page 39 of ref.
14). This theory, first introduced by Rushbrook in 1940" and later refined by Elcock and Landsberg in
1956", accounts for the external thermal environment as a perturbation that results in a modified
energy landscape. The temperature-dependence of energy levels is directly observable, for example, in

semiconducting materials'®, affecting properties of modern nanoscaled semiconductors®’

19,20

, oftenin a
manner which strongly deviates from bulk behavior

Recently, effectively temperature-dependent Hamiltonians have been considered in stochastic
thermodynamic521, and an explicitly temperature-dependent Hamiltonian has been used to analyze the
dynamics of an optomechanical oscillator embedded in a heat bath®% In recent work® we have shown
that Elcock and Landberg's theory™ of temperature-dependent energy levels provides a
thermostatistical basis to the renowned Nanothermodynamics that Hill introduced in the 1960s%*2°,
where he proposed a new thermodynamic potential to account for non-additive interactions between
small systems (for a modern review and applications of Hill's theory see refs. 27,28). In this contribution,
we apply Elcock and Landberg's theory™ to describe the progressive thermalization of small systems as
their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system
undergoes a discrete series of excitations and spectrum adjustments leading towards a state of thermal
equilibrium. We show that, while the complete process is irreversible, each of the excitations is locally
reversible. Known thermodynamic results, normally produced using the thermodynamic limit, are
obtained without reference to system size. As a model example, we analyze a harmonic oscillator
embedded in a heat bath, and we show that the thermalization process is affected by the relationship
between the heat bath temperature and the fundamental frequency of the oscillator.

The rest of the paper is organized as follows. In Section 2, we present the theory of spectrum
thermalization based on temperature-dependent energy levels. In Section 3, we use the theory to



analyze the energy and temperature of a harmonic oscillator as it comes to equilibrium with a thermal
environment. Concluding remarks are given in Section 4.

2. A small system in a heat bath

In this section, we describe how the energy landscape available to a small system becomes
progressively modified as it exchanges energy with a heat bath. The energy of a small system is
characterized by the discrete eigenstructure of its Hamiltonian. As the system absorbs energy from the
environment and gets excited to its n'" energy level, it adopts a temperature T,,, defined by

gn - gn—l
Sn - Sn—l'

where &, is the n'" eigenvalue of the Hamiltonian, and §,, is the associated entropy given by the

T, = (1)

Boltzmann entropy formula

S, =kglng,, (2)

where kg is Boltzmann's constant, and g, is the degeneracy of the nt energy level.

Due to the quantization of energy and entropy, there is a restricted set of temperatures (1)
available for an isolated small system. In order for the system to achieve equilibrium with a thermal
reservoir, the quantized energy spectrum must adapt so that (1) can conform to the externally dictated
temperature. This brings us to the somewhat unusual notion of temperature-dependent energy levels®.
The generalization is simple: assuming that the eigenvalues £, of the Hamiltonian can be perturbed by
the heat bath temperature (equilibrium temperature) T, then the equilibrium expression for the energy
E of the system

d
E = kpT? Z By ﬁln(ZPH) with Z = Z e u/keT  ang B, = Z e u/ksT
u u

(where sums are taken over the microstates u corresponding to each energy level, each of which has
probability P, ), reduces to™®

E = P <‘:‘—Tdﬁ
= u\ Cu ar ) (3)

which differs from the usual expression only by the last term in the right hand side. For simplicity, we
rewrite this expression as

E=£—T<C%>, (4)

where € = (£M), and (-) represents the average over all available microstates u. Assuming the average

(dEu/dT) is constant and taking increments on both sides yields



dé
TAS = AE — (=) AT, 5
( 7 ) (5)
where the equilibrium temperature T is given by the usual T = AE'/AS.

Expression (5) is an extended second law of thermodynamics, first proposed by Shental and
Kanter while modelling communication channels as thermal systems in their landmark contribution (ref.
29). More recently, Yamano has used this law to describe heat losses in thermoelectrical devices®. This
form of the second law of thermodynamics describes the following physical process: As a small system
comes into thermal contact with a heat bath T, an amount of heat A€ is absorbed. This heat excites the
system along its intrinsic energy/entropy landscape. The system then relaxes isentropically an amount
(dS#/dT)AT by simply changing the spacing between the energy levels. The contribution of the heat
that increases the entropy of the system is thereby reduced from AE to AE — (dé‘ﬂ/dT)AT. As we
explain below, it is through a series of such excitations and spectrum adjustments that a small system
comes to equilibrium with the heat bath.

Figure 1 illustrates how a heat bath progressively thermalizes a small system. Upon contact with
the heat bath T, the system becomes excited along its quantized energy/entropy landscape until it
adopts an energy level £,, with temperature T,, > T. This excitation is followed by an isentropic
relaxation that adjusts the system's temperature by simply bringing the energy levels closer together:
the energy levels change from the original set {£;} to become a perturbed set {Sj(l)}. As a result,
although the system is still in its n™ energy level, the temperature is no longer T,, > T given by (1), but
instead a lower temperature T,El) which is equal to T. As the heat bath continues to emit photons, the

7(11)1' and it adopts a temperature Trfi)l > T. After this

excitation, a new isentropic relaxation occurs that brings the energy levels even closer together, from

system gets excited to the next energy level, now £

the set {8].(1)} to the denser set {8].(2)}. As a result the temperature of the system is lowered from

Tn(i)l > T to a lower T,Ei)l which is equal to T. The process is repeated in a sequence of increasingly
(2)
T,

. . V4
smaller excitations to levels €% Ntz

n+z

with temperature given by

(2) (2)
2 _ E _ £n+z - 8n+z—1 >T, (6)

mETAS Sn+z = Sn+z-1

and isentropic relaxations to temperatures T,Ei:l)obeying
(z+1) _
Tn+z =T. (7)

At the limit, the energy levels form a continuum and the system fluctuates reversibly in the heat bath.
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Figure 1. An isolated small system absorbs a photon from a heat bath T It is thereby excited to a level with energy &,
entropy S, given by (2), and temperature T,, > T given by (1). The energy spectrum is thereafter isentropically relaxed from

the original set {8]-} to the perturbed set {81.(1)} in order for the system to adopt the heat bath temperature T given by (7). As

a result, the system’s energy is isentropically lowered from &, to 8,(11). A new photon is absorbed from the heat bath,

resulting in a new excitation from level 8,(11) to 87(1?1 and a higher temperature T,Ei)l € (T, T,) given by (6). The spectrum is

thereafter isentropically relaxed from the set {81.(1)} to the denser set {81.(2)} in order to newly adopt the heat bath
€] )

temperature T given by (7). As a result, the system’s energy is isentropically lowered from &, /; il

to € After a new

excitation, the system is brought from 8,(531 to 8,(1222 and adopts a temperature TYE?Z e (T, T,Ei)l) given by (6). The process is

repeated in a sequence of increasingly smaller energy exchanges until the spectrum becomes a continuum and the small
system fluctuates reversibly in the heat bath.

It should be noted that, when an excited energy state with temperature T,Ei)z > T shall relax to
T, it faces two choices: either it spits back the exciting photon AE (i.e. it moves to the left in Fig. 1), or it
modifies its spectrum by relaxing (deﬂ/dT)AT (to the right in Fig. 1). Looking at eq. (5), we see that the
change in free energy going to the left is equal to the change in free energy going to the right, namely
—(dSﬂ/dT)AT. This means that the system is equally likely to make either choice. This local reversibility
is not at odds with the irreversibility of the total process. As long as the system’s spectrum is discrete, it
will continue to assimilate finite energy packets from the heat bath. Climbing up the entropy ladder over
increasingly smaller energy gaps (to the right) is over time more favorable than it would be to increase

the energy at constant entropy (to the left). It has indeed recently been argued that the ultimate cause



behind macroscopic irreversibility can be traced back to an inherent irreversibility in photon-exchange
31,32

processes between small systems and their environment
For every step in the process, there is an amount of heat AE that is absorbed, and an amount of
work (dEu/dT)AT done on the spectrum. The efficiency 17, of the z™ step is the ratio of the work to the

heat, which, invoking (5) and (6) reduces to

T
Nz = 1—T(—Z)- (8)

n+z

Remarkably, expression (8) is similar to the efficiency of a heat engine operating reversibly
(2
T,

m+z and a cold reservoir at temperature T (see e.g. ref. 33). In

between a hot reservoir at temperature
the thermalization process we describe, an amount AE — (d£u/dT)AT of heat results in an entropy
increase (5), which may be thought of as heat arriving at a cold reservoir. The system releases energy
(d&u/dT)AT into the environment by relaxing its spectrum, which may be thought of as work done by
the system on the environment. The heat supplied, AE, depends on the difference between the heat
T2

ez Of the system's next excited state; this heat, however, is

bath temperature T and the temperature
not flowing from hot to cold, it is just a fluctuating exchange between the heat bath (who supplies AE)

and the system (who gives back (dé‘ﬂ/dT)AT ).

As we shall see below, the level n of the first excitation depends on the temperature of the heat
bath. It is important to note that the temperature of any finite system is generally greater than the
temperature of the heat bath, becoming equal only in the thermodynamic limit, as thoroughly argued
by Pyun* and McFee®>. Combining (5) and (6) we see that these two temperatures are related by

7@ Ag
n+z — AT (9)
T AE  dE, )
AT~ Sar

becoming indeed equal as the heat capacity explodes in the thermodynamic limit. Another way of
equalizing both temperatures, irrespective of size, is by the thermalization process described above,
which turns the spectrum into a continuum and leaves no room for further spectrum perturbations
(d€,/dT).

It should also be noted that, when all energy levels are pressed together as z — o, then the

degeneracy of the (n + z)™ energy level approaches g4, + Gniz—1 + Gn+z—2 + *** + go, and as a

kB In Z Im, (10)

msn+z

result the entropy S,,,, (2) becomes



which is Gibbs' volume entropy. This alternative entropy is known to be equivalent to the Boltzmann
entropy (2) in the thermodynamic limit*®. The thermalization process described here produces the same
result irrespective of system size.

3. Example: Harmonic Oscillator

A harmonic oscillator is a simple example of a small system whose spectrum can be affected by a
thermal environment. The harmonic oscillator model can be used to describe a particle whose position
is constrained to remain approximately the same, such as an atom in a molecule. A practical example

37,38

are nanomechanical oscillators, which are very sensitive to thermal noise and can, under controlled

temperature conditions, be used as high precision mechanical sensors*. Harmonic effects are also
important when modelling electronic-vibrational coupling and band-gap changes in single molecules*®*,

modern nanosemiconductors®, and guantum dots™.

We consider a single three-dimensional isotropic oscillator with fundamental frequency w,
energy &, and degeneracy g,, given, respectively, by

Em =(m+3/2)hw, (11)

Im=(m+1D(m+2)/2, (12)

where h is the reduced Planck constant and m is a natural number. As the oscillator comes into contact
with a heat bath T, it is excited to a temperature T,, > T given by (1). The level n of this first excitation
depends on the relationship between the heat bath energy kzT and the transition energy hw of the
oscillator. After the first excitation, the system undergoes a series of spectrum relaxations and new
excitations, as illustrated in Fig. 1. Each spectrum relaxation adjusts the frequency of the oscillator just
enough to reduce the numerator in (1) and have the system adopt temperature T.

If kgT is small compared to hw, the first excitation upon contact with the heat bath is small;
many spectrum contractions and excitations must follow before the system occupies highly entropic
energy levels. On the other hand, if kg T is large compared to Aiw, the first excitation is many levels up,
and the thermalization process can start from a higher energy level. The number of thermalization steps
needed to achieve a certain Ty sem /T is lower for larger kg T /hw. Following the initial excitation, the
number z of relaxation-excitation steps needed to achieve Tsystem < (1 + @)T is given by

1+E—2’;f—£ if 0<l;lB—(ZS1/ln —E;Ztﬂ
Z= . . keT _ o [[1/al +1 ’ (13)
| T e =Y “[—n/a]—ll

where [x] = min{p € Z|p = x}. Figure 2 shows two examples that start the thermalization process
from the first excited state (left) and the fourth excited state (right), and come within 10% of the heat
bath temperature after 10 and 7 steps, respectively.
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Figure 2. The first steps in the thermalization process of a harmonic oscillator, with kzT /hw = 0.5 and kgT /hw = 2. When
kgT /hw is greater, the thermalization process starts from a higher energy level. Following the initial excitation, the number
of relaxation-excitation steps required to achieve a certain Ty s¢em /T decreases with the ratio kT /hw.
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Figure 3. The internal energy of the small system evolves towards an equilibrium value.

The system evolves towards equilibrium with its environment by successively absorbing photons
(excitations) and releasing energy (spectrum relaxations). The internal energy of the system evolves
accordingly towards an equilibrium value. In the case of a single three-dimensional oscillator, that value
is 2kgT, as shown in Fig. 3. This value, which may appear to be at odds with the equipartition theorem,
is explained in the following.

For an Einstein solid with N three-dimensional oscillators and g energy quanta, the internal
energy may be expressed in terms of the equilibrium temperature as

qkgT In[1+ 3N/q],

which, in the high temperature (g > 1) limit, becomes 3NkgT. In ref. 23 (eq. 43 therein) we showed
that, if the solid is in its m™ energy state, then the energy may be also be expressed as



qkpTy In[1+3N/q —1/q],

where T, is not the equilibrium temperature T, but instead the temperature (1) corresponding to the
m™ state of the unperturbed system. When the system relaxes its spectrum and lowers its m™ energy
level in order to make T, equal to T, an amount kzT of energy is released to the environment. Indeed,
if T, is made equal to T, the last expression becomes (3N — 1)kgT as opposed to 3NkgT. In ref. 23, we
show that the missing kg T can be identified as the subdivision potential Hill introduced in his top-down

nanothermodynamic526.

4. Concluding remarks

Extending the descriptive scope of thermodynamics beyond bulk systems is becoming
increasingly relevant as we develop the ability to fabricate ever smaller systems. Understanding how
small systems exchange energy with a heat bath is important to describe how their unique properties
can be affected by the thermal environment. In this work we have used Elcock and Landsberg's theory
of temperature-dependent energy levels® to account for the progressive thermalization of small
systems without invoking the thermodynamic limit. We have shown that, as the small system is
thermalized, its microcanonical temperature (1) approaches the heat bath's canonical temperature,
which is a classical thermostatistical result usually reliant on system size. Another thermodynamic result
that requires the large system limit is the equivalence between Boltzmann's surface entropy (2) and
Gibbs' volume entropy (10); we have shown this equivalence occurs, irrespective of system size, when
the system's energy levels are perfectly compressed at the end of the thermalization process. Both the
classical thermodynamic limit and the spectrum thermalization process we describe result in an energy
continuum. However, the latter is better suited to account for small systems, which can be seen as a
subsystem in a larger heterogeneous thermodynamic system.

As a model example that has a quantized energy spectrum and can be embedded in a thermal
environment, we have analyzed a single harmonic oscillator. We have shown how the number of steps
in the thermalization process is affected by the ratio of the heat bath temperature to the oscillator's
fundamental frequency. When the heat bath energy kg T is small compared to the oscillator's quantum
hw, the system must begin with a small excitation and undergo many spectrum contractions to
approach thermal equilibrium. On the other hand, if kgT is large compared to hw, the thermalization
process can start from a higher energy level and fewer spectrum contractions are needed to approach
equilibrium.

Whether or not a system can be considered small is not so much a function of its sheer physical
size, but most importantly characterized by how it is affected by its surroundings (see e.qg. refs. 23,43).
Truly small systems are always embedded in some kind of environment with which they have non-trivial
interactions as they evolve towards equilibrium. As we have shown, the spectrum perturbation caused
by the heat bath makes the microcanonical temperature evolve towards the canonical temperature.
This idea could be useful, for example, to describe how a nanoparticle comes to thermal equilibrium
with a photon gas** and how the temperature of a protein equilibrates with that of the environment™®.



In nonequilibrium systems where thermal equilibrium exists, a similar analysis may be used, for
example, to explore how a grand-canonical environment perturbs the energy spectrum and drives the
evolution of the chemical potential of a small system, something which may be relevant to describe
mass transfer processes in biological systems and in chemical reactions. Understanding how the
environment affects the spectrum of a small system can be the first step in using environmental factors,
such as temperature or chemical potential, as parameters in the design and operation of nanosystem

properties.
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