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Abstract

The topic of this paper is the application of nonlinear model predictive con-
trol (NMPC) for optimizing control of an offshore oil and gas production
facility. Of particular interest is the use of NMPC for direct short-term
production optimization, where two methods for (one-layer) production op-
timization in NMPC are investigated. The first method is the unreachable
setpoints method where an unreachable setpoint is used in order to max-
imize oil production. The ideas from this method are combined with the
exact penalty function for soft constraints in a second method, named in-
feasible soft-constraints. Both methods can be implemented within standard
NMPC software tools.

The case-study first looks into the use of NMPC for “conventional” pres-
sure control, where disturbance rejection of time-varying disturbances (caused,
e.g., by the ‘slugging’ phenomenon) is an issue. Then the above two methods
for production optimization are employed, where both methods find the eco-
nomically optimal operating point. Two different types of reservoir models
are studied, using rate-independent and rate-dependent gas/oil ratios. These
models lead to different types of optimums. The relative merits of the two
methods for production optimization, and advantages of the two one-layer
approaches compared to a two-layer structure, are discussed.
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1. Introduction

In many industries there are strong incentives for dynamic process op-
eration with improved profitability, enhanced flexibility, and reduced envi-
ronmental footprints. As a response to this there has been a trend, at least
in academic literature, towards closer integration of process control and eco-
nomic process optimization [e.g., 1, 2, 3, 4] to address perceived shortcomings
of traditional multi-layer control structures. Such integrated approaches are
sometimes called dynamic real-time optimization (DRTO).

As oil and gas reserves become increasingly hard and expensive to explore
and produce, there is a drive towards applying optimization strategies used
in traditional chemical process industries to ensure profitable operation of oil
and gas production [e.g., 5, 6].

The main objective in this paper is to study how dynamic real-time op-
timization in the form of nonlinear model predictive control (NMPC) can
be used for short-term production optimization in an offshore oil and gas
processing plant. While long-term production optimization strives to opti-
mize net present value of the reservoir resources, short-term optimization
is about optimizing daily production rate (throughput) given the injection
and production strategies chosen by the long-term production optimization.
Thus, short-term production optimization is similar to production optimiza-
tion found in other process industries.

This study employs an industrial NMPC setup, and it is therefore focused
on methods that can be implemented directly in such a package. It is assumed
(with little loss of generality) that the production optimization objective can
be cast as maximization of one (or more) of the controlled variables. Two
methods are studied: the use of unreachable setpoints [7], and infeasible soft-
constraints (see also [8]). To the authors’ knowledge, the use of the latter
approach in an economic optimization setting is new.

The NMPC formulation used is presented in Section 2, and approaches
to direct production optimization are discussed, with emphasis on methods
using unreachable setpoints and infeasible soft-constraints. In Section 3 a
case study based on a fairly complex, realistic model of an offshore plant
for oil and gas production is presented. We first study NMPC used for
conventional pressure control in Section 4, where production optimization can
be achieved by letting the NMPC setpoint be given from knowledge of active
constraints of the economical optimum (similar to a two-layer approach).
Disturbance rejection is also included in this case.
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We then present the use of the one-layer approaches in two cases in Sec-
tion 5: First using constant gas/oil ratios in the reservoir models (as in
Section 4), where the optimum is characterized by active constraints, and
then using variable gas/oil ratios, which results in an economic optimum
that is not at a constraint. The latter case was also presented in [8]. We end
the paper with some concluding remarks.

2. Nonlinear model predictive control and production optimization

In this section the NMPC formulation used in the paper is presented.
Then production optimization is discussed, with emphasis on methods in-
cluding economic objectives directly in the NMPC control objective function.

2.1. NMPC formulation

The nonlinear dynamic model representation used for NMPC prediction
in this study is on discrete form

xk+1 = f(xk, uk, dk), (1a)

zk = h(xk, uk), (1b)

where xk ∈ Rnx are the states, uk ∈ Rnu are the inputs, dk ∈ Rnd are
known (measured or estimated) disturbances, and zk ∈ Rnz are the controlled
outputs.

We assume the following NMPC optimization formulation, where we in-
clude ‘exact penalty’-type soft output constraints:

min
{∆uk+i}, {εk+i}

J(xk, dk, uk−1) =
P∑
i=1

‖zk+i−zref‖Q+
N−1∑
i=0

‖∆uk+i‖S+
P∑
i=1

r>εk+i

(2a)
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subject to

xk+i+1 = f(xk+i, uk+i, dk), i = 0, . . . , P − 1 (2b)

zk+i = h(xk+i, uk+i), i = 1, . . . , P (2c)

uk+i = uk+i−1 + ∆uk+i, i = 0, . . . , N − 1 (2d)

uk+i = uk+i−1, i = N, . . . , P − 1 (2e)

zmin−εk+i ≤ zk+i ≤ zmax+εk+i, i = 1, . . . , P (2f)

umin ≤ uk+i ≤ umax, i = 0, . . . , N−1 (2g)

∆umin ≤ ∆uk+i ≤ ∆umax, i = 0, . . . , N−1 (2h)

0 ≤ εk+i ≤ εmax, i = 1, . . . , P. (2i)

where P > N are the prediction and control horizons, Q ∈ Rnz×nz and S ∈
Rnu×nu are the weighting matrices of output and input moves, respectively,
and the vector r ∈ Rnz is the penalty weight for constraint violations εk+i.

We believe the above formulation is fairly standard for industrial NMPC
packages [9, 10]. Formulations employing soft output constraints via exact
l1 penalty functions are well-known from literature [11, 12] and are used in
some industrial NMPC systems [10, 13]. The main rationale behind its use is
to avoid feasibility problems related to hard output constraints. By allowing
upper limits on the constraint violations εk+i, hard output constraints may
also be included in this setup. Often, also quadratic (non-exact) penalties
on the constraint violations are implemented, but for simplicity we do not
include this here.

The above formulation is a state feedback policy, and must be coupled
with a state- and parameter estimation scheme to obtain output feedback
and integral control. This is not of direct relevance to the study herein, and
therefore not discussed in more detail.

2.2. Production optimization

The control structure in a process plant is often divided into several layers
separated by time scale, see, e.g., [10]. The MPC may be located in a control
layer, responsible for multi-variable coordinating and constraint handling
control, whereas a real-time optimization (RTO) system is a model-based
system using steady-state models which can be located above the MPC in
the control hierarchy, providing setpoints to the MPC.

Such a two-layer approach has several advantages and is widely used.
However, if a (nonlinear) process model with validity over the entire oper-
ational window is used, one might argue that the two-layer approach can
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be replaced by a one-layer approach by augmenting or replacing an MPC
quadratic tracking cost function with an economic cost function. Advan-
tages of such a scheme (see, e.g., [2]) include faster reaction to disturbances,
exact constraints can be implemented for measured variables, inconsistencies
between models are avoided, and all degrees of freedom can be used to opti-
mize the process, also during transients. A disadvantage of using a one-layer
approach is that the demands on the model used for dynamic optimization
may be higher, typically implying increased computational demand.

An economic cost function in a one-layer approach may be expressed as
the sum over the prediction horizon of an economic profit function l(x, u),

Jeco =
P∑
i=0

l(xk+i, uk+i), (3)

see, e.g., [2, 4, 14]. In many cases a linear profit function is used,

l(x, u) = a>x + b>u.

A practical objection to using purely economically motivated cost func-
tions is that it may lead to overly aggressive control which might be unaccept-
able to operators, or (sometimes related) have robustness issues. Therefore,
one is in practice often faced with a multi-objective optimization problem:
that of optimizing economic performance together with (or subject to accept-
able) control performance [15]. An example of this is given in [16], where
a combined tracking and economic optimization criterion is used to opti-
mize liquefied petroleum gas (LPG) production in an fluid catalytic cracking
(FCC) process.

The two approaches to one-layer production optimization we study in
this paper are two methods that are simple to implement in many “stan-
dard” MPC tools (cf. previous section). Both approaches allow a trade-off
between economic and control performance (as measured by a NMPC track-
ing objective, cf. (2a)) based on tuning, although tuning this trade-off is not
necessarily straightforward. In both cases we assume the controlled variables
are either

• variables that should track a reference (setpoint) and/or stay within
bounds, denoted ztrac, or

• variables to be optimized, denoted zopt,
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such that we can partition z = (ztrac, zopt). In the case of an economic profit
function l(x, u), one may use zopt = l(x, u).

Assumption 1. The combination of model (1), initial states, input (2g),
and hard output constraints (2i) are such that zopt is upper bounded.

2.3. Unreachable setpoints

The first method is the use of unreachable (infeasible) setpoints by se-
lecting high/low unreachable setpoints for the variables that should be max-
imized/minimized (zopt). This is a simple method that allows the inclusion
of economic optimization in most standard MPC tools. Use of the method
is related to the practice (in linear MPC, at least) of using target calculation
and a priority hierarchy [17] for doing production optimization in a single
MPC layer.

The use of unreachable setpoints is analyzed in [7] for linear MPC, and
conditions for stability and convergence are established. Moreover, [7] com-
pares MPC using unreachable setpoints to a standard two-layer structure
with a target-tracking cost function in two examples, and considerable cost
improvements are achieved under certain disturbance scenarios.

Let Q be partitioned conformly to z as

Q =

[
Qtrac 0

0 Qopt

]
.

The first part of (2a) can now be written as

‖zk+i − zref‖Q = ‖ztrac,k+i − ztrac,ref‖Qtrac + ‖zopt,k+i − zopt,ref‖Qopt ,

where zopt,ref are the unreachable setpoints used to optimize the correspond-
ing controlled variables.

A possible drawback of this method can be seen by examining the con-
tribution of the unreachable setpoint to the sensitivity ∂J

∂∆uj
of (2):

P∑
i=1

(zopt,k+i − zopt,ref)
>Qopt

∂zopt,i

∂∆uj

. (4)

The gradient (4) will be involved in the KKT conditions for optimality, and
it is clear that the actual (likely somewhat arbitrary) value we choose for
zopt,ref may affect the solution of the NMPC optimization. This might give

6



difficulties in tuning, and can also cause unexpected behavior after retuning
and/or reconfigurations and change of operating points.

Standard methods for ensuring stability of NMPC schemes like (2) consist
of adding stability constraints and/or “quasi-expand” the horizon to infin-
ity [18]. However, cost functions using unreachable setpoints are unbounded
on infinite horizons, and thus standard analysis of stability and convergence
employing cost functions as Lyapunov functions can no longer be used. This
has been a subject of recent research, and is for linear MPC analysis provided
in [7], while results towards nonlinear systems can be found in [14].

2.4. Infeasible soft-constraints

The exact penalty function and infeasible soft-constraints can be used as
a method for production optimization in a similar manner as unreachable
setpoints. The discussion here is based on the exact l1 penalty function [11].
To keep the presentation simple we limit ourselves, without loss of generality,
to maximization of zopt.

The basic idea is to select the lower constraint zopt,min of zopt larger than
the maximum value that can occur. In other words, choosing zopt,min such
that zopt will always be infeasible with respect to this constraint. Note that
this is always possible under Assumption 1.

Do a partition of r and εk conformal to z such that r = (rtrac, ropt) and
εk = (εtrac, εopt). By choice of (infeasible) zopt,min, we will always have

zopt,k+i < zopt,min ≤ zopt,max.

This implies that the lower bound on the constraint (2f)

zopt,min − εopt,k+i ≤ zopt,k+i ≤ zopt,max + εopt,k+i

will always be active, that is, we will always have

εopt,k+i = zopt,min − zopt,k+i > 0.

The last term of the cost function J in (2) can now be written as

P∑
i=1

r>εk+i =
P∑
i=1

r>opt (zopt,min − zopt,k+i) +
P∑
i=1

r>tracεtrac,k+i.

Letting Q be partitioned conformly to z as

Q =

[
Qtrac 0

0 0

]
,
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we have shown that in this case, an equivalent form of (2a) is

J(xk, dk, uk−1) =
P∑
i=1

‖ztrac,k+i−ztrac,ref‖Qtrac −
P∑
i=1

r>optzopt,k+i

+
N−1∑
i=0

‖∆uk+i‖S +
P∑
i=1

r>tracεtrac,k+i, (5)

that is, we have obtained a linear (economic) optimizing term in the objective.
The sensitivity of the objective function with respect to the variables that

we want to optimize is now independent of choice of zopt,min (as long as it is
large enough) and the particular operating point, which can give easier tuning
than the unreachable setpoint method. That is, the penalty weight ropt is
now a linear cost weight with a role corresponding to Qopt for unreachable
setpoints, but it can (in theory) be tuned independently of the value chosen
for the infeasible constraint, and the effect is to some degree independent of
operating point.

However, it should be noted that the choice of ropt in relation to the choice
of rtrac can be a delicate matter with significant impact on dynamics when
some of the remaining output constraints are active. Also, strategies for
complexity reduction might introduce ‘blocking strategies’ on εk+i which will
have an impact on the solution. These tuning issues are subject to further
investigation but will not be addressed in this paper.

Note that as in the previous section, the cost function will be unbounded
on the infinite horizon, since by assumption zopt,min−zopt,k+i > 0. In principle
the methods of [14] can be used for stability and convergence analysis, if
appropriate stability constraints are added.

3. Short-term production optimization of offshore oil and gas pro-
duction

3.1. Offshore oil and gas production

The main objective of an offshore oil and gas processing plant is to trans-
port and separate oil, gas, and water produced from a set of underground
reservoirs. Oil is transported in pipes or stored in cargo tanks for export,
and gas is compressed for re-injection, gas lift, and/or export. On the seabed
there can be a large number of wells that have been drilled into the reservoirs,
ordered in clusters. Pipes transport the streams from the different wells and
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clusters through a network on the seabed to a production manifold. The
production manifold can route the stream (either to a test separator or) to
the first stage of a production separator train, which separates oil, gas, and
water. We assume in this paper that the main product in terms of revenue
is oil, and that the gas has little direct value.

On a long term, the objective for process optimization is typically to
maximize total recovery or net present value of the overall reservoir resources.
This is achieved by deciding which wells to produce from (routing), and to
what extent to use water flooding, gas injection, etc., to make optimal use
of the reservoir resources. Herein, this problem is not considered and the
routing and use of recovery methods are considered fixed.

The topic of this paper is thus optimization of production rate given a cho-
sen long-term strategy. This is sometimes called a short-term optimization
problem, where the problem can be considered time-independent [5, 19, 20].
A typical issue is how to maximize oil production from the producing wells,
which have varying (production dependent) gas, oil, and water contents, un-
der topside processing constraints (e.g., limited gas compression and water
treatment capacity).

This study concentrates on optimization and control, while important
issues like model updating (state- and parameter estimation) and robustness
to modeling errors are considered outside the scope of this paper. Challenges
with integrating large-scale models for online use are discussed in [21], where
ways for state- and parameter estimation for a similar model as in this paper
are presented.

3.2. Case description

The case is based on a model of a rather generic offshore oil produc-
tion facility, including wells, pipelines and topside (platform). The model
is developed using the Modelica-based advanced modeling software Dymola,
using Cybernetica’s in-house Modelica library for oil and gas production sys-
tems, named CyberneticaLib, along with components and interfaces from the
Modelica Standard Library (in particular Modelica.Fluid). The scope of the
model is integration in a real-time system. Thus, it is not as complex as some
process simulators, but complex enough to capture key process dynamics in
an offshore processing plant. The resulting model includes multi-phase flows
through pipes and chokes, different gas/oil ratios (GOR) in near-well models
of reservoirs, a multi-phase separator, and a polytropic head relationship in
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the compressors. The reservoir models are time-independent, and are thus
limited to the short-term scope studied in this paper.

The model used in this case study has 249 dynamic states. Even though
the model is fairly large, it is efficient enough to ensure that all NMPC
optimization problems reported here are solved within real-time demands
with a sample time of 1 minute. Since we do not consider model uncertainties
we use the same model both in the NMPC and for simulation.

Figure 1: Process overview. CVs, MVs, and DVs are indicated.

A schematic overview of the model is shown in Figure 1. The overall
structure is a set of well clusters which are mixed in a production manifold
and fed to a separator train (topside process) that separates and processes
gas, oil, and water. In each cluster there are one or two wells. Clusters O and
M have similar types of wells, whereas gas injection is modeled in the well in
Cluster Q. The ‘Remaining Clusters’-part represents a lumped set of clusters
each having several wells, but where we assume there is no control degrees
of freedom. The conditions in this cluster are set such that the majority of
the total production is produced here and that the typical total production is
within typical values. The typical height from the clusters up to the manifold
is 330 meters, and the depths from the well heads to the reservoir are set to
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be around 1200 meters.
The short-term economic objective is to maximize oil production within

the plant’s operating limits, by adjusting the production from the different
active wells. That is, we define zoil as the total production of oil, and choose
zopt = zoil.

Depending on both the plant and the stream from the reservoirs, limited
processing capacities for either oil, gas or water can limit the production, but
in many cases, including this one, gas processing capacity is the main limiting
factor. A consequence is often that the pressure in the inlet separator tank
will be an active constraint under optimal production, since this typically
maximizes gas processing capacity. A simple approach to optimizing control
could thus be to use a ‘squeeze and shift’ [22] strategy using a single well as a
‘swing producer’ to keep the inlet separator pressure as close to the limit as
safety allows. In our case the ‘squeeze’ is done by applying pressure control,
reducing variations in the inlet separator pressure. It is then possible to
‘shift’ the pressure setpoint closer its upper limit. A dedicated well called a
swing producer is used to control the pressure.

However, in addition to the dependence on the gas production capac-
ity, the total oil production depends on the GOR and the marginal GOR
(MGOR) in the different reservoirs. GOR is defined as

GOR =
QG

QO

[
Sm3/day

Sm3/day

]
.

If the total field gas rate reaches the plant capacity in a gas-limited plant
with gas coning wells and there are no other active constraints, maximal oil
production is achieved when all the wells have the same MGOR [23]. That
is,

∂QG,i

∂QO,i

=
∂QG,j

∂QO,j

i, j = 1, ..., n (6)

where QG,i [Sm3/day] is the gas flow, QO,i [Sm3/day] is the oil flow of well
i, and n is the number of wells. For wells without rate-dependent GOR,
maximal oil production is achieved by producing as much as possible from
the wells with the lowest GOR values, of course subject to process constraints.

In the following, a set of case studies are carried out with the goal of
maximizing total oil production. In Section 4 we start by demonstrating
how NMPC can be used to implement conventional pressure control, where
increased oil production can be achieved through knowledge of the active
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constraints at optimum, but without any direct optimization. This approach
could be seen as the MPC layer in a two-layer approach.

In Section 5.1 we look at how the unreachable setpoints method can be
applied to optimize total oil production in a one-layer approach. For both
these cases, there is a constant GOR model in the wells. In the case described
in Section 5.2, the model is extended to have variable GOR in the wells in
Cluster O, which (may, and does in this case) introduce optimums that are
not characterized by active constraints. We then compare the unreachable
setpoints method to the infeasible soft-constraints method as methods for
production optimization.

4. Conventional pressure control using NMPC

An offshore oil and gas plant is conventionally controlled with PID con-
trollers. A common problem is oscillations in the controlled variables (pres-
sure, level, flow, etc.). Often these are caused by external disturbances like
slugging, e.g., [24, 25], but also poorly tuned loops may be a cause. The
oscillations will then typically propagate through the plant due to its multi-
variable nature. Good tuning of essential loops will reduce the problem, but
due to the plant’s size this job can be challenging. By using a multi-variable
controller like (N)MPC, the problem is often reduced to selecting weighting
values in a tracking cost, typically Q and S in (2a), but at the cost of devel-
oping and maintaining a process model. Both these control methods can be
used in a two-layer RTO approach as described in Section 2.2, using optimal
setpoints from a higher control level.

In this section a case with a periodic disturbance in the Remaining Clus-
ters (see Figure 1) is studied. Such a disturbance can represent a multi-phase
slug flow, which will affect the pressure zpres1 in the inlet separator, and thus
the total oil production zoil. For simplicity, a sine wave is used as disturbance
drem. The principle of squeeze and shift by using a swing producer (mentioned
in Section 3.2) is applied in order to operate closer to the pressure limit of
the inlet separator. Such a pressure control scheme is conventionally imple-
mented using PID control, but here it is demonstrated how this can be solved
using NMPC. For this specific case in the same operating region it would be
possible to find PID tunings which would perform similar to the NMPC, so
to keep the discussion simple we omit any comparison study. An expected
advantage with an NMPC solution is that retuning in case of changing oper-
ating conditions may be avoided, at the cost of keeping the model updated.
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The well ResO13 is used as a swing producer to counteract the disturbance
using choke uO13. It is often desired that the process variables are kept at
some value or within some range, often chosen by the operator and/or by
some overlying optimization scheme as described in Section 2.2. With a well
in Cluster O as a producer, the line pressure zpresO needs to be included as
a controlled variable to not affect production in the other wells. There is
a requirement of nz = nu = 2 degrees of freedom for control, and thus the
line choke uO is included as a manipulated variable. The controlled vari-
ables (CVs), manipulated variables (MVs) and disturbance variable (DV) of
interest are then

z =
[
zpres1, zpresO

]>
, u =

[
uO13, uO

]>
, d = drem.

The NMPC setup is given by[
19 bar
40 bar

]
≤ z ≤

[
21 bar
80 bar

]
,

Q = diag{10, 0.4}, S = diag{0.01, 0.01},

r =
[
103 103

]>
,[

−20 %
−20 %

]
≤
[
∆uO13

∆uO

]
≤
[
20 %
20 %

]
,

[
10 %
10 %

]
≤
[
uO13

uO

]
≤
[
100 %
100 %

]
,

where the inlet separator pressure zpres1 is prioritized over the line pressure
zpresO in Cluster O. A prediction horizon of P = 30 min is used, which is
longer than the dominant time constants in the system.

The model is first simulated with no control for 90 minutes with constant
choke openings uO13 and uO of 30 %. The disturbance drem, starting at t =
8 min, results in a sinusoidal response in zpres1 and zpresO as shown in Figure
2. Simulating again using NMPC with setpoints equal to open loop steady-
state values zpres1,ref = 20.00 bar and zpresO,ref = 57.07 bar, it can be seen in
the first 45 minutes of the simulation that the controller manages to reduce
the effect of the disturbance (‘squeeze’) in the prioritized zpres1. Utilizing
this reduction, the setpoint zpres1,ref is increased (‘shifted’) to 20.10 bar at
t = 45 min, giving the same maximum value for zpres1 as without control.
Pressure control of the inlet separator is achieved without any substantial
deviation from setpoint in zpresO, and without having any excessive actuator
use of uO13 and uO. As described in Section 3.2, maximum oil production
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Figure 2: Pressure control with sine disturbance drem.

is achieved with the inlet pressure being as high as possible. Increasing this
pressure, the total gas production is increased due to a decreased compressor
head. With a limitation in gas processing capabilities in the plant, the total
oil production is then increased as shown in Figure 3. Calculating the mean
value of the total oil production, there is a mean production increase of
57 Sm3/day using NMPC. Then by increasing the setpoint, the production
increase compared to open loop is 143 Sm3/day.

5. Production optimization using NMPC

In the rest of the cases in this paper, the unreachable setpoints method
and the infeasible soft-constraints methods presented in Section 2 are used to
manipulate chokes in Cluster O to optimize total oil production. Indirectly,
this implies finding points where the GOR in the different wells are optimal,
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Figure 3: Total oil production with sine disturbance drem.

as explained in Section 3.2. To best illustrate the effect of the optimization
methods, no disturbances are present. This is still a realistic scenario, since
within the time frame of minutes or hours a real plant can often have more
or less constant process variables.

5.1. Constant GOR

We begin using the unreachable setpoints method on the same model as
in the previous case, with constant GOR in all the wells. The CVs included
in the MPC objective function are the line pressure zpresO in Cluster O,
the inlet separator pressure zpres1 and the total oil production zoil, which
represents the economic variable which should be maximized. In the given
initial production setup zpres1 is considered to be lying on the maximum safe
operating point, which cannot be further increased. The objective is thus to
alter the choke configuration

u =
[
uO13 uO

]>
(7)

in order to further increase production, while not violating this constraint.
With u from (7) there are two degrees of freedom for optimizing oil pro-

duction and for setpoint tracking. There are no specifications on setpoints
for zpres1 and zpresO other than that they must lie within some limits, giving
two degrees of freedom for maximizing oil production. Note that these set-
points in Section 4 were set to be at the initial process values, without any
consideration of their optimality.

The setup used is given by

z =

[
ztrac

zopt

]
=

 zpres1

zpresO

zoil

 ,

 19 bar
40 bar

100 kg/s

 ≤ z ≤

20.01 bar
80 bar

300 kg/s

 ,
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Figure 4: Pressures and choke openings with constant GOR, using unreachable setpoints.

Qtrac = diag{0, 0}, Qopt = 0.01, S = diag{0.01, 0.01},

r =
[
rpres1 rpresO roil

]>
=
[
103 103 103

]>
,[

−20 %
−20 %

]
≤
[
∆uO13

∆uO

]
≤
[
20 %
20 %

]
,

[
10%
10%

]
≤
[
uO13

uO

]
≤
[
100%
100%

]
.

The unreachable setpoint for zoil is selected to be zopt,ref = 208.3 kg/s =
20 000 Sm3/day which is large enough to always be infeasible, but not too
large since together with the weight Qopt, the difference |zoil− zopt,ref| will af-
fect the gain, cf. (4). The MPC is activated at t = 10 min and the responses
are shown in Figures 4 and 5. By the choice of penalty weight r, the pres-
sure zpres1 never violates the upper constraint, meaning that the priority of
optimizing oil production never exceeds the objective of keeping the process
within its limits. In Cluster O the GOR value for well ResO13 is higher than
for ResO11, hence will it always be more beneficial to produce from ResO11.
This can be seen in the decrease of choke opening uO13, while the line choke
uO is opened until the constraint in zpresO is met. In other words, the solution
is found where both of the constraints for zpres1 and zpresO are active. The
result can be seen in Figure 5 where there is a larger increase in zoil11 than
the decrease in zoil13, giving a net increased oil production zoil.
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Figure 5: Oil rates with constant GOR, using unreachable setpoints.

5.2. Variable GOR

The model is now extended to have rate-dependent GOR in the wells in
Cluster O, and the unreachable setpoints method and the infeasible soft-con-
straints method are used to maximize oil production. The GOR curves used
in the model is shown in Figure 6, where linear GOR curves have been used to
represent gas coning, and a constant GOR value of 58 (Sm3/day)/(Sm3/day)
is used to represent non-coning conditions, see, e.g., [26]. With variable
GOR, an optimal choke configuration can not be intuitively chosen, where
in general only the maximum constraint for the inlet separator pressure will
be active.

5.2.1. Using the unreachable setpoints method

The setup is the same as in Section 5.1, except that both the choke
openings in Cluster O are used as MVs,

u =
[
uO13 uO11

]>
. (8)

The maximum value for zpres1 is set to be 20.34 bar, just above the initial
value. The MPC is activated at t = 10 min and the responses are shown
in Figures 7 and 8. With the smooth changes in choke openings uO13 and
uO11 shown in Figure 7, the corresponding changes in oil flow rates from the
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Figure 6: GOR curves for the wells in Cluster O. The red crosses denote the GOR values
at the unknown optimal operating point.

wells in Cluster O are shown in Figure 8. Balancing total gas production, the
decrease in zoilO13 is lower than the increase in zoilO11, giving a net increase
in total oil production zoil. Except from the limit on the inlet separator
pressure, no other constraints are active. In contrast to the constant GOR
case in Section 5.1, the line pressure zpresO now settles at a new intermediate
value. At the same time there is no intuitive way for adjusting choke openings
u to increase oil production. This solution would therefore be difficult to
find without any form of optimization.

5.2.2. Using infeasible soft-constraints

The infeasible soft-constraints method is used to get a linear part in the
cost function, representing the objective of maximizing total oil production,
by choosing zoil,min larger than the maximum oil production. Using zoil,min =
208.3 kg/s = 20 000 Sm3/day (the same value as the unreachable setpoint in
Sections 5.1 and 5.2.1) the linear (economic) part of cost in (5) is now

−
P∑
i=1

roilzoil,k+i, (9)

representing the objective of maximizing total oil production. As discussed in
Section 2.4, the value of zoil,min is not important as long it is large enough to
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Figure 7: Pressures and choke openings with variable GOR, using unreachable setpoints.

Figure 8: Oil rates with variable GOR, using unreachable setpoints.
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always be infeasible and not too large, possibly creating numerical problems.
The penalty weights are chosen to be

r =

[
rtrac

ropt

]
=

 rpres1

rpresO

roil

 =

 103

103

1

 ,

where optimizing total oil production is given a lower priority than oper-
ating within the constraints for the remaining CVs. Apart from choosing
zoil,min, r, and using Q = diag{0, 0, 0}, the MPC setup is equal to the one in
Section 5.2.1.

The simulated responses shown in Figures 9 and 10 are similar to the
ones obtained with the unreachable setpoints method in Section 5.2.1, giv-
ing approximately the same steady-state result. The difference is that the
controller seems to be somewhat more aggressive, shown in the plots of uO13

and uO11 in Figure 9. This gives a less smooth response in zpresO, whereas
the inlet separator pressure zpres1 is closer to it’s constraint without violating
it. The result is that the oil rates from the wells, and thus the total oil rate,
settle faster at a new steady state, shown in Figure 10. The aggressiveness
may be attributed to the use of a linear cost compared to the quadratic cost
in Section 5.2.1. However, aspects related to the numerical implementation
of the soft constraints may also come into play here (cf. discussion at the
end of Section 2.4).

6. Concluding remarks

In this paper we have studied methods for maximizing total oil produc-
tion on a short time scale, in a synthetic but realistic case study. We began
with showing how NMPC can be used for conventional pressure control, e.g.,
during slugging, possibly in combination with a higher level of optimization
in a two-layer control structure. Next it was demonstrated how a one-layer
approach can be used for production optimization with constant GOR in
the wells, using the unreachable setpoints method. We ended the study
by comparing this method with the infeasible soft-constraints method on a
model with rate-dependent GOR, maximizing total oil production. Both of
these one-layer methods can be implemented within standard NMPC soft-
ware tools. A one-layer approach has several potential advantages compared
to two-layer approaches, including that only a single model requires updat-
ing, disturbances can be counteracted as they appear, and economics can
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Figure 9: Pressures and choke openings with variable GOR, using infeasible soft-
constraints.

Figure 10: Oil rates with variable GOR, using infeasible soft-constraints.
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be optimized also during transients. The infeasible soft-constraints method
gives fewer tuning parameters and is in principle easier to set up compared
to the unreachable setpoints method, since the only tuning parameter for
optimization is the penalty weight r. Not unexpectedly, our study showed
that by using infeasible soft-constraints the controller becomes more aggres-
sive due to the resulting linear cost, which may make it harder to tune if
smooth responses are a requirement. For increasing system size, choosing
penalty weights that properly trade off the “soft” process constraints devia-
tions against the economic objective, may become a challenge. Nevertheless,
we believe that the use of infeasible constraints can be a valuable addition
to the toolbox for the NMPC control engineer that uses an industrial type
NMPC package.

6.1. Conventional pressure control

The case in Section 4 showed how pressure control could be used to in-
crease oil production without any optimization, other than knowledge of the
active constraint of the inlet separator pressure. The effect of a disturbance
on the inlet separator pressure zpres1 was reduced by using NMPC. It was
then possible to increase the setpoint closer to the active constraint, result-
ing in an increased oil production of 143 Sm3/day compared to no control.
This case could be solved using PID controllers, but by using NMPC we have
inherent multi-variable control and constraint handling, making it possible
to operate even closer to process limits.

6.2. Constant GOR

In the case described in Section 5.1, the unreachable setpoints method
was used to maximize total oil production. To avoid repetition, we limited
the study to only the unreachable setpoints method in the constant GOR
case. Comparison between this method and the infeasible soft-constraints
method was done in Section 5.2, using variable GOR models. With constant
GOR, the optimal solution will lie on some active constraint combination, as
it will always pay to increase production from the wells with lowest GOR.
(This is in addition to the active constraint for the inlet separator pressure,
as was considered in Section 4.) Here the new active constraint was that
zpresO reached its minimum value. If this minimum value would have been
decreased, the active constraint would at some point change to uO at fully
open. The initial conditions were quite far from the optimal operating point,
resulting in an increased oil production of 406 Sm3/day.
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Of course, the conventional pressure control structure in Section 4 would
have reached the same steady-state optimum within a two-layer structure
using a RTO system to calculate the corresponding optimal setpoints. This
would require model updating and disturbance estimation at the RTO level,
as well as on the NMPC level.

6.3. Variable GOR

In Sections 5.2.1 and 5.2.2 variable GOR models are used, and the op-
timums are characterized by (6) rather than active constraints (except the
inlet separator pressure constraint). The total oil production was increased
with 71 Sm3/day using unreachable setpoints and 73 Sm3/day using infea-
sible soft-constraints (the difference being due to numerical inaccuracies),
compared to the initial situation where the separator inlet pressure was on
its maximum constraint. The increase in production is dependent on the
choice of initial producing state that in this case was somewhat arbitrary
(but not unrealistic). However, in oil and gas production in general, even
small increases in production rates can imply significantly increased income;
with an oil price of USD $100 per barrel, the increases reported represent a
yearly increased revenue of over USD $16 million.

Figure 11: QG − QO relationships at the start (◦) and end of the simulation, using un-
reachable setpoint (∗) and infeasible soft-constraint (×). The optimum is marked with
‘+’.
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Since the separator inlet pressure already was at its constraint, the in-
crease came from exploiting the different gas/oil relationships in the wells (see
Figure 11) where the MGOR is the tangent line of the curves. Using (6),
the maximum oil production from the two wells is achieved when the MGOR
values are equal, giving parallel tangent lines in the points marked ‘+’, where
the total increase of oil production is 75 Sm3/day. With the two methods
used almost equal MGOR values were found. The gap was due to numerical
inaccuracies caused by the tangent lines which become almost parallel when
approaching the optimum. Note that we have used the MGOR relationships
to verify the solutions found, but these relationships are not included in the
optimization problem in any form other than in the objective of maximizing
total oil production.
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