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1. Introduction12

The trajectory of a charged particle through a high-energy physics detector13

system is governed by the equations of motion, given by the Lorentz force.14

In the general case with the presence of an inhomogeneous magnetic field, no15

analytical solutions to these equations exist, and one has to resort to numerical16

approaches such as a Runge-Kutta method of some order. In the very simplest17

case of a vanishing magnetic field, the track model is a straight line. Despite the18

intrinsic attractiveness of this simple track model, important properties as for19

instance the momentum and sign of charge of the particle cannot be estimated.20

The only case enabling such properties to be estimated and at the same time21

offering an analytical track model is a homogeneous magnetic field with field22

lines parallel to the beam direction. In this situation, the track model is a helix,23

or, in the bending plane of the particles, a circle.24

Most inner tracking detector systems are therefore embedded in a nearly25

homogeneous magnetic field. Although general methods such as the Kalman26

filter [1] or global least-squares estimation [2] can be used in this case, track27

fitting in the bending plane can also be performed by simple, fast and non-28

iterative circle fitting methods such as the conformal mapping approach [3], the29

Karimäki method [4] or the Riemann fit [5]. These non-iterative methods are30

all based on some kind of simplifying approximation, which in general makes31

them less precise than more rigorous approaches.32

In this paper, we present a thorough study of the precision of a recently33

proposed, improved Riemann track fit [6]. As suggested by Chernov [7], mea-34

surements are transformed in order to achieve invariance under translations and35

similarity transforms. We show that the improved Riemann fit is significantly36

more precise than some of the most popular, non-iterative approaches and vir-37

tually as precise as the Kalman filter, a global least-squares approach and an38

iterative, non-linear method.39

In addition to estimating the track parameters, a track fitting algorithm40

should be able to assess the degree of uncertainty of these estimates. These41
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uncertainties and the correlations between them are summarized in the covari-42

ance matrix. In [8], the covariance matrix of the track parameters was based43

on large-sample (asymptotic) properties of the sample covariance matrix of the44

observations. Here we present the full sequence of error propagation steps from45

the observations to the final track parameters. It is valid for any number of46

observations under the assumption of normally distributed measurement er-47

rors. The derivation is simpler in the statistically equivalent implementation of48

the Riemann fit proposed in [9], where the measurements are projected to the49

paraboloid z = x2 + y2 rather than to the Riemann sphere.50

The paper is organized as follows. After a recollection of the basic concepts51

of the Riemann track fitting method, the recently introduced improvements to52

the original algorithm are reviewed. In a simulation study of a generic inner53

tracking system we show results comparing the precision of the improved Rie-54

mann fit with a set of circular track fitting methods. The derivation of the error55

propagation from the measurements to the estimated circle parameters is then56

presented and validated with simulated tracks. The paper is concluded by a57

summary and an outlook to further work.58

2. The improved track fit on the Riemann paraboloid59

The Riemann paraboloid is positioned on top of the (x, y)-plane with its60

global minimum at the origin of the plane. We assume that the measured points61

in the (x, y)-plane are given in Cartesian coordinates, (ui, vi), i = 1, . . . , N .62

A covariance matrix Vi is attached to each point. The covariance matrix is63

arbitrary in principle, but is required to be positive definite in order to avoid64

problems with rank-deficient matrices during the error propagation.65

There are two important special cases. If the radial error of the point (ui, vi)66

can be neglected, its covariance matrix has the form:67

Vi =
1√

u2
i + v2

i

 δ2
i u

2
i + σ2

i v
2
i uivi(δ

2
i − σ2

i )

uivi(δ
2
i − σ2

i ) δ2
i v

2
i + σ2

i u
2
i

 ,
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where σi is the standard deviation of the position error in the tangential direc-68

tion, and δi is positive, but much smaller than σi, for instance δi = 0.01 · σi.69

If the point (ui, vi) is a position measurement on a thin plane sensor with70

normal unit vector ai = (ai,u, ai,v)
T, its covariance matrix has the form:71

Vi =

 δ2
i a

2
i,u + σ2

i a
2
i,v ai,uai,v(δ

2
i − σ2

i )

ai,uai,v(δ
2
i − σ2

i ) δ2
i a

2
i,v + σ2

i a
2
i,u

 ,

where σi is the standard deviation of the position error of the sensor, and δi is72

again positive, but much smaller than σi, for instance δi = 0.01 · σi.73

The mapping from the (u, v)-plane to the Riemann paraboloid is given by:74

xi =ui

yi = vi

zi =u2
i + v2

i

By this mapping, the circle in the plane with the equation75

(u− u0)2 + (v − v0)2 = ρ2

is mapped to the plane in 3D space with the equation76

z − 2xu0 − 2yv0 = ρ2 − u2
0 − v2

0

A point with position r = (x, y, z)T satisfying nTr+ c = 0 lies in the plane with77

unit normal vector n and signed distance c from the origin. The plane is fitted78

to the points ri, i = 1, . . . , N, by minimizing the following objective function:79

S =

N∑
i=1

widi
2,

where di is the distance from the point ri = (xi, yi, zi)
T to the plane and wi is80
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its weight. The weights are defined by:81

wi ∝ 1/σ2
i ,

N∑
i=1

wi = 1

The solution to this minimization problem is a plane with a normal vector n that82

is the unit eigenvector corresponding to the smallest eigenvalue of the weighted83

sample covariance matrix A, defined as:84

A =

N∑
i=1

wi(ri − r0)(ri − r0)T,

where r0 is the weighted average or center of gravity:85

r0 =

N∑
i=1

wiri

Given n, c is computed by86

c = −nTr0

The parameters n and c of the plane can then be mapped to a set of parameters87

of the corresponding circle in the (u, v)-plane [9].88

We have followed Chernov’s [7] suggestion of centering and scaling the mea-89

surements before mapping to the paraboloid, in order to achieve invariance of90

the fit under translations and similarities [6]. Centering is performed by sub-91

tracting the average:92

uc,i = ui − u, vc,i = vi − v, i = 1, . . . , N

with93

u =
1

N

N∑
i=1

ui, v =
1

N

N∑
i=1

vi
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The centered measurements uc,i and vc,i are arranged in column vectors uc and94

vc. Centered and scaled measurement vectors ucs and vcs are then obtained by:95

s = b/
√

(uT
cuc + vTc vc)/N

ucs = s · uc, vcs = s · vc

where s is the scaling factor and b an arbitrary, preselected constant [6].96

3. Simulation study in a generic cylindrical detector97

We have simulated a generic type of a cylindrical detector system embed-98

ded in a perfectly homogeneous magnetic field, so that the track model in the99

bending plane of the particles is a circle. The simulated track sample is the100

same as the one used in [6]: 10000 tracks coming from the origin with radii of101

curvature in a range from about 1.5 m to about 750 m. This corresponds to arcs102

between less than 0.1 degrees and about 20 degrees, following a reasonably flat103

distribution in this range. There are between 10 and 12 hits per track, and the104

single hit resolution varies between 0.1 mm and 1.5 mm. The measurement error105

in the radial direction is assumed to be negligible. We assume no background106

and thereby implicitly a perfect pattern recognition. The simulation does not107

include material and detector effects such as multiple scattering, energy loss and108

sensor misalignment. Measurements in different layers are therefore statistically109

independent.110

We have compared the performance of the modified Riemann fit with a111

number of other circular track fitting algorithms by considering the mean-square112

error (MSE) of the residuals δ of the track parameters, i.e. the estimated track113

parameters minus the true ones. The MSE is defined by:114

MSE[δ] = det
(
Σ[δ] + δ̄δ̄T

)
where Σ[δ] is the sample covariance matrix and δ̄ is the sample mean of the115

residuals. δ̄ is the least-squares estimate of the bias of the track parameters.116
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Figure 1: The ratio of the relative generalized mean-square error as a function of the mea-
surement uncertainty.

Figure 1 shows the MSE of the various estimators relative to the baseline,117

which is an iterative, non-linear least-squares approach using the Levenberg-118

Marquardt algorithm. Firstly, it can be seen that the modified Riemann fit119

performs better than the other non-iterative circle fitting algorithms, including120

the original Riemann track fit. The improvement in general grows with increas-121

ing measurement uncertainties. Secondly, the modified Riemann fit is seen to be122

virtually as precise as the Kalman filter, the global linear least-squares estimator123

and the non-linear method for the entire range of measurement uncertainties.124

A similar plot of the generalized variance, defined as the determinant of the125

sample covariance matrix, shows no visible difference from Fig. 1. From this we126

conclude that the bias of all estimators is negligible compared to their spread.127

For a general error and bias analysis of a wide range of circle fitting algorithms,128

see [10].129
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4. Error propagation130

Under the assumption of normally distributed position errors, error propa-131

gation can be done analytically up to the calculation of the sample covariance132

matrix A, after which point the computation of the required Jacobians is more133

easily done numerically. We start from the joint error matrix V of the vector134

of all measurements m = (u ; v).2 V can also contain correlations between the135

measurements due to multiple scattering (see [9]).136

In what follows, all vectors are column vectors. In addition, we use the137

following notations. If x, y are random variables, the expectation of x is denoted138

by E[x], the covariance of x and y is denoted by cov[x , y], and the variance of139

x is denoted by var[x] = cov[x , x]. If x,y are random vectors, the expectation140

vector of x is denoted by E[x], the cross-covariance matrix Cov[x , y] of x and141

y is defined by142

Cov[x , y] = E
[
x · yT

]
− E[x] · E

[
yT
]

and the covariance matrix of x is denoted by Var[x] = Cov[x , x].143

If M is a matrix, S [M ] denotes the sum of all elements of M . If M1,M2144

are two matrices of the same size, M1�M2 denotes their element-wise product145

(Hadamard product). The identity matrix of dimension d is denoted by Id.146

We now list the steps that have to be performed to get the covariance matrix147

of the estimated circle parameters.148

A. Centering.149

1. Center the measurements:150

uc = u− ū · e, vc = v − v̄ · e, mc = (uc ; vc)

where e = (1, . . . , 1)T is a column vector of N ones.151

2The semicolon (comma) denotes vertical (horizontal) concatenation of vectors or matrices.
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2. As the centered measurements mc are centered again for the computation152

of A in step E, the joint error matrix V of u and v is not modified, i.e.153

Vc = V .154

B. Scaling.155

1. Scale the measurements:156

q =mT
c ·mc, Q =

√
q/N, mcs = mc · b/Q

2. Compute the variance of Q:157

JQ =
∂Q

∂m
=
mT

Q ·N
, var[Q] = JQ · Vc · JT

Q

3. Compute the scaled covariance matrix:158

J1 =
∂mcs

∂mc
= b

(
I2N/

√
q/N −mcm

T
c /(Nq)

3/2
)

Vcs = b2 · J1 · Vc · JT
1 =

V11 V12

V21 V22


C. Mapping to paraboloid. Compute zi = x2

i + y2
i , i = 1, . . . , N and the joint159

covariance matrix C of r = (x ; y ; z) = (r1 ; r2 ; r3):160

C =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 ,

with161

Cij =Vij , i, j = 1, 2

C13 = 2V11 � (e · rT1 ) + 2V12 � (e · rT2 ), C31 = CT
13

C23 = 2V21 � (e · rT1 ) + 2V22 � (e · rT2 ), C32 = CT
23

C33 =
∑
i=1,2

∑
j=1,2

2Vii � Vij + 4Vij � (ri · rTj )

9



For the proof see Theorem 1 in the appendix. As is usual in error propagation,162

the unknown expectations of r1 = x and r2 = y are replaced by the observed163

values.164

D. Compute center of gravity.165

1. Reshape r as a N × 3 matrix of the form r = (r1, r2, r3) and compute166

r0 = rT ·w

2. Compute the elements C0,ij of C0 = Var[r0]:167

C0,ij = wT ·Cij ·w, i, j = 1, 2, 3

E. Subtract center of gravity.168

1. Compute the matrix H:169

H = IN − e ·wT

2. Compute s = (s1, s2, s3) and Dij = Cov[si , sj ]:170

s =H · r, Dij = H ·Cij ·HT, i, j = 1, 2, 3

F. Computation of A.171

1. As A is symmetric, it has only six independent elements Aα, where α =172

1, . . . , 6 enumerates the chosen elements. A possible correspondence Aα '173

Aij is given by the following table:174

α 1 2 3 4 5 6

(i, j) = ν(α) (1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (3, 3)

2. For α = 1, . . . , 6 compute:175

Aα = sTi · (w � sj), with (i, j) = ν(α), α = 1, . . . , 6
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3. For all pairs (α, β) with 1 ≤ α ≤ β ≤ 6 compute (i, j) = ν(α) and176

(k, l) = ν(β). The covariance cov[Aα ,Aβ ] = Eαβ = Eβα is given by:177

Eαβ =S [Dik �W2 �Djl +Dil �W2 �Djk]

+ sTi · (Djl �W2) · sk + sTi · (Djk �W2) · sl

+ sTj · (Dil �W2) · sk + sTj · (Dik �W2) · sl,

For the proof see Theorem 2 in the appendix. As in step C, the unknown178

expectations of s1, s2, s3 are replaced by the observed values.179

G. Computation of n and c.180

1. CompleteA to a full symmetric 3×3 matrix and determine the eigenvector181

n that corresponds to the smallest eigenvalue of A.182

2. Compute the Jacobian183

J2 =
∂n

∂Aα
, α = 1, . . . , 6

by numerical differentiation and the covariance matrix of n:184

Cn = Var[n] = J2 ·E · JT
2

3. Compute the signed distance c:185

c = −nT · r0

4. Compute the joint covariance matrix of n and c (see [8]):186

Cn,c = Var[(n ; c)] =

 Cn −Cn · r0

−rT0 ·Cn var[c]

 ,

with187

var[c] = nT ·C0 · n+ rT0 ·Cn · r0 + S [Cn �C0]
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H. Computation of the circle parameters.188

1. Compute center and radius of the circle:189

u0 = − n1

2n3
, v0 = − n2

2n3
, ρ =

√
1− n2

3 − 4cn3

2n3

2. Compute the Jacobian J3:190

J3 =
∂(u0 ; v0 ; ρ)

∂(n ; c)
=



− 1

2n3
0

n1

2n2
3

0

0 − 1

2n3

n2

2n2
3

0

0 0 − h

2n2
3

− 4c+ 2n3

4hn3
− 1

h


with191

h =
√

1− n2
3 − 4cn3

3. Compute the covariance matrix of p = (u0 ; v0 ; ρ):192

Cp = Var[p] = J3 ·Cn,c · JT
3

I. Undo scaling and centering.193

1. Rescale parameters:194

p′ = p ·Q/b

2. Error propagation:195

Cp′ = Var[p′] = Q2/b2 ·Cp + p · pT · var[Q] /b2
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3. Undo centering:196

u′′0 = u′0 + ū, v′′0 = v0 + v̄, ρ′′ = ρ′

J. Transformation to final parameters. Note that u′′0 , v′′0 , and ρ′′ are not at197

all normally distributed, and that in the limit of a straight line ρ′′ tends to198

infinity. A more reasonable and numerically more stable track representation is199

for instance given by the parameters q = (a0 ; ψ ; κ), where a0 is a signed impact200

parameter, ψ is the angle of inclination at the point of closest approach to the201

origin, and κ is a signed curvature of the circle (see also [9]). Their distribution202

is also much closer to a normal distribution.203

The fit and the error propagation up to and including the transformation to204

the final parameters have been implemented in a Matlab function that can be205

obtained from the authors on request.206

5. Validation of the error propagation207

We have validated the error propagation on the track sample described in208

Section 3, by analyzing the residuals of the estimated track parameters q =209

(a0 ; ψ ; κ) with respect to the true values qt. If the covariance matrix of q is210

denoted by Cq, the three standard scores are defined by:211

ti =
qi − qt,i√
Cq,ii

, i = 1, 2, 3

The χ2-statistic c2 is defined by:212

c2 = (q − qt)
TC−1

q (q − qt)

Its p-value P is obtained by integrating the χ2-density with three degrees of213

freedom from zero to c2. With the correct error propagation, the standard214

scores follow, at least in good approximation, a standard normal distribution215

with mean zero and standard deviation one, while the p-value P if approximately216
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Table 1: Mean and standard deviation of p-values and standard scores versus the measurement
uncertainty σ. The bottom row, marked by an asterisk, shows the result with measurement
errors from the mixture model (∗) and an effective uncertainty σeff = 1.07 mm.

σ[mm] 1 2 3 4 5 6 7 8

0.1 0.50 0.29 0.01 −0.02 −0.01 0.99 1.00 1.02

0.2 0.50 0.29 0.02 −0.02 −0.02 0.99 1.01 1.01

0.3 0.50 0.29 0.02 −0.02 −0.02 0.99 1.00 1.01

0.4 0.50 0.29 0.02 −0.02 −0.02 0.99 1.01 1.01

0.5 0.50 0.29 0.02 −0.02 −0.02 0.99 1.00 1.01

0.6 0.51 0.29 0.02 −0.02 −0.02 0.99 1.01 1.04

0.7 0.51 0.29 0.02 −0.02 −0.02 0.99 1.01 1.02

0.8 0.51 0.29 0.01 −0.02 −0.02 0.99 1.01 1.00

0.9 0.51 0.29 0.01 −0.02 −0.01 0.99 1.01 1.03

1.0 0.51 0.29 0.01 −0.02 −0.02 0.99 1.01 1.01

1.1 0.51 0.29 0.02 −0.02 −0.02 0.99 1.01 1.02

1.2 0.51 0.30 0.02 −0.02 −0.02 0.99 1.00 1.01

1.3 0.51 0.30 0.01 −0.02 −0.02 0.99 1.00 1.04

1.4 0.51 0.30 0.01 −0.02 −0.02 0.98 0.99 1.00

1.5 0.51 0.30 0.01 −0.02 −0.02 0.96 0.98 0.98

1.0∗ 0.50 0.30 0.01 −0.01 −0.01 1.00 1.02 1.02

Columns 1–2: mean and standard deviation of p-values
Columns 3–5: mean of standard scores
Columns 6–8: standard deviation of standard scores

uniformly distributed with mean 0.5 and standard deviation 1/
√

12 ≈ 0.289.217

Table 1 shows the sample mean and the sample standard deviation of P and of218

the standard scores ti, i = 1, 2, 3. The results are very close to the expected219

values. It can be observed, however, that the standard scores show a persistent220

but negligible bias of 1–2% of the standard deviation, which is excellent for a221

highly non-linear estimator.222

The empirical distribution of the standard scores can be compared to a stan-223

dard normal distribution by means of a quantile-quantile (Q-Q) plot. Figure 2224

shows the three Q-Q plots of the standard scores and a histogram of the p-225
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values. The Q-Q plots show a remarkably good agreement with the normal226

distribution, and only a few outliers can be observed. On the other hand, in the227

histogram of the p-values a small excess of about 70 p-values close to 1 can be228

observed, corresponding to abnormally large values of the χ2 statistic c2. These229

values can be traced back to cases in which the covariance matrix Cq has a very230

large condition number, which leads to numerical instability in the inversion231

and to wrong correlations. The fraction of such cases rises from about 0.1% at232

σ = 0.1 mm to about 1% at σ = 1.5 mm.233

Finally, we have checked the sensitivity of the error propagation to the as-234

sumption of normal measurement errors. To this end, we have simulated mea-235

surement errors from the following Gaussian mixture:236

f(x) = 0.95 · ϕ(x ; 0, σ) + 0.05 · ϕ(x ; 0, 2σ) (*)

where ϕ(x ; 0, σ) ist the normal density with mean zero and standard deviation σ.237

The effective standard deviation of the mixture is σeff ≈ 1.07σ. If the Riemann238

fit is performed with σeff , the average properties of the standard scores and239

the p-values are correct, as demonstrated by the bottom row in Table 1. The240

distribution of the standard scores is very similar to a standard normal, with241

the exception of the extreme tails. The distribution of the p-value of the χ2-242

statistic shows the expected slight U-shape. This is illustrated by Figure 3 which243

shows the Q-Q plots of the standard scores and a histogram of the p-values with244

σ = 1 mm and σeff = 1.07 mm, using the mixture model defined above.245
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Figure 2: Q-Q plots of the standard scores and histogram of the p-values at the measurement
uncertainty σ = 1 mm.
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Figure 3: Q-Q plots of the standard scores and histogram of the p-values at the measurement
uncertainty σ = 1 mm, with measurement errors generated according to the mixture model
defined in the text.
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6. Summary and conclusions246

We have in this paper further explored the properties of a modified Riemann247

track fit which operates on translated and scaled measurements [7], making the248

fit invariant under translations and similarity transforms of the measurements.249

With these transformations, the fit becomes more precise than other, popu-250

lar non-iterative track fitting approaches, in particular for large measurement251

uncertainties. In addition, the modified Riemann fit is demonstrated to be252

equally precise as more rigorous approaches such as the Kalman filter, a global,253

linear least-squares method and a non-linear, iterative approach based on the254

Levenberg-Marquardt algorithm, at least when material and detector effects255

such as multiple Coulomb scattering, energy loss and misalignment can be ne-256

glected. The complete error propagation from the measurements to the final257

estimated circle parameters has been computed and validated for this case.258

Alignment uncertainty can be incorporated into the joint covariance matrix259

of the position measurements. Multiple Coulomb scattering can be treated in260

a manner similar to [9]. As the error propagation derived in Section 4 does261

not depend on the structure of the initial covariance matrix, it will not be262

affected. Non-negligible energy loss, however, is a different matter as it destroys263

the circular track model. As a consequence, the Riemann track fit will produce264

biased estimates. The validation and performance of the Riemann fit under265

realistic assumptions on the detector material and the sensor misalignment as266

well as a possible bias correction will be the subject of a subsequent study.267

It has also been shown that the fit is robust against small deviations from268

the assumed normal distribution of the measurement errors. Future develop-269

ments will concentrate on making the Riemann fit robust against more severe270

deviations from the normal assumption and additional background observations.271
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Appendix A Derivation of covariance matrices272

Lemma 1. Let ui, i = 1, . . . , 4 be four correlated standard normal random273

variables ui with zero mean, unit variance and correlation coefficients ρij , i, j =274

1, . . . , 4. The products of two, three or four of the variables ui have the following275

expectations:276

E[uiuj ] = ρij

E[uiujuk] = 0

E[uiujukul] = ρijρkl + ρikρjl + ρilρjk

Proof. See [11].277

Lemma 2. Let xi, i = 1, . . . , 4 be four normal random variables with means278

µi, variances σ2
i and covariances cij , i, j,= 1, . . . , 4. The products of two, three279

or four of the variables xi have the following expected values:280

E[xixj ] = cij + µiµj

E[xixjxk] =µiµjµk + µicjk + µjcik + µkcij

E[xixjxkxl] = cijckl + cikcjl + cilcjk + µiµjckl + µiµkcjl

+µiµlcjk + µjµkcil + µjµlcik + µkµlcij + µiµjµkµl

Proof. Each of the xi can be written in the form xi = uiσi+µi, where the ui are281

standard normal with correlations ρij = cij/(σiσj). Expansion of the products282

and application of Lemma 1 gives the desired expressions.283

Lemma 3. Under the assumptions of Lemma 2, the following statements hold:284

cov
[
xi , x

2
j

]
= 2µjcij

cov
[
x 2
i , x 2

j

]
= 2c 2

ij + 4µiµjcij

cov
[
x 2
i , x 2

i + x 2
j

]
= 2σ 4

i + 4µ 2
i σ

2
i + 2c 2

ij + 4µiµjcij

var
[
x 2
i + x 2

j

]
= 2σ 4

i + 4µ 2
i σ

2
i + 2σ 4

j + 4µ 2
j σ

2
j + 4c 2

ij + 8µiµjcij
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Proof. The proofs follow from special cases of Lemma 2 and are omitted.285

Theorem 1. Let x1,x2 be two normal random vectors of dimension N × 1286

with mean vectors µi, covariance matrices C11 and C22, and cross-covariance287

matrices C12 and C21 = CT
12. Let zk = x 2

1,k + x 2
2,k, k = 1, . . . , N . Then288

C33 = Var[z] and Ci3 = Cov[xi , z] , i = 1, 2 are given by:289

C33 =

2∑
i=1

2∑
j=1

2 ·Cij �Cij + 4 ·Cij � (µi · µT
j )

Ci3 = 2 ·Ci1 � (e · µT
1 ) + 2 ·Ci2 � (e · µT

2 )

Proof. Lemma 3 implies for m,n = 1, . . . , N :290

C33,mn = cov
[
x 2

1,m + x 2
2,m , x 2

1,n + x 2
2,n

]
= cov

[
x 2

1,m, x
2
1,n

]
+ cov

[
x 2

1,m , x 2
2,n

]
+ cov

[
x 2

2,m , x 2
1,n

]
+ cov

[
x 2

2,m , x 2
2,n

]
= 2C 2

11,mn + 4µ1,m µ1,n C11,mn + 2C 2
12,mn + 4µ1,m µ2,n C12,mn

+ 2C 2
21,mn + 4µ2,m µ1,n C21,mn + 2C 2

22,mn + 4µ2,m µ2,n C22,mn

Ci3,mn = cov
[
xi,m , x 2

1,n + x 2
2,n

]
= cov

[
xi,m , x 2

1,n

]
+ cov

[
xi,m , x 2

2,n

]
= 2µ1,n Ci1,mn + 2µ2,n Ci2,mn

Note that Cij � (e ·µT
i ) needs fewer multiplications than the equivalent expres-291

sion Cij · diag(µi), and that Cij � (µi · µT
j ) needs fewer multiplications than292

diag(µi) ·Cij · diag(µj).293

Theorem 2. Let s1, s2, s3 be three normal random vectors of dimension N ×1294

with mean vectors µi, covariance matrices Dii and cross-covariance matrices295

Dij , i, j = 1, . . . , 3. Let w be a N × 1 column vector of fixed weights and296
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W2 = w ·wT. Let Aα and Aβ be defined by:297

Aα = sTi · (w � sj)

Aβ = sTk · (w � sl)

where 1 ≤ i, j, k, l ≤ 3. Then the covariance cov[Aα ,Aβ ] is equal to:298

cov[Aα ,Aβ ] =S [Dik �W2 �Djl +Dil �W2 �Djk]

+µT
i · (Djl �W2) · µk + µT

i · (Djk �W2) · µl

+µT
j · (Dil �W2) · µk + µT

j · (Dik �W2) · µl

Proof. By definition, cov[Aα ,Aβ ] = E[AαAβ ]− E[Aα]E[Aα]. Then we have:299

E[Aα] =
∑
m

wm E[si,m sj,m] =
∑
m

wm(Dij,mm + µi,m µj,m)

E[Aβ ] =
∑
n

wn E[sk,n sl,n] =
∑
n

wn(Dkl,nn + µk,n µl,n)

E[AαAβ ] =
∑
m

∑
n

wmwn E[si,m sj,m sk,n sl,n]

where the sums over m and n run from 1 to N . Using Lemma 2 it is straight-300

forward to show that:301

E[si,m sj,m sk,n sl,n] =Dij,mmDkl,nn +Dik,mnDjl,mn +Dil,mnDjk,mn

+µi,m µj,mDkl,nn + µi,m µk,nDjl,mn + µi,m µl,nDjk,mn

+µj,m µk,nDil,mn + µj,m µl,nDik,mn + µk,n µl,nDij,mm

+µi,m µj,m µk,n µl,n

From this follows:302

cov[Aα ,Aβ ] =
∑
m

∑
n

wm wnBmn
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with303

Bmn =Dik,mnDjl,mn +Dil,mnDjk,mn

+µi,m µk,nDjl,mn + µi,m µl,nDjk,mn

+µj,m µk,nDil,mn + µj,m µl,nDik,mn

Summing over m and n gives the desired result.304
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[1] Frühwirth R 1987 Nucl. Instrum. Methods Phys. Res. A 262 444306
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