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Abstract

Adaptive responses to autocorrelated environmental fluctuations through evolution in

mean reaction norm elevation and slope and an independent component of the pheno-

typic variance is analysed using a quantitative genetic model. Analytic approximations

expressing the mutual dependencies between all three response modes are derived and

solved for the joint evolutionary outcome. Both genetic evolution in reaction norm el-

evation and plasticity are favored by slow temporal fluctuations, with plasticity, in the

absence of microenvironmental variability, being the dominant evolutionary outcome for

reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype

through genetic evolution and plasticity is limited. If residual fluctuations in the optimal

phenotype are large and stabilizing selection is strong, selection then acts to increase the

phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If

the phenotypic variance increases with plasticity through the effect of microenvironmen-

tal variability, this shifts the joint evolutionary balance away from plasticity in favor of

genetic evolution. If microenvironmental deviations experienced by each individual at the

time of development and selection are correlated, however, more plasticity evolves. The

adaptive significance of evolutionary fluctuations in plasticity and the phenotypic vari-

ance, transient evolution, and the validity of the analytic approximations are investigated

using simulations.
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Introduction

Several primary mechanisms of phenotypic adaptation to fluctuating environments are

widely recognized. The main mechanism envisioned by Darwin (1859) was adaptation

through the continual effects of natural selection on heritable variation among individuals.

Without knowledge about the mechanisms underlying heredity, Darwin thought that this

would be a slow process, dependent on the continual input of new variability through

mutation. For polygenic traits we now know that considerable amounts of standing

genetic variation can be maintained by a balance between mutation and selection (Barton

and Keightley, 2002) and that this variation is sufficient to explain observed and often

high rates of contemporary evolution (Hendry and Kinnison, 1999). If the rate of change

in the environment is high, however, adaptive tracking of the environment through genetic

evolution is limited by the amount of standing genetic variance in the trait under selection,

such that the mean phenotype may lag behind the phenotypic optimum (Lande and

Shannon, 1996).

All phenotypic traits have both genetic and environmental influences. The way in

which an organism responds to environmental conditions may itself have a genetic basis,

however, and may thus evolve if such genotype by environment interaction is present. The

resulting evolutionary response, adaptive phenotypic plasticity, represents an alternative,

competing mechanism of phenotypic adaptation to changing environmental conditions.

Plasticity is limited by the correlation between the environment at the time of devel-

opment and at the time of selection which is necessarily less than one in continuously

changing environments since selection always occurs some time after development. The

model of Gavrilets and Scheiner (1993) predicts a reaction norm equal to the regression

of the optimal phenotype at time of selection on the environment at the time of devel-

opment. Other limitations may include possible costs of plasticity associated with the

sensory, physiological and developmental machinery needed to develop a plastic pheno-

type (Moran, 1992; DeWitt et al., 1998). Thus, a perfect match between the optimal and

mean phenotype is not expected from theoretical consideration nor seen empirically (e.g.
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Charmantier et al., 2008).

A third distinct mechanism of phenotypic adaptation is diversifying bet-hedging, here-

after referred to as only bet-hedging. A well known example is the random time of ger-

mination of the seeds of many desert plant preventing the extinction of genetic lineages

by increasing the likelihood that at least some individuals belonging to a particular ge-

netic lineage germinate in good years (Cohen, 1966). Theoretical models based on the

geometric mean fitness principle have shown that selection fluctuating across generations

can create selection for increased values of the environmental component of the pheno-

typic variance provided that the fluctuations in the fitness of different phenotypes are

sufficiently large. In Bull (1987) and later models (e.g. Svardal et al., 2011) based on

Gaussian stabilizing selection, bet-hedging is only adaptive if the variance of the fluctu-

ations in the optimum is larger than the squared width of the Gaussian fitness function.

If this holds, the phenotypic variance evolves to the difference between these two quan-

tities. Other models, involving asymmetric fitness functions (Einum and Fleming, 2004;

Olofsson et al., 2009), reach similar conclusions.

The above three forms of adaptations are not necessarily mutually exclusive but may

possibly occur simultaneously. Plasticity is known to reduce genetic evolution the reac-

tion norm elevation, both in the case of autocorrelated temporal (Tufto, 2000b; Michel

et al., 2014) and spatial (de Jong, 1999; Scheiner, 1998) fluctuation in the phenotypic opti-

mum. With constant plasticity, this occurs as a result of the reduced mismatch between

the mean and optimal phenotype, reducing selection on mean reaction norm elevation

(Tufto, 2000b; Michel et al., 2014). An association between the phenotypic variance and

plasticity, through developmental instability as hypothesized by DeWitt et al. (1998) or

through microenvironmental variability, might additionally further reduce adaptive track-

ing with increasing levels of plasticity through reduced heritability. The reverse effect of

genetic evolution in mean elevation on the evolution of plasticity is less well understood.

Michel et al. (2014) assume that the reaction norm slope remains unaffected by adaptive

tracking, contrary to previous results for deterministic cyclic fluctuations (Tufto, 2000b,

eq. 23). Lande (2009) also relies on this simplification, which implicitly assumes that
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environmental fluctuations are too fast for any significant amount of adaptive tracking

in mean elevation to occur. The high rates of contemporary evolution observed in many

traits (Hendry and Kinnison, 1999; Kinnison and Hendry, 2001; Bell, 2010), however, sug-

gests that there is a need for theoretical models that considers the mutual evolutionary

dependency between these two processes in more detail.

Similar mutual feedbacks must also exist between the evolution of bet-hedging and

mechanisms contributing to adaptive tracking of the mean phenotype in response to

environmental change. Bet-hedging, on the one hand, through the increase in the envi-

ronmental component of the phenotypic variance will reduce heritability which in turn

should reduce adaptive tracking through genetic evolution (Scheiner, 2014a). A small

mismatch arising as a result of either adaptive tracking in mean elevation or a high level

of plasticity, on the other hand, might have an effect similar to a reduction in the variance

of fluctuations in the environment optimum in Bull’s (1987) model, reducing the parts of

the parameter space where bet-hedging is adaptive.

Here I model the joint evolution of the above three forms of response to fluctuat-

ing selection. Most traits important in phenotypic evolution are believed to be polygenic

(Lande, 1982) or at least oligogenic (Bell, 2010). Some empirical evidence suggest genetic

architectures in which large parts of the genome involved in phenotypic plasticity involve

developmental switches and that these may be single genes (as assumed by Botero et al.,

2014). Although such single genes, e.g. hox genes, may be involved, most authors ar-

gue that developmental switches are under polygenic control (e.g. West-Eberhard, 2005).

This suggest that a quantitative genetic approach based on approximately constant ge-

netic variances and covariances maintained by a balance between mutation, drift and

selection should provide a reasonable starting point for a generic model. By assuming

small genetic variances in reaction norm slope and bet-hedging such that evolutionary

fluctuations in these quantities are small, several analytic approximations expressing the

mutual dependency between the three different processes at the joint evolutionary equi-

librium are derived, putting the various feedbacks between the processes discussed above

in quantitative terms. These equations are then solved numerically or analytically to
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yield values of these quantities in terms of basic model parameters.

The model also elucidates more subtle links between plasticity and bet-hedging. Most

previous models assume that the environmental cue on which development depends is

shared between all individuals in the population (Michel et al., 2014; Botero et al., 2014;

Ezard et al., 2014). However, as shown by Donaldson-Matasci et al. (2013), using a

model with discrete environmental states, if cues vary between individuals as a result of

microenvironmental variability, the between-individual phenotypic variance will increase

with increasing plasticity, in effect leading to diversifying bet-hedging but through an-

other mechanism. More generally, we shall see that such microenvironmental variability

also has implications for the level of plasticity that evolves and how this depends on

correlations between microenvironments experienced individually at time of development

and selection. Implications of the model for the overall relative magnitude of the different

evolutionary responses are also discussed.

Model

RATIONALE AND ASSUMPTIONS

Previous theory has shown that the evolution of plasticity must be strongly dependent

on the the correlation between the environment at time of development and at the time

of selection. If the environment fluctuates according to a continuous-time stochastic

process and selection occurs some fraction of the generation time after development,

this correlation is necessarily less than one. Here, autocorrelated fluctuations in the

macroenvironment εt affecting all individuals in the population is modeled by assuming

that εt is an Ornstein-Uhlenbeck process (Karlin and Taylor, 1981), which is a continuous-

time analogue of a first order autoregressive process, or, roughly speaking, a random walk

with a mean-reverting tendency. Parameterizing this process in terms of the stationary

variance Var(εt) = σ2
ε and the autocorrelation α across one generation, the autocovariance
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function can be written as

Cov(εt, εt+h) = σ2
εα

h = σ2
εe

−h/T . (1a)

The alternative parameterization in terms of the temporal scale T = −1/ lnα of expo-

nential decay in autocorrelation with increasing distance in time h, referred to as the

autocorrelation time in Lande and Shannon (1996), will also be useful. For example, for

autocorrelation α = 0.99, T ≈ 99 generations. The macroenvironment εt is assumed to

have a stationary mean of zero. A useful recursion equation for the change in the state

of the macroenvironment over a possibly non-integer time step of length h is

εt+h = αhεt + δt,h, (1b)

where δt,h is defined as a normally distributed increment independent of the state εt of

the process at time t, with zero mean and variance (1− α2h)σ2
ε .

To model the effects of microenvironmental variability I assume that the environments

experienced by a particular individual at the time of development and selection are given

by εt−τ + u and εt + v, respectively, where the microenvironmental deviations u and v

are assumed to have a bivariate normal distribution with zero means, a common variance

σ2
u and correlation ρuv. For organisms that are mostly sessile, such as many species of

plants, development and selection may occur at the same spatial location. In this case

ρuv may be close to one if variation in u and v reflect permanent spatial differences, say

differences in topography and nutrient availability. Other organisms such as insects with

continuous movement may be subject to selection at a spatial location different from that

of development such that u and v are only weakly correlated. I assume that dispersal

occurring after selection, however, is sufficiently high to make the population panmictic.

The optimal phenotype of a given individual is then assumed to be determined by its

surrounding microenvironment at time of selection by the linear relationship

θ = A+B(εt + v), (2a)

where the parameters A and B are the optimal reaction norm elevation and slope.
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The expressed phenotype z of the same particular individual is similarly determined

by its surrounding microenvironment at the time of development, its genetic reaction

norm elevation and slope a and b as well as a third genotypic value c, also subject to

selection, according to the relationship

z = a+ b(εt−τ + u) + cy + e. (2b)

The two last terms are explained in the next two paragraphs. Note how the inclusion of

the microenvironmental deviation u in second term on the right hand side of (2b) gives

rise to an environmental component of the phenotypic variance equal to b2σ2
u. Although

having some of the same effects, this does not represent a relationship between develop-

mental instability and plasticity as hypothesized be DeWitt et al. (1998) and supported

empirically by some studies (Tonsor et al., 2013), but only reflects the fact that the

environmental states experienced by different individuals deviates from the population

mean.

Following Gavrilets and Hastings (1994), evolution of the environmental component

of the phenotypic variance in the model, independent from changes through the reaction

norm slope b, is accomodated by the third term on the right hand side of (2b) involving

a white-noise variable y and a second reaction norm slope c representing the dependency

of the phenotype z on y. The variable y, distinct and independent of u and v, may rep-

resent some random or pseudorandom microenvironmental variable in the surroundings

of each individual suitable for generating a random phenotype or some random or pseu-

dorandom factor of purely internal origin representing developmental instability. Under

the latter interpretation, the model is in effect almost (see Discussion) equivalent to the

non-pleiotropic models in (Scheiner, 2014b,a) although a variable y is not introduced ex-

plicitly in his model formulation. Without loss of generality, y is assumed to have a mean

of zero and unit variance. This term thus gives rise to an environmental component of

the phenotypic variance equal to c2. A link between developmental instability and the

reaction norm slope b as hypothesized by DeWitt et al. (1998) can be accomodated by a

genetic correlation between b and c.

Environmental canalization or homogeneity are thought to induce costs associated
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with regulatory feedback mechanisms necessary to make the phenotype less sensitive to

microenvironmental external or internal conditions. Rather than modeling this cost ex-

plicitly by making individual fitness directly dependent on c as in Zhang and Hill (2005),

a lower limit on the environmental component of the phenotypic variance reflecting such

a cost only implicitly is introduced by including a fourth normally distributed zero mean

individually varying term e with non-evolving variance σ2
e . This term too may repre-

sent both microenvironmental variation independent from u, v and y but also internal

developmental stochasticity. It follows that the total phenotypic variance of a partic-

ular genotype generated by microenvironmental variation, commonly referred to as VE

(Bulmer, 1980; Falconer and Mackay, 1996), is b2σ2
u + c2 + σ2

e .

Following Bull (1987), Gavrilets and Scheiner (1993) and Lande (2009), stabilizing

selection acts through the phenotype z towards the individually varying phenotypic op-

timum θ according to a Gaussian individual fitness function with width ω such that

w(z − θ) = exp

{
−(z − θ)2

2ω2

}
. (2c)

I assume hard selection as defined by Christiansen (1975), that is, density regulation

occurs globally after selection such that the contribution from each microenvironment is

proportional to mean fitness within each microenvironment.

In any particular generation t it is assumed that the genotypic values (a, b, c) are

jointly multivariate normal with mean vector (āt, b̄t, c̄t) and genetic variance-covariance

matrix

G =


Gaa 0 0

0 Gbb 0

0 0 Gcc

 . (2d)

No genetic correlation between a and b is expected if the character has been through

a long period of genetic canalization (Lande, 2009). A similar argument can be made

for the genetic correlation between a and c. A genetic correlation between plasticity

and developmental instability resulting from pleiotropic genetic effects as considered in

Scheiner (2014a) can be accomodated by a nonzero Gbc-element but this is deferred to

the discussion.
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MEAN FITNESS AND SELECTION GRADIENT

Before proceeding, note how the selection gradient becomes a stochastic variable through

its dependency on the macroenvironment at development εt−τ and selection εt affecting

all individuals in the population. Mean fitness and the selection gradient is therefore

derived conditionally on these variables whereas all other individually varying quantities

in (2a) and (2b) (a, b, c, u, v, y and e) are regarded as random. Under hard selection,

the response to selection will be given by G∇ ln w̄ as in Lande and Arnold (1983) but

with w̄ defined as mean fitness across the distribution of microenvironments u and v (see

Appendix S3).

Although the deviation of each individual’s phenotype from its optimum experienced

at the time of selection z−θ (the differences between the sums appearing in (2a) and (2b))

involves some non-normal terms (products between independent normally distributed

variables), the deviation is a sum of four or five independent random terms and should

thus be well approximated by a normal distribution. From the assumption of indepen-

dence and zero expectations of the microenvironmental variables and formulas for the

variance and covariance of products of random variables (Goodman, 1960; Bohrnstedt

and Goldberger, 1969), the mean and variance of z − θ is

E(z − θ) = āt + b̄tεt−τ − A−Bεt, (3a)

Var(z − θ) = Gaa +Gbbε
2
t−τ + (Gbb + b̄2

t )σ
2
u +Gcc

+ c̄2 + σ2
e +B2σ2

u − 2b̄tBρuvσ
2
u.

(3b)

Note how the phenotypic variance, or more precisely, the population phenotype-optimum

variance, in the following denoted σ2
z(b̄t, c̄t, εt−τ ), is a function of both b̄t and c̄t and also

the environment at the time of development εt−τ .

Relying on the normal approximation for z − θ, mean fitness is a convolution of two

Gaussian functions that simplifies to

w̄(āt, b̄t, c̄t) =

√
ω2

ω2 + σ2
z(b̄t, c̄t, εt−τ )

× exp

{
−(āt + b̄tεt−τ − A−Bεt)2

2(ω2 + σ2
z(b̄t, c̄t, εt−τ ))

}
.

(3c)
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From this the selection gradient becomes

β =

(
∂

∂āt
,
∂

∂b̄t
,
∂

∂c̄t

)T
ln w̄

= − 1

ω2 + σ2
z(b̄t, c̄t, εt−τ )

×



āt + b̄tεt−τ − A−Bεt

(āt + b̄tεt−τ − A−Bεt)εt−τ

+σ2
u(b̄t − ρuvB)

(
1− (āt+b̄tεt−τ−A−Bεt)2

ω2+σ2
z(b̄t,c̄t,εt−τ )

)

c̄
(

1− (āt+b̄tεt−τ−A−Bεt)2
ω2+σ2

z(b̄t,c̄t,εt−τ )

)


.

(3d)

The first component of the selection gradient shows that mean reaction norm elevation

āt increases whenever the mismatch between the mean and optimal phenotype (āt +

b̄tεt−τ −A−Bεt) is negative. The third component representing selection on c̄t through

its effect on the phenotypic variance shows that c̄t increases whenever the mismatch, in

absolute value, is sufficiently large to make the Gaussian mean population fitness function

convex rather than concave (mismatch larger than
√
ω2 + σ2

z(b̄t, c̄t, εt−τ )). The second

component includes two terms; the first representing selection on b̄t through its effects

on the phenotypic mean as in Lande (2009), and the second term representing selection

through the effects of b̄t on the phenotypic variance.

Multiplying the G-matrix with the above selection gradient (Lande and Arnold, 1983)

and relying on the results in Appendix S3 leads to three stochastic non-linear recursions

equations for āt, b̄t and c̄t coupled to each other and driven by the exogenous environ-

mental process εt. These recursion equations can be used in stochastic simulations of the

process. One realization is shown in Fig. 1.

Analytic Approximations

To gain some insights into the behaviour of this process beyond what can be learned from

stochastic simulations, I derive several analytic approximations for the limiting case that

the genetic variances Gbb and Gcc in the reaction norm slopes b and c are small. This has
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three implications. First, a small genetic variance in the reaction norm slope b makes the

dependency of the phenotype-optimum variance (3b) on the environment at the time of

selection εt−τ through the term Gbbε
2
t−τ small. We therefore approximate this term by its

long term average value Gbbσ
2
ε and let σ2

z(b̄t, c̄t) denote the resulting phenotype-optimum

variance.

Secondly, in the limit of small genetic variances in b and c, the products bu and cy

appearing as terms in the expression for the deviation z− θ tend to normal distributions.

This in turn implies that z−θ is also normally distributed, and so (3c) and (3d) are exact

in this limiting case.

Thirdly, and most importantly, although small Gbb and Gcc will slow down the tran-

sient phase of the evolution of b̄t and c̄t, fluctuations in b̄t and c̄t, once stochastic equilib-

rium has been reached, will be small such that these quantities can be replaced by their

eventual long term equilibrium values ¯̄b and ¯̄c. As we shall see, this greatly simplifies the

analysis and leads to several useful approximations expressing the mutual evolutionary

dependencies between the three forms of adaptations.

It is emphasized that the magnitude of Gbb and Gcc is an empirical question and that

the following analytic approximations ultimately must to be validated against stochastic

simulations of the process in cases also including larger genetic variances in b and c, see

Appendix S4.

GENETIC EVOLUTION IN MEAN REACTION NORM ELEVATION

From (3d), for given values of ¯̄b and ¯̄c, the recursion equation for fluctuations in mean

elevation āt becomes

āt+1 = (1− s)āt − s¯̄bεt−τ + sA+ sBεt, (4a)

where

s =
Gaa

ω2 + σ2
z(

¯̄b, ¯̄c)
. (4b)

Note that the phenotypic variance (3b) in the denominator increases with both ¯̄b and ¯̄c

and how this reduces s through a reduction in heritability.

12



a t

−
4

−
2

0
2

4

b t

0.
0

0.
4

0.
8

Generation t

c t2

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

A + Bεt
at

at + btεt−τ
95%−int. for z

Generation t

1970 1980 1990 2000

Environment at selection εt

−6 −4 −2 0 2 4 6

Figure 1: The evolution of āt, b̄t and c̄2t (blue, green, and red curve in upper, middle and lower row,

respectively) simulated over 2000 generations (left column) with a closeup of the last 30 generations

shown in middle column. Also shown (left and middle column) is the mean optimal phenotype A+Bεt

(black curve in upper plots), the mean phenotype āt + b̄tεt−τ (green curve in upper plots), a 95%

phenotype interval (grey shaded area in upper plots), and the evolution of the total phenotypic variance

(black curve in lower plots). Parameter values used are ω2 = 1, σ2
ε = 4, α = 0.7, τ = 0.8, ατ = 0.752,

σ2
u = 0, ρuv = 0, Gaa = 0.1, Gbb = 0.01, Gcc = 0.01, A = 0 and B = 1 and initial values ā1 = 0,

b̄1 = 0, c̄1 = 0.3. The right column shows a longer simulation extended to 105 generations excluding

the first 104 generations with āt, b̄t and c̄2t plotted againts the environment at selection (the points are

a subsample). Solid black lines are based on the analytic approximations in the main text solved for the

joint evolutionary outcome, dashed black lines are estimated regression slopes and mean values and solid

colored lines estimated polynomial regressions. The dotted lines in the rightmost plots indicate 95%

probability limits of the distribution of εt and additionally, in the upper plot, the optimal phenotype

A+Bεt.
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Eqs. (1b) and (4a) define the joint dynamics of εt and āt as a Gaussian stochastic

process with a bivariate normal stationary distribution (see Fig. 1, upper right plot).

The stationary covariance between āt and εt generated by genetic evolution in mean

elevation is of particular interest, both in itself and, as we shall see, in terms of its effect

on the evolution of the mean reaction norm slope and the phenotypic variance. Taking

the covariance between the two sums appearing in (1b) and (4a) and using (1a) leads to

a recursion equation for Cov(āt, εt) which solved for the stationary covariance yields

Cov(āt, εt) =
sα(B − ¯̄bατ )σ2

ε

1− α(1− s)
. (4c)

Note how the covariance, in the case of no plasticity, increases with increasing autocorre-

lation α towards its maximum limiting value of σ2
ε as α goes to 1 (perfect matching), and

how the covariance is reduced by the fraction ¯̄bατ/B by any given level of plasticity ¯̄b.

This is somewhat different from the covariance derived by Michel et al. (2014) but their

result is based on a continuous-time approximations and different model details.

Genetic evolution in mean elevation also produces a stationary variance of āt which

can be expressed as function of ¯̄b and ¯̄c (Appendix S1) of importance in the following

subsection.

EVOLUTION OF THE INDEPENDENT ENVIRONMENTAL COMPONENT OF

THE PHENOTYPIC VARIANCE

Next consider the evolution of the phenotypic variance through evolution in c̄t, again

assuming that the fluctuations in b̄t are small such that it can be replaced by its long

term average equilibrium value ¯̄b but with āt covarying with εt as described in the previous

subsection. It follows that c̄t must fluctuate around some value ¯̄c at which the expected

value of the c̄-component of the selection gradient (3d) is zero. This leads to

−
¯̄c

ω2 + σ2
z(

¯̄b, ¯̄c)

(
1− Var(āt + ¯̄bεt−τ − A−Bεt)

ω2 + σ2
z(

¯̄b, ¯̄c)

)
= 0, (5a)

which solved for ¯̄c yields two solutions of opposite sign at which the total phenotypic

variance is

σ2
z(

¯̄b, ¯̄c) = Var(āt + ¯̄bεt−τ − A−Bεt)− ω2, (5b)
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and the solution ¯̄c = 0 which is only stable stochastically if there are no nonzero solutions.

In terms of ¯̄c2, the solution is

¯̄c2 = Var(āt + ¯̄bεt−τ − A−Bεt)− ω2

−Gaa −Gbb(σ
2
ε + σ2

u)−Gcc

− ¯̄b2σ2
u − σ2

e −B2σ2
u + 2¯̄bBρuvσ

2
u.

(5c)

This extends Bull’s (1987) result for the evolution of phenotypic variance in three

ways. First, in Bull’s model, the optimal phenotypic variance is given by the difference

between the variance of fluctuations in the environmental optimum (termed π2 there) and

the squared width ω2 of the Gaussian stabilizing selection function, π2−ω2. In the present

model with plasticity as well as genetic evolution in mean elevation, π2 is replaced by the

analogous variance of the mismatch between the population mean phenotype āt + ¯̄bεt−τ

and the populations mean optimal phenotype E(θ) = A + Bεt. An expression for this

mismatch variance in terms of the solutions for the evolution of āt and ¯̄b is given in

Appendix S1.

Second and thirdly, the present model includes genetic variance components and envi-

ronmental variance components associated with plasticity (as in Donaldson-Matasci et al.

(2013)) (second and third line of (5c) respectively). Provided that they are sufficiently

small, these components do not inflate the total phenotypic variance, but instead replace

parts of the independently evolving component ¯̄c2 correspondingly, such that the overall

sum remains equal to (5b).

EVOLUTION OF MEAN REACTION NORM SLOPE

Approximate solutions for the long term average reaction norm slope once the process

has reached its stationary distribution can now similarly be expressed as a function of ¯̄c

and the above approximate solution for the behaviour of āt. Using the same approach as

in the previous subsection, it follows that b̄t too must fluctuate around some long term

value ¯̄b at which the expected value of the b̄-component of the selection gradient (3d) is
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zero. This leads to

Cov(āt, εt−τ ) + ¯̄bσ2
ε −B Cov(εt, εt−τ )

+ σ2
u(

¯̄b− ρuvB)

(
1− Var(āt + ¯̄bεt−τ − A−Bεt)

ω2 + σ2
z(

¯̄b, ¯̄c)

)
= 0.

(6a)

Although we will use this equation in the overall numerical solution (see next section),

it is worth considering some further approximations to provide some insights into the

behaviour of the solution.

We consider two special cases. First, note that the expected values of the c̄- and b̄-

components of the selection gradient, eqs. (5a) and (6a), share a common factor involving

the ratio between the mismatch variance and the sum of ω2 and the phenotypic variance

σ2
z(

¯̄b, ¯̄c). If we assume that bet-hedging is adaptive such that c̄t has evolved to an optimal

value given by one of the nonzero solutions of (5a), it follows that the expected value of

the common factor and the expected value of last term of the b̄-component of the selection

gradient is zero. Using (1a), the remaining part can be solved for ¯̄b to give

¯̄b = ατB − Cov(āt, εt−τ )

σ2
ε

. (6b)

This result expresses the optimal reaction norm slope ¯̄b in the presence of genetic evolution

in mean elevation, assuming that the environmental component of the phenotypic variance

has been free to evolve through changes in c̄t towards some optimal nonzero value ¯̄c. Note

how the optimal slope ¯̄b equals the difference between two regression slopes, the first being

the slope of the regression of the population mean optimal phenotype θ̄t = A+Bεt on the

macroenvironment at the time of development εt−τ (as in Gavrilets and Scheiner, 1993),

and the second being the slope of the regression of the mean reaction norm elevation āt

on the macroenvironment at the time of development.

The second case is the limiting case of the mismatch variance being much smaller

than ω2 + σ2
z(

¯̄b, ¯̄c). This will arise if fluctuations in the environment are slow (large

autocorrelation time T ) such that adaptive tracking through either plasticity or through

genetic evolution in mean elevation or both are favored. The common factor shared with

the expected gradient for c̄ is then close to one and the last term in the (6a) can be
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approximated by σ2
u(

¯̄b − ρuvB). Solving for ¯̄b, the small mismatch limit optimal slope

becomes

¯̄b =
ατσ2

ε + ρuvσ
2
u

σ2
ε + σ2

u

B − Cov(āt, εt−τ + u)

σ2
ε + σ2

u

. (6c)

This is again the difference between two regression slopes but now between variables at

the individual instead of at the population level. The first is the slope of the regression

of the random phenotypic optimum in the microenvironment at time of selection θ =

A+B(εt+v) experienced by a randomly chosen individual (2a) on the microenvironment

of the same individual at the time of development εt−τ + u. The second is the slope of

the regression of the reaction norm elevation a, also on the microenvironment at time of

development.

The difference between predictions (6b) and (6c) can be interpreted as follows. In

the case when bet-hedging is adaptive (6b), the increase in the phenotypic variance with

increasing levels of plasticity b̄ caused by the microenvironmental variability has no fit-

ness consequences as long as the total phenotypic variance can evolve to its optimal value

given by (5c) through joint evolution of c̄t. More generally, a steeper slope may also

lead to a smaller phenotypic variance, or more precisely a smaller phenotype-optimum

variance σ2
z(b̄t, c̄t), if the correlation ρuv is positive, but again, since the total phenotypic

variance will evolve freely towards its optimal value, the pattern of microenvironmental

variation does not influence the mean reaction slope produced. In contrast, in the small

mismatch limit (6c), bet-hedging is maladaptive, and stabilizing selection will make c̄t

fluctuate around zero while also creating additional selection against large values of the

slope of the reaction norm b̄t through its effect on the phenotypic variance. However,

if the correlation ρuv between the individual level microenvironmental deviations at de-

velopment and selection u and v is sufficiently high, a higher mean reaction norm slope

b̄ will evolve. For intermediate values of the mismatch variance, we shall see that the

mean reaction norm slope in general evolves towards an intermediate value between the

predictions of (6b) and (6c). The solutions obtained in the above two special cases should

thus be seen as upper and lower bounds on the mean reaction norm slope.
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Joint Evolutionary Outcome

Employing (1a), (4b), (S1.2) and (S1.4), eqs. (4c), (S1.3), (5c), and (6a) constitute a non-

linear system of four equations expressing the mutual dependencies between Cov(at, εt),

Var(at), ¯̄b and ¯̄c2. In general the solution can only be computed numerically. The numer-

ical solution yields values for these quantities as functions of the basic model parameters

G, α, σ2
ε , σ2

u, ρuv, σ2
e , τ , ω, A and B. This solution, shown in Figs. 2 to 5 as function of

different parameter values, represents the joint evolutionary response taking into account

a number of feedback loops between the three forms of evolutionary response, in the

limiting case considered in the previous section.

Figs. 2 to 5 are, without loss of generality, based on A = 0 and B = 1 and ω2 = 1

such that all parameters with dimensions involving that of the phenotype are measured

in units of the width ω of the Gaussian fitness function. It can also be noted that the

effect of σ2
e is confounded with ω2 since these parameters always appear through their

sum in the selection gradient. Thus, we may also without loss of generality set σ2
e = 0.

For the time lag between development and selection we choose a value of τ = 0.5, which

should be a reasonable average value for most organisms.

In the following, genetic evolution and plasticity are quantified by their associated

components in the slope of the regression of the mean phenotype on the environment at

selection

E(z̄t|εt) = E(āt + ¯̄bεt−τ |εt) = A+

(
Cov(āt, εt)

σ2
ε

+ ¯̄bατ
)
εt, (7)

relative to the slope B of the relationship between the mean optimal phenotype and εt,

E(θt|εt) = A+Bεt.

NO MICROENVIRONMENTAL VARIABILITY

We begin by considering the model without any microenvironmental variability (σ2
u = 0).

Fig. 2 shows the three evolutionary responses as functions of increasing autocorrelation

time T for three different values of the genetic variance in reaction norm elevation Gaa.

Large environmental fluctuations (σ2
ε = 3) relative to the squared width ω2 = 1 of the
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Figure 2: Joint evolutionary responses to the autocorrelation time T in the environmental optimum εt

(generations) and the corresponding correlation between environments at development and selection ατ

in the absense of microenvironmental variation (σ2
u = 0), for genetic variance in reaction norm elevation

Gaa equal to 1, 0.1 and 0.01 (upper, middle and lower plot). The red curve represents the level of bet-

hedging (quantified by the component ¯̄c2 of the phenotypic variance, left axis). Other curves (right axis)

represents regression slopes of the mean phenotype on the environment at time of selection resulting

from genetic evolution in mean elevation (Cov(āt, εt)/σ
2
ε), blue curve), plasticity (¯̄bατ , darkgreen curve),

and their sum (light grey curve). Other parameter values used are σ2
ε = 3, σ2

u = 0, σ2
e = 0, τ = 0.6,

Gbb = 0.05, Gcc = 0.05, A = 0 and B = 1.
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stabilizing selection function are assumed such that bet-hedging is adaptive in some parts

of the parameter space shown.

The assumption that a single environmental variable determines both development

and selection makes the autocorrelation between the macroenvironments at development

and selection ατ coupled to time scale of temporal fluctuations in the phenotypic op-

timum T ≈ 1/(1 − α). This creates a joint evolutionary balance between the evolving

reaction norm slope and the amount of genetic evolution in mean elevation since both evo-

lutionary responses are favored by increasing autocorrelation. Although a partial closed

form solution for the joint evolutionary outcome is available in the case considered here

(σ2
u = 0) (Appendix S2), the relative contributions of plasticity and genetic evolution in

mean elevation to overall phenotypic adaptation is well described by the limiting values

(see Appendix S2) in the case of slow fluctuations in the environment. As α→ 1,

¯̄bατ

B
→ (1− 2sτ), (8a)

Cov(āt, εt)

σ2
εB

→ 2sτ, (8b)

as also indicated by Fig. 2, with no mismatch between the mean and optimal phenotype

(light grey curves). The proportion of overall phenotypic adaptation attributable to

genetic evolution in mean elevation thus increases with Gaa, the strength of stabilizing

selection ω2 and increasing time lag τ through the quantity 2sτ where s simplifies to

s =
Gaa

ω2 +Gaa +Gbbσ2
ε +Gcc + σ2

e

. (8c)

Conversely, plasticity is favored by a short delay between development and selection (τ

small), weak selection (ω2 large) and small genetic variance in reaction norm elevation

Gaa. Empirical studies suggest typical Gaa/ω
2 values less than 0.1 (Kingsolver and Hoek-

stra, 2001) which would correspond to s = 0.091 if other genetic variances are small. For

an intermediate time lag of τ = 0.5, 9% of overall adaptation would thus be attributable

to genetic evolution in mean elevation and 91% to plasticity (Fig. 2, middle plot)

Turning to the leftmost region of the parameter space shown in Fig. 2, for autocor-

relation times less than about 3 generations, as adaptive tracking through plasticity and
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genetic evolution in mean elevation becomes sufficiently small and the mismatch variance

sufficiently large, diversifying bet-hedging (red curves) begins to occur as a joint evolu-

tionary outcome. In the limiting case of α = 0 the environment simplifies to a white noise

process that prevents any adaptive tracking from occurring. As in Bull (1987), for small

Gaa, the phenotypic variance then evolves to a maximum value of almost σ2
ε − ω2 = 2

out of which a component equal to ¯̄c2 = 1.8 is attributable to evolution in c̄t (lower

plot in Fig. 2) with the remaining part being genetic and non-evolving environmental

components (see (3b) and the figure caption for details of all parameter values used).

Increasing Gaa in this limiting case, however, has both a direct negative and an indirect

somewhat obscure positive effect on ¯̄c2. First, as the genetic variance in reaction norm

elevation increases from Gaa = 0.01 up to Gaa = 1 (leftmost part of Fig. 2), this increases

the total phenotypic variance by 0.99, which is compensated by a decrease by the same

amount in ¯̄c2, see equation (5c). However, increasing Gaa also leads to maladaptive ge-

netic evolution in mean elevation, an effect noted by Lande and Shannon (1996), because

any response in mean elevation to past selection will be uncorrelated with the current

phenotypic optimum. The resulting fluctuations in āt creates an additional increase in

the mismatch variance beyond σ2
ε given by (S1.3) which in the white noise case simplifies

to Var(āt) = sσ2
ε/(2 − s) = 0.5000245 for the parameter values used. The net effect,

0.99 − 0.5000245, reduces ¯̄c2 from its value of 1.8 (lower plot in Fig. 2) to a value of

1.3100245 for Gaa = 1 (upper plot).

UNCORRELATED MICROENVIRONMENTAL DEVIATIONS

Next we consider the effect of microenvironmental variation (Fig. 3) assuming that the

variance of microenvironmental deviations u and v affecting development and selection is

σ2
u = 1, that is, one third of the variance in the macroenvironment σ2

ε = 3. We also begin

by assuming that microenvironmental deviations u and v are uncorrelated. This may be

realistic for organisms with continuous movement experiencing spatially heterogeneous

environments over spatial scales much shorter than typically dispersal distances such as

many insects (Clobert et al., 2012). Other parameter values remain unchanged from the

21



0.
0

0.
3

0.
6

0.
9

0
0.

5
1

1.
5

2

Gaa = 1

0.
0

0.
3

0.
6

0.
9

0
0.

5
1

1.
5

2

co
v(

a t
, ε

t)
σ ε2 B

   
   

   
   

   
   

   
   

   
   

   
   

   
   

bα
τ

B

c2

Gaa = 0.1

0.2 0.5 1 2 5 10 50 200 1000
(0.082) (0.61) (0.9) (0.975) (0.995) (0.999)

Autocorrelation time T (autocorrelation sel. devel. ατ)

0.
0

0.
3

0.
6

0.
9

0
0.

5
1

1.
5

2

Gaa = 0.01

Figure 3: Same as Fig. 2 but with uncorrelated microenvironmental deviations affecting development

and selection with variance σ2
u = 1. Also shown are joint solutions for the levels of plasticity predicted by

approximations (6b) (bet-hedging jointly adaptive, dashed darkgreen curve) and (6c) (small mismatch

variance limit, dotted darkgreen curve).
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previous subsection.

This microenvironmental variability increases the phenotypic variance, or more pre-

cisely, the individual level phenotype-optimum variance σ2
z(

¯̄b, ¯̄c) by (B2 + ¯̄b2)σ2
u, see (3b).

This in turn lead to selection for smaller values of ¯̄c2 (5c). The individual level variance

in the phenotypic optimum B2σ2
u can alternatively be interpreted as weaker stabilizing

selection changing ω2 to ω2 +B2σ2
u. Both interpretations imply a reduction in the value of

¯̄c2 in Fig. 3 relative to the corresponding values in Fig. 2, in some cases all the way down

to zero, reducing the region of the parameter space in which bet-hedging is adaptive and

enlarging the region in which selection for reduced phenotypic variance (environmental

canalization) is present.

Turning to the reaction norm slope ¯̄b, microenvironmental variability does not always

have an effect. Within the region in which bet-hedging is adaptive, with little or no

genetic evolution in mean elevation (lower plot in Fig. 3), the mean reaction norm slope

remain unchanged from Fig. 2 and equal to the value ¯̄b = ατ as predicted by (6b) for small

Gaa (Fig. 3, lower plot). In the vicinity of this region, the level of plasticity predicted

by (6a) (solid dark green curve) remains close to the solution based on approximation

approximation (6b) (dashed green curve), but then gradually transition towards the value

predicted by the small mismatch variance limiting approximation (6c) (dotted green

curve).

For autocorrelation times of 10 generations or more, adaptive tracking through both

plasticity and genetic evolution becomes extensive and the mismatch variance small, gen-

erating a penalty on the phenotypic variance and stronger selection against high reaction

norm slopes. This shifts the joint evolutionary balance between these two evolutionary re-

sponses in favor of genetic evolution, making this the predominant evolutionary response

for autocorrelation times T greater than about 100 generations for Gaa = 0.1.

CORRELATED MICROENVIRONMENTAL DEVIATIONS

For more sessile organisms such as many species of plants, development and selection

may occur at the same spatial location. This may give rise to a high correlation between
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Figure 4: Same as Fig. 3 but with an added correlation ρuv = 0.7 between microenvironmental devia-

tions u and v.
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the microenvironmental deviations u and v at the time of development and selection.

Fig. 4 shows the joint evolutionary response given a value of ρuv = 0.7 for this parameter,

again, as function of the macroenvironmental autocorrelation time T (or autocorrelation

between the macroenvironments at the time of development and selection) and for the

same genetic variances in reaction norm elevation Gaa.

Not surprisingly, compared to Fig. 3, the same or a greater amount of plasticity

evolves in all parts of the parameter space. For moderate or low values of Gaa such that

the amount of tracking through mean elevation is limited, there is first an increase in the

reaction norm slope caused by increasing macroenvironmental autocorrelation but again,

as in Fig. 3, for high levels of plasticity (greater than ρuvB), the phenotypic variance

increase with increasing values of the slope which shifts the joint evolutionary balance in

favor of genetic evolution. As apparent from Fig. 3 and as shown in Appendix S2, in the

limit of slow fluctuations (T →∞, α→ 1), the mean reaction norm slope and the slope

of the regression of mean elevation on the environment at the time of selection evolves to

¯̄b = ρuvB, (9a)

Cov(āt, εt)

σ2
ε

= (1− ρuv)B. (9b)

This result has a simple intuitive explanation. When fluctuations in the macroenvi-

ronment are very slow the model is essentially equivalent to a model with a constant

macroenvironment with the population mean phenotype z̄t always matching the constant

mean phenotypic optimum θ̄t. The evolving level of plasticity is then a result of the

pattern of microenvironmental variability only. Setting σ2
ε and Cov(āt, εt−τ ) in (6c) both

equal to zero we then arrive at (9a).

Does increased plasticity, through a reduction in the mismatch variance, also reduce

the region of the parameter space in which bet-hedging is adaptive? Somewhat surpris-

ingly, comparison of the region where the red curves are positive in Fig. 4 to those in

Fig. 3 shows that this region is enlarged by the positive correlation ρuv between the mi-

croenvironmental deviations u and v. This results follows from the dependency of the

individual level phenotype-optimum variance σ2
z(b̄t, c̄t) on b̄t. For positive ρuv, the vari-
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Figure 5: Same as Fig. 4 but with the variance of macroenvironmental fluctuations reduced from

σ2
ε = 3 to σ2

ε = 1 such that diversifying bet-hedging is no longer adaptive for short macroenvironmental

autocorrelation times. Note also that the darkgreen green curves represents ¯̄b only.

ance is at its minimum for b̄t = ρuv (see (3b)). Therefore, the steeper slope resulting from

higher macroenvironmental autocorrelation translates to a smaller phenotype-optimum

variance such that the net effect of increased plasticity is increased selection for higher

values of c̄2 and an enlargement of the region of adaptive bet-hedging.

The level of plasticity is again, within the region of adaptive bet-hedging, not influ-

enced by the pattern of microenvironmental variability but only by the macroenvironmen-

tal autocorrelation between development and selection. This somewhat counterintuitively

includes no influence of ρuv.

MODERATE ENVIRONMENTAL FLUCTUATIONS

Diversifying bet-hedging requires that the variance of environmental fluctuations in the

selective optimum, or as shown here, that the variance of the mismatch between the mean
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phenotype and the mean optimum is larger than the squared width ω2 of the stabilizing

selection function. In many situations, this condition is not likely to be fulfilled. In Fig. 5

we consider the same parameter values as in Fig. 4 but with the macroenvironmental

variance σ2
ε reduced from 3 to 1. Given ω2 = 1, diversifying bet-hedging is then no longer

adaptive for any value of the macroenvironmental autocorrelation α. This also makes

evolution of the mean reaction norm slope b̄t dependent on the pattern of microenviron-

mental variation everywhere. Consequently, a positive slope evolves as a result of the

microenvironmental correlation ρuv = 0.7 also when the macroenvironmental correlation

between development and selection is 0. The reaction norm slope in this case takes an

intermediate value of 0.22, in-between zero as predicted by (6b) (dashed green curve) and

ρuvσ
2
u/(σ

2
ε + σ2

u) = 0.35 as predicted by (6c) (dotted dark green curve).

For higher macroenvironmental autocorrelation α, the joint evolutionary outcome is

qualitatively similar to that in Fig. 4 with ¯̄b again tending to the limiting value ρuvB = 0.7

and Cov(āt, εt)/σ
2
ε to 1− 0.7.

Discussion

MAIN FINDINGS

Here, genetic evolution, plasticity and the evolution of diversifying bet-hedging have

been considered jointly within a unified quantitative genetic framework. Simple analytic

approximations expressing the mutual dependency between genetic evolution, plasticity

and the evolving phenotypic variance have been obtained, containing previous results

(Lande and Shannon, 1996; Gavrilets and Scheiner, 1993; Bull, 1987) as special cases. As

in Michel et al. (2014), a central quantity is the covariance between āt and εt representing

Darwinian genetic evolution in mean reaction norm elevation. This covariance is reduced

by plasticity by a fraction ¯̄bατ/B (4c), and by reduced heritability through any increase

in the environmental component of the phenotypic variance resulting from plasticity,

diversifying bet-hedging or both ((3b) and (4b)). Genetic evolution in mean elevation and

the evolving phenotypic variance similarly feeds back on the evolving level of plasticity. In
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parts of the parameter space with decanalizing selection on the phenotypic variance (fast

and large environmental fluctuations), the reaction norm slope is reduced below Gavrilets

and Scheiner’s (1993) prediction by an amount equal to the slope of the regression of mean

elevation on the environment at development at the population level (6b). Elsewhere,

through the effects of selection for reduced phenotypic variance, the reaction norm slopes

evolves towards the difference between the same regression slopes but between random

quantities at the individual level (6c). Bet-hedging arising through selection for increased

phenotypic variance depends not on the the variance of the phenotypic optimum as in

Bull’s (1987) model but instead on the variance of the mismatch between the optimal

and mean phenotype. This mismatch variance is reduced by adaptive tracking generated

by the other responses. Solving for the joint evolutionary outcome, there is considerable

overlap between the different responses (Figs. 2 to 5) with plasticity emerging as the

predominant evolutionary response in large parts of the parameter space value and with

bet-hedging restricted to environmental fluctuations with autocorrelation times less than

two generations.

These theoretical predictions appear largely consistent with more verbal arguments

for the notion that plasticity plays a more important role in evolution than previously

realized (West-Eberhard, 2003), as well as empirical findings. Merilä and Hendry’s (2014)

meta-review summarizes 11 reviews of the role of plasticity and genetic evolution in re-

sponse to climate change in different taxonomic groups. An overall conclusion from these

reviews is that plasticity often appear to make a strong contribution to phenotypic trends

whereas genetic contributions seems weaker and less common. In birds (Charmantier and

Gienapp, 2014), plasticity was documented to be involved in observed phenotypic changes

in timing of breeding or timing of migration in 18 out of 18 studies in which this was

tested, 12 of which also documented an adaptive value of the changes. Genetic changes,

on the other hand, did not contribute significantly in 3 of the studies that tested for this.

In mammals, observed responses in 12 studies were primarily due to plasticity with only

one study documenting genetic changes (Boutin and Lane, 2014). In plants, in contrast,

genetic evolution appear to make a stronger contribution, with both plasticity and genetic
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evolution contributing significantly in 26 out of the 38 studies reviewed by Franks et al.

(2014). Given that movement between development and selection in many plants should

be limited, creating a stronger correlation ρuv between the microenvironments at devel-

opment and selection, this is surprising in light of the predictions of the present model

(see Fig. 4 and 5). Seventeen of the studies reviewed by Franks et al. (2014) are based

on space for time substitutions, however, so in reality, many of these studies document

local genetic adaptations which are outside the scope of the present panmictic model, see

‘Spatial Model Extensions’ for further discussion below. Other possible explanations are

costs or other limitations to plasticity or autocovariance with non-exponential decay (see

below) which can both shift the joint evolutionary balance away from plasticity in favor

of temporal genetic evolution.

Few empirical studies make an attempt at estimating the relative contribution of

genetic evolution and plasticity in quantitative terms. A notable exception is Réale

et al. (2003) who found plasticity and genetic evolution to account for an advancement

in breeding date in red squirrels through changes in food abundance equal to 3.7 and

0.8 days per generation, respectively. As highlighted by Merilä and Hendry (2014), new

inferential methods such as Crozier et al. (2011) disentangling these contribution from the

pattern of fluctuations seen in phenotypic times series, perhaps combined with methods

for estimating fluctuating selection as in Calsbeek (2012); Engen et al. (2012); Engen and

Saether (2014); Chevin et al. (2015), are clearly needed.

The limited role of diversifying bet-hedging predicted here also appear consistent

with the limited amount of conclusive empirical evidence restricted to a few studies of

Chordata species and some semelparous plant species (Childs et al., 2010; Simons, 2011).

However, the lack of empirical evidence may also reflect the arduous requirements of any

empirical test of whether observed levels of phenotypic variation reflects the observed level

of fluctuating selection. Interactions with other response modes adds to the difficulties

of such empirical tests.
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SIMILAR THEORETICAL MODELS

Focusing on the same overall question as here but also including reversible plasticity and

conservative bet-hedging as response modes, Botero et al. (2014), using individual-based

simulations, reached conclusions resembling results derived here but with the different

adaptive responses showing little overlap across different parts of the parameter space.

These authors also investigated transitions between different points in parameter space

corresponding to different patterns of environmental fluctuations, perhaps resulting from

anthropogenic climate change (Tebaldi et al., 2006; Hansen et al., 2012). Worryingly,

although such transitions could be accomodated by evolution when occurring within the

region of a given single response mode, most transitions across boundaries between regions

of different response modes resulted in rapid population collapse and often extinction.

These results may easily be a result of the model assumptions used, however, including

the step function used to model a cost of plasticity, a single modifier locus s switching

plasticity on and off at a threshold genotypic value of 0.5, and the assumption that the

allelic values at the locus determining the reaction norm slope are somehow reset to zero

whenever s goes below the 0.5-threshold in any given individual.

Also using individual-based simulations, Scheiner (2014a,b) found developmental in-

stability being disfavored by increasing autocorrelation, possibly through genetic evolu-

tion at non-plastic loci or through closer tracking as a result of plasticity. Scheiner mod-

els an evolving phenotypic variance by a normally distributed random term representing

developmental instability, where the standard deviation is a polygenic trait influenced

additatively by 5 loci. Although in effect being similar to the approach used here and in

Gavrilets and Hastings (1994), the standard deviation is constrained to be non-negative

by truncating the distribution of mutational effects. Combined with a mutation rate set

to 10% per loci per generation, this in effect produces a strong directional mutational

force possibly explaining why Scheiner (2014a) observed considerable developmental in-

stability also in cases where the variance of temporal fluctuations is below the Bull (1987)

threshold.

The list of evolutionary response modes considered here is not exhaustive. If selec-
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tion is strong and the autocorrelation across generations is high, the phenotype of a

surviving parent will be informative about the selective environment of a given offspring.

Maternal effects are then predicted to evolve, in particular, if within-generation plas-

ticity is somehow limited through costs (Ezard et al., 2014; Kuijper and Hoyle, 2015).

Maternal effects can be thus be seen as a response mode in-between genetic evolution

and within-generational plasticity in efficiency, having mutual dependencies with other

response modes similar to the ones considered here. For a large sudden shift in environ-

mental conditions, however, both positive maternal effects and increased plasticity are

predicted to contribute during transient phenotypic evolution (Kuijper and Hoyle, 2015),

both slowing down genetic evolution as in Lande (2009). In terms of evolution of the

phenotypic variance, an interesting empirical finding is negative maternal effects (sensu

the single trait model in Kirkpatrick and Lande, 1989), as predicted by theory in slowly

changing environments through its canalizing effect on the phenotypic variance (see Hoyle

and Ezard, 2012; Ezard et al., 2014, and references therein).

CONSTRAINTS ON b AND c

Using a simulation model similar to Scheiner (2014a,b), Scheiner and Holt (2012) and

Scheiner (2013) observed that strong fluctuating selection theoretically may select for

reaction norm slopes seemingly steeper than the optimal value predicted by theory, so

called hyperplasticity, in effect a form of diversifying bet-hedging. This appears to be

a result of not accommodating independent evolution of the phenotypic variance as we

have done here. Without such a component, increased phenotypic variance can only be

generated by steeper-than-optimal, hyper-plastic reaction norms. Adding loci influencing

developmental instability without pleiotropic effects on plasticity in their model, a shal-

lower reaction norm slope evolved (Scheiner, 2014b). If the same loci influence both plas-

ticity and developmental instability through pleiotropy, however, hyperplasticity again

evolved (Scheiner, 2014b). The realism of such genetic architectures is an open question.

Given the chaotic behaviour of nature, pseudorandom microenvironmental variables in

the surroundings of most organisms or pseudorandom variables internal to the organism
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as defined in (2b) should be abundant as should mutations with effects depending on at

least one such variable. This suggests that the assumption of Gbc being small should be

reasonable. A nonzero genetic covariance between b and c again also appear to only affect

the transient evolutionary trajectory, with hyper-plasticity being present only during a

transient phase, but not at the joint evolutionary outcome once the process has reached

its stationary distribution (Fig. S4.7).

This form of link to developmental instability is more conventionally thought to re-

duce the evolving level of plasticity, however (DeWitt et al., 1998; Tonsor et al., 2013).

It is distinctly different from the relationship between the phenotypic variance and plas-

ticity introduced here through the effect of variation in the microenvironment εt−τ + u

surrounding each individual at the time of development in that developmental instability

involves independent variability at the individual level possibly of purely internal origin.

Although both mechanisms leads to similar reduction in the reaction norm slope, a ge-

netic correlation between developmental instability and plasticity, would only reduce and

slow down evolution of the reaction norm slope transiently, provided that the genetic

correlation is not perfect (Fig. S4.8).

Alternatively, constraints can be in the form of costs. If including a cost of plasticity

modeled by an additional factor exp{−b2/(2ω2
b )} in (2c) as in Chevin et al. (2010), this

would reduce the evolving mean reaction norm slope ¯̄b through the addition of ω2
b to the

denominator in (6c) (results not included here). Similarly, as in Zhang and Hill (2005),

a cost of canalization (reduced developmental instability) could be modeled through an

additional factor exp{−C/VE} where VE (corresponding to cy here) in the usual way is

the environmental component of the phenotypic variance. Within such a framework, a

link between plasticity and developmental instability as discussed in (DeWitt et al., 1998)

could instead be imposed through a joint cost function such that the cost of canalization

depend on plasticity.
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GENETIC VARIANCES OF b AND c

The analytic approximations derived here are only exact in the limit obtained as the ge-

netic variances in b and c tend to zero (as verified in Appendix S4, Fig. S4.1). Empirical

evidence, however, mostly from animal and plant breeding, suggests that genotype by

environment interactions are ubiquitous (see e.g. Schlichting, 1986) but typically account

for a moderate proportion of the total phenotypic variance. For example, in salt marsh

cord grass, averaging over 8 different traits, genotype and genotype by environment inter-

actions accounted for 19 and 5% of the total phenotypic variance, respectively (Silander,

1985). In two studies reviewed by de Jong and Gavrilets (2000), genotype by environment

interaction (with temperature) accounted for about 5 to 24% of the total genetic variance

in wing/thorax ratio in Drosophila buzzati, D. aldrichi and D. melanogaster. These val-

ues are similar to the relative magnitude between components of the phenotypic variance

accounted for by plasticity Gbbσ
2
ε and additive genetic variance Gaa used in Fig. 1 for

which the analytic approximations are in close agreement with the results of stochastic

simulations.

That plasticity accounts for a smaller proportion of the total phenotypic variance

than the genetic variance in elevation also seems reasonable given that genetic variation

in plasticity requires mutations with effects depending on a specific environmental vari-

able. In contrast to genetic variance in non-plastic traits which may evolve to a higher

value in fluctuating autocorrelated environments (Bürger, 1999), current theory for the

maintenance of genetic variance in reaction norm slopes by mutation-selection balance

(de Jong and Gavrilets, 2000) predicts a reduction in both variances with increasing envi-

ronmental variability. Interestingly, results here (Fig. S4.3C, Appendix S4) suggest that

the net effect of increasing genetic variance in reaction norm slopes is mostly maladaptive

within the usual range of environmental conditions. Further simulation results (Appendix

S4 and Fig. S4.6) suggest that the same holds for the genetic variance in c.
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COUPLING

Several authors (Moran, 1992; Tufto, 2000b; Botero et al., 2014; Michel et al., 2014) have

assumed that a reduced correlation between the environments at development and selec-

tion arise as a result of the phenotype and the selective optimum being determined by

different environmental variables, say daily precipitation and daily mean temperature.

This evolutionary outcome, however, would require either strong cross-correlations be-

tween the different environmental variables involved in development and selection over

time lags of length τ , significant costs precluding developmental sensitivity to specific

environmental variables, or genetic constraints slowing down evolution of specific sen-

sitivities. A reasonable evolutionary argument therefore suggests that development and

selection in most cases should be determined be approximately the same variable or linear

combination of variables. For example, in birds where the optimal timing of breeding de-

pends on early spring temperature, it seems likely that the cue on which the reaction norm

depends would be early spring temperature rather than, say early spring precipitation

which would likely be less correlated with the phenotypic optimum. This is not incon-

sistent with the finding that a variable such as photoperiod is involved in the timing of

many phenological traits such as breeding and hibernation in diverse groups of organisms

(Bradshaw and Holzapfel, 2001, 2008). Photoperiod varies deterministically and hence

does not carry information about current or future environmental conditions at a given

time of the year and can instead only serve as a pivotal variable against which the timing

of seasonal events is aligned. Further empirical studies may warrant the development of

more explicit theoretical models involving multivariate environmental fluctuations and

multivariate norms of reactions. Modelling costs as some general function of the coeffi-

cients of a multivariate norm of reaction, say by extending the cost function in Chevin

et al. (2010) to a multivariate Gaussian, however, would rapidly lead to a huge number

of additional parameters. Here, I have therefore restricted the analysis to the univariate

model of micro- and macroenvironmental variation expected from the above evolutionary

argument, with a single environmental variable determining development and selection.

This assumption leads to coupling of the conditions selecting for increased plasticity
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(a high correlation ατ between the environments at selection and development) and the

conditions favoring adaptive genetic evolution in mean reaction norm elevation (slow en-

vironmental fluctuations). For realistic values of Gaa/ω
2 of the order of 0.1 as suggested

by empirical studies (Kingsolver and Hoekstra, 2001), the evolutionary mutual depen-

dency between the two forms of phenotypic adaptations result in plasticity being the

predominant evolutionary response (Fig. 2).

The relative magnitude of plasticity (including different forms of transgenerational

plasticity) versus genetic evolution in mean elevation must depend on the exact func-

tional form of the autocovariance function, however. Ezard et al. (2014) modeled varying

degrees of unpredictability by adding fast autocorrelated fluctuations with negligible au-

tocorrelation across generations on top of slower deterministic, sinusoidal fluctuations.

Although termed microenvironmental and generating some of the same effects as mi-

croenvironmental variability in the model presented here, these fast fluctuations, experi-

enced identically by all individuals of a given generation in Ezard et al.’s (2014) model,

constitute a macroenvironmental temporal autocovariance function of a particular form

with a sharp rise in autocovariance as the lag approaches zero. This is markedly different

from the admittedly simple autoregressive model exhibiting exponential decay assumed

here and elsewhere (Lande and Shannon, 1996; Michel et al., 2014). Other possibilities

autocovariance functions exhibiting, say, Gaussian decay would make the correlation be-

tween development and selection even tighter, shifting the joint evolutionary balance in

favor of plasticity. The realism of either of these models is an open empirical question.

SPATIAL MODEL EXTENSIONS

The evolutionary implication of coupling is complicated by the the pattern of microen-

vironmental variation (represented by u and v) which can be interpreted as permanent

spatial environmental heterogeneity influencing each individual at the time of develop-

ment and selection. Here, the analysis has been restricted to the case of variation over

spatial scales sufficiently short relative to typical dispersal distances such that spatial

genetic differentiation is negligible and the population can be treated as panmictic. In
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addition, I have assumed hard selection (see Appendix S3), that is, global density reg-

ulation occurring after dispersal such the contribution from each microenvironment is

proportional to local mean fitness. For the more general case of heterogeneity over spa-

tial scales longer than typical dispersal distances (see e.g. de Jong, 1999; Scheiner, 2013)

it seems likely that plasticity and spatial local adaptations through genetic differentiation

in mean reaction norm elevation would evolve jointly in many of the same ways as in the

case of temporal variability alone treated here. Just like the temporal delay τ between

development and selection being some fraction of the generation length, the distance be-

tween development and selection, being some fraction of lifetime dispersal, would again

couple the conditions favoring plasticity to the conditions favoring local adaptation. If

dispersal occurs over distances shorter than the scale of spatial heterogeneity, this would

again lead to high correlation between the environment at development and selection

while at the same time favoring local adaptation by limiting gene flow between localities

with divergent phenotypic optima. Given the dependency of local adaptation on ω and

Gaa, it thus seems plausible, by the same argument as for the temporal explicit model

treated here, that the joint evolutionary outcome in a more general spatio-temporal ex-

plicit model would be dominated by plasticity too. Within such a model, however, the

roles of temporal and spatial variability assumed here might be reversed, with fast tem-

poral fluctuations playing a role similar to that of microenvironmental variability in the

current model (Fig. 3) through the penalty it would impose on plasticity. If the scale

of spatial variability is large, this would shift the joint evolutionary balance away from

plasticity in favor of local genetic differentiation, possibly resolving some of the apparent

discrepancy between predictions of the present model and empirical patterns in plants

(Franks et al., 2014) discussed earlier.

In terms of possible effects of spatial variation on bet-hedging, it is useful to con-

sider of the case of soft selection, that is, population density regulated to a constant

number locally in each microenvironment after selection, arguably more realistic in the

non-panmictic than in the panmictic case. The effect of spatial variation then becomes

identical to that of temporal variation in the present model, producing an increase rather
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a decrease in the phenotypic variance (Appendix S3), an effect also noted in other mod-

els (Frank and Slatkin, 1990; Starrfelt and Kokko, 2012). Analysis of a spatially ex-

plicit stochastic model beyond numerical or individual-based simulation (e.g. Chevin and

Lande, 2011; Scheiner, 2013) and the simplified cases of hard and soft selection is diffi-

cult, however, as the evolutionary process in general becomes coupled to the dynamics of

local population density and changes in genetic variances generated by dispersal (Tufto,

2000a).
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