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Abstract 
Degradation of alginate remains a critical issue to allow for predictable biological performance upon 

implantation of alginate-based materials. Therefore, the objective of the current study was to compare the 

effects of γ-irradiation (dry state, 20-80 kGy), partial (1 and 4%) periodate oxidation (aqueous solution) and 

autoclaving (dry state) on the molecular weight of alginate as well as the degradation behavior of alginate-

based composites. The results show that γ-irradiation is by far the most destructive technique characterized 

by strongly reduced molecular weights and rapid loss of composite integrity upon soaking in Simulated 

Body Fluid (SBF). Partial periodate oxidation was less destructive as characterized by more moderate 

decreases in molecular weight, but the production of hydrolytically labile bonds compromised the integrity 

of the resulting composites. Autoclaving was shown to be a powerful tool to reduce the molecular weight of 

alginate in a controllable and mild manner without compromising the integrity of the resulting alginate-

hydroxyapatite composites, simply by increasing the number of repetitive autoclaving cycles. 
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1. Introduction 
 

In view of the increasing life expectancy and shortcomings of currently available synthetic bone 

substitutes, novel and effective bone regeneration strategies are urgently needed for an increasing number of 

elder patients. In that perspective, minimally invasive bone regenerative surgery has gained increasing 

interest in order to minimize patient trauma, accelerate postoperative surgical recovery and reduce costs. [1, 2] 

More specifically, the use of flowable or even self-setting formulations offers significant advantages 

compared to conventional, pre-shaped bone substitutes since flowable materials can be injected directly into 

irregularly shaped bone defects, where conformal filling offers enhanced contact to the host tissue. [3] 

During the past decade, hydrogels have been extensively studied in view of their injectability, high 

water content and corresponding biocompatibility as well as their tunable degradability. [4-6] Nevertheless, 

most synthetic hydrogels are mechanically weak and lack biological cues that stimulate regeneration of 

tissues such as bone. The most straightforward method to functionalize hydrogels for application in bone 

regeneration involves biomimetic incorporation of calcium phosphate (CaP) nanoparticles into hydrogel 

matrices [5,7] since bone tissue itself can be describes as a nanocomposites consisting of a hydrated collagen 

matrix reinforced with finely dispersed, apatitic platelets. [8] 

A plethora of both synthetic and natural hydrogels has been explored over the past decade for 

application in bone regeneration. [4,5,9] In that respect, alginate hydrogels are particularly interesting for 

applications in the biomedical field in view of their efficient and mild ionic crosslinking mechanism. [2,10] 

Alginates are a family of natural linear, unbranched polymers derived from brown algae. They are composed 

of (1-4)-linked β-D-mannuronate (M) and its C-5 epimer α-L-guluronate (G) residues, which are linked 

together in different sequences. The content of G residues and their distribution along the chains are 

governed by several processive epimerases, and differ for different brown algae. [11] The G-blocks (.GGG…  

sequences) are responsible for ionic crosslinking by electrostatic interactions with divalent cations such as 

Ca2+. [10] 

Since the 1970s, alginate hydrogels have been combined with calcium phosphates (CaPs), but the vast 

majority of these formulations were crosslinked prior to implantation and did not gel in situ. [12-14] Recently, 
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an injectable, in situ setting alginate-CaP composite was developed at our laboratory that can be extruded 

from a two-component dual syringe which can combine the bone healing properties of calcium phosphate 

with the gentle gelling of alginate polymers [15] This formulation was crosslinked by calcium ions derived 

from CaP powder precursors in the presence of slowly acidifying glucono-delta-lactone (GDL). Although 

the biocompatibility of these formulations was confirmed in vivo, the degradability of the alginate-based 

hydrogels was not addressed and these properties are important if they are to be further considered for 

application in human patients. Generally, disintegration of alginate hydrogels and alginate-based composites 

proceeds by exchange of divalent calcium ions with monovalent sodium ions.  It should be realized, 

however, that the human body lacks enzymes that can degrade alginate macromolecules at the molecular 

level. As a consequence, several approaches have been explored to control degradation of the alginates, 

since it was reported that molecular weight of alginates should be below 50 kDa in order to allow for 

clearance by the kidneys. [16] Partial oxidation [17-19] or γ-irradiation [6,20,21] of alginate have been studied 

quite extensively and together with thermal treatment [22] these treatments are known to decrease the 

molecular weight of alginates. Nevertheless, a direct comparison between the effect of these treatments (or 

combinations thereof) on the molecular weight and corresponding viscoelastic properties of alginate-based 

composites has never been performed before. Therefore, the objective of the current study was to compare 

the effects of γ-irradiation (dry state, 20-80 kGy), partial (1 and 4%) periodate oxidation (aqueous solution) 

and autoclaving (dry state) on the molecular weight of alginate as well as the degradation behavior of 

alginate-hydroxyapatite composites for bone regeneration. The molecular weight of alginate was measured 

using Size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALLS) as a function 

of irradiation dose, extent of oxidation and duration as well as number of repetitive cycles of autoclaving. In 

addition, the viscoelastic and physiochemical properties of resulting alginate-hydroxyapatite composites 

were characterized by measuring storage moduli (using rheometry), swelling ratios and calcification 

behavior as a function of time of soaking in Simulated Body Fluid. 
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2. Experimental Section 

 

2.1 Chemical Reagents 

 

Ultrapure sodium alginate was provided by EMCM (Nijmegen, the Netherlands) obtained according to 

the ASTM F 2064 – 00 (Reapproved 2006) standard resulting into an endotoxin level of less than 50 EU/g 

(Table 1). [23] The alginate had a pH of 6.8 when dissolved in water at a 3.5% (wt%) concentration. For 

preparation of oxidized alginate, sodium alginate was obtained from FMC BioPolymer (Manugel DMB) 

since alginate from EMCM was temporarily unavailable (Table 1). For preparation of alginate-calcium 

phosphate composites, hydroxyapatite was obtained from AAP Biomaterials (Ostim® powder, VPP132). 

Glycerol was purchased from Sigma-Aldrich (G5516) while glucono-delta-lactone (GDL) was purchased 

from Merck (HS code 2932 20 90). 

 

2.2 Chemical and Physical Treatments of Alginate 

 

All alginate samples were subjected to three types of physical or chemical treatment. 

1) Ultrapure sodium alginate powders were subjected to γ-irradiation (Cobalt-60) at 20 (10s exposure), 50 

(15s exposure) or 80 (30s exposure),  kGy (Isotron B.V., The Netherlands). 

2) Ultrapure sodium alginate powders were subjected to sterilization by autoclaving by either one, two or 

three cycles of 15 min at 120 ºC, or one cycle of either 15, 20 or 25 min, also at 120 ºC.  

3) (Partial) oxidation of alginate was performed as described previously [17]. In brief, 250 ml of n-Propanol 

was added to 2.25 liter of aqueous alginate solutions (4.44 g/L) followed by cooling to 4 °C. Subsequently, 

0.1080 g or 0.4231 g of sodium periodate was added to the solutions to obtain 1% and 4% partially oxidized 

alginate monomers, respectively. The solutions were put in darkness for 48 hours for total consumption of 



    

 - 6 - 

sodium periodate, followed by addition of NaCl (3g/L) to obtain sodium alginate. The alginate was 

precipitated with ethanol by progressively washing with 70, 90 and 95% ethanol. The precipitated alginate 

was dissolved in water and lyophilized for 24 hours to obtain a dried powder. All the reactions were done 

without high temperature and under constant stirring. [17] 

 

2.3 Determination of Molecular Weight of Alginate 

 

Size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALLS) was used to 

analyze the molecular weight average (Mw) of the alginate samples before and after irradiation, oxidation 

and autoclaving, as previously described [17,24]. In brief, measurements were carried out at ambient 

temperature on an HPLC system consisting of a solvent reservoir, on-line degasser, HPLA isocratic pump, 

autoinjector, precolumn, and three columns (serially connected) of TSK G-6000PWXL, 5000 PWXL, and 

4000 PWXL. The column outlet was connected to a Dawn DSP multiangle laser light scattering photometer 

(Wyatt, U.S.A.) (λ0 = 633 nm) followed by Optilab DSP differential refractometer (P-10 cell) with a flow 

rate of 0.5 mL/min. The injection volume was 100−250 µL, and the sample concentration was adjusted to 

obtain the best possible light scattering signal without influencing the RI profile (overloading). Samples 

were filtered (pore size 0.22 or 0.45 µm) prior to injection. Data from the light scattering and the differential 

refractometers were collected and processed using Astra software (Wyatt, U.S.A.), using a refractive index 

increment (dn/dc)µ of 0.150 ml/g. 

 

2.4 NMR spectroscopy 

 

NMR spectroscopy was carried out as described earlier [24]. 

 

2.5      Preparation of Alginate/Hydroxyapatite Composites and Soaking Studies in SBF 
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Alginate/hydroxyapatite composites were prepared after subjecting alginate to one of the above-

mentioned physical or chemical pre-treatments using dual syringes by mixing an aqueous alginate phase 

with a mineral phase consisting of hydroxyapatite powder dispersed in glycerol in the presence of an 

acidifier (GDL). The alginate phase was obtained by dissolving alginate powder in Milli-Q water (pH 6.8) 

under constant agitation to obtain a polymer concentration of 3.5 w/v%. The mineral-containing phase was 

obtained by mixing hydroxyapatite, glycerol and the acidifier GDL at 25, 73, and 2 wt%, respectively, 

yielding a final hydroxyapatite content of 12.5 wt%. The alginate phase and mineral phase were loaded into 

the separate chambers of a dual syringe system for mixing and injection (MEDMIX®, L-system, 2.5 mm 

chamber, mixing tip 25 mm) leading to extrusion of an homogeneous composite (Figure 1). The composites 

were injected in cylindrical molds (8 mm in diameter and 5 mm in height) for 24 hours at 37 °C. 

Subsequently, the prepared composite disks (n=3) were immersed in Simulated Body Fluid (SBF) for up to 

28 days. Rheological and swelling characteristics were tested for up to 14 days while calcium uptake was 

monitored until 28 days of soaking. 

The in vitro experiments were carried out in conventional SBF with an ionic composition almost equal 

to human plasma. (25) Ionic concentrations of this SBF were 142.0 mM Na+, 5.0 mM K+, 1.5 mM Mg2+, 

2.5 mM Ca2+, 103,0 mM Cl−, 4.2 mM HCO3
2-, 1.0 mM HPO4

2- and 0.5 mM SO4
2-. Tris-HCl served as buffer to 

maintain a constant pH value of 7.4. 

 

2.5 Rheological Characterization 

 

The viscoelastic properties of the composite gels were analyzed before and after immersion in SBF (1, 

3, 5, 7 and 14 days of immersion in SBF) using a rheometer (TA Instrument, AR2000ex) equipped with a 

flat steel-plate geometry (20 mm diameter). As described previously the composites had been injected in 

cylindrical molds (8 mm in diameter and 5 mm in height) for 24 hours at 37 °C to obtain round samples for 

testing.  Storage moduli (G´) were determined in oscillatory time sweep tests for 5 min at a variable gap 

distance  and fixed normal force of 0.1 N by subjecting the samples (n=3) at an oscillatory stress of 0.1 Pa 

and a frequency of 1 Hz.  
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2.6 Swelling Behavior 

 

Swelling of the composites was measured by immersing the samples in SBF for 14 days as a measure 

for the mechanical stability of alginate-hydroxyapatite composites. The mass of the samples was measured 

before immersion and after 1, 3, 5, 7 and 14 days of immersion in SBF. After each time point, the samples 

were removed from the solution and the adsorbed liquid removed using tissue paper. The calculated swelling 

was obtained using the following formula: Swelling % = (Wt - W0)/W0 X 100 where Wt is the weight of the 

sample after immersion in SBF and W0 is the weight of the composite before immersion in the solution. 

Representative image of the gels were recorded using photography at days 3, 7 and 14 to visualize the 

process of composite disintegration. 

 

2.7 Calcium Deposition 

 

The calcium (Ca) content in the supernatant solution was quantified at various time points using the 

orthocresolphtalein complexone (OCPC) assay (Sigma) [25]. Samples were immersed in SBF (at a 

temperature of 37 ⁰C under agitation) for 28 days and the solution was replaced with freshly prepared SBF 

at days 3, 7, 10, 14, 21, 24 and 28. To this end, the supernatant solutions were incubated overnight in 1 ml 

0.5 N acetic acid on a shaker table. For analysis, 300 µl working reagent was added to 10 µl sample or 

standard in a 96-wells plate. Subsequently, the plate was incubated for 10 min at room temperature. The 

absorbance of each well was measured on a microplate spectrophotometer at 570 nm. The standards (range: 

0-100 µg/ml) were prepared using a CaCl2 stock solution. Data were obtained from triplicate samples and 

measured in duplo. The depletion of Ca in the supernatant was plotted cumulatively by measuring the 

difference between the Ca concentration in the sample-free SBF control solutions and the SBF solution in 

the presence of alginate/HA composites. 
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2.8.      Statistical analysis 

 

Data are presented as mean ± standard deviation. Statistical analyses were performed using SPSS, 

version 20.0 (SPSS Inc., Chicago, IL, USA). Significant differences were determined using a one-way 

analysis of variance (ANOVA) with a Tukey multiple comparison post-test. Differences were considered 

significant at p-values < 0.05 (* symbol was used to indicate significant difference).  
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3. Results 

 

3.1 Alginate Molecular Weight Before and After Treatment 

 

Table 2 shows the weight average molecular weights (Mw) of alginates subjected to γ-irradiation, 

partial oxidation or autoclaving. Physical treatment by γ-irradiation reduced the molecular weight of the 

alginates considerably to 27% of the original molecular weight for treatment at 20 kGy, 17% for 50 kGy and 

12 % for 80 kGy. Partial oxidation, on the other hand, resulted into moderately decreased molecular weights 

of 79% and 66% of the original molecular weight for 1% and 4% oxidation, respectively. Single cycles of 

autoclaving of variable duration (between 15 and 25 minutes) decreased the molecular weight of the original 

alginate to a minimum of 76% (25 min cycle). Repeated cycles of autoclaving at 15 min strongly reduced 

the molecular weight from an initial value of 86% (1 cycle), to 60% (2 cycles) and finally 40% (3 cycles) of 

the original molecular weight of alginate. NMR analysis revealed that the G/M ratio between guluronic and 

mannuronic acid was unaffected for all samples by the various physical or chemical treatments (data not 

shown). A graph of the 1/Mw versus each alginate treatment dose was plotted to confirm that the degradation 

occurred randomly and at a constant rate (Figure 2) 

 

3.2 Composite degradation in SBF 

 

3.2.1 Rheological Characterization 

 

Rheological characterization revealed that storage moduli of alginate-hydroxyapatite composites 

decreased with increasing intensity of γ-irradiation (Figure 3A) or oxidation (Figure 3B), while autoclaving 

did not affect the elasticity of the resulting composites (Figure 3C and 3D). Upon soaking in SBF, storage 

moduli of all samples decreased in time.  This effect was most pronounced for composites composed of γ-

irradiated alginate, which revealed hundredfold smaller storage moduli after 14 days of soaking (∼0.1 kPa) 

than composites consisting of untreated alginate (∼10 kPa). After 3 days of soaking in SBF, composites 
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prepared from alginate pre-treated at 80kGy became too fragile for further testing (Figure 4). Samples 

prepared from oxidized alginate presented a similar behavior since storage moduli of alginate-

hydroxyapatite composites decreased with increasing extent of oxidation and soaking time in SBF (Figure 

2B). Composites composed of 4% oxidized alginate already disintegrated after 1 day of soaking in SBF 

(Figure 3), thereby impeding further rheological characterization at later time points. Composites made of 

1% oxidized alginate, on the other hand, retained their integrity up to 14 days of soaking but their storage 

modulus decreased to about 1 kPa after 7 days of soaking. The samples containing alginate pre-treated by 

autoclaving were not affected by the physical treatments since storage moduli hardly decreased with 

increasing soaking time, autoclaving duration (Figure 3C) or number of repetitive autoclaving cycles (Figure 

3D). All the composites had a tanδ lower than one, which indicates that they maintained gel-like 

characteristics throughout the experiment 

 

3.2.2 Swelling behavior and physical degradation 

 

In order to study the effect of the different treatments on physical degradation of the alginate/HA 

composites, the swelling of the gel was calculated from the mass changes observed upon soaking in SBF. 

The composite prepared from non-treated alginate showed an initial swelling phase lasting for 7 days up to a 

maximum fold swelling of 14%. The composites obtained from γ-irradiated alginate did not swell but 

revealed negative swelling ratios characteristic for mass loss induced by sample disintegration as observed 

most clearly for samples consisting of alginate pre-treated at 80 kGy which fell apart completely between 

days 3 and 5  (Figure 5A). Regarding the influence of oxidation it was shown that a low degree of partial 

oxidation (1%) did not affect the swelling of the composites, whereas a high degree of 4% oxidation resulted 

into mass loss and complete disintegration by day three (Figure 5B). Composites containing alginate pre-

treated by autoclaving revealed moderate degrees of swelling up to 7 days followed by mass loss - as 

evidenced by negative swelling ratios - after 14 days of soaking in SBF. A single cycle of autoclaving did 

not reduce the swelling of the composites, whereas two or three repetitive autoclaving cycles resulted into 

significantly increased mass loss of the composites after 14 days of soaking (Figure 5C and Figure 5D). 
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3.3 Calcium deposition 

 

Calcium uptake of the composite materials was measured quantitatively by assessing the calcium 

concentration in the SBF supernatant solution as a function of soaking time (Figure 6). Composites prepared 

with alginate γ-irradiated at 80 kGy as well as 4% oxidized alginate are not presented in Figure 6 due to their 

rapid degradation which impaired accurate measurements of calcium in SBF. The calcium concentrations in 

the SBF solution decreased for all tested alginate/hydroxyapatite formulations from day 0 until day 9, 

corresponding to Ca uptake by the hydrogels from metastable SBF solutions. The amount of calcium uptake 

increased with increasing extent of γ-irradiation, indicating that calcium uptake was more pronounced with 

decreasing molecular weight of the original alginate (Figure 6A). Due to the smaller difference in Mw 

(Table 2), only a smaller increase in calcium uptake was observed by increasing the number of cycles of 

autoclaving (Figure 6B). The Ca uptake was similar regardless of duration of autoclaving time (Figure 6C). 

Between days 9 and 28, all composites displayed a decrease in calcium depletion corresponding to release of 

calcium into SBF rather than consumption of calcium from SBF.  

 

4. Discussion 

 

The objective of the current study was to compare the effects of γ-irradiation, oxidation and 

autoclaving on the molecular weight of sodium alginate as well as the degradation of alginate-based 

composites. To this end, alginate was subjected to i) γ-irradiation at a dose range between 20 and 80 kGy, ii) 

periodate oxidation at low (1%) and high (4%) extent, and iii) autoclaving at variable duration (15, 20 and 

25 min) and number of repetitive cycles (1x, 2x, 3x). The molecular weight of the treated alginates was 

determined using SEC-MALLS while the degradation behavior of the composites made of treated alginate 

and hydroxyapatite was characterized as a function of soaking time in SBF by measuring storage moduli G’ 
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(using rheometry), swelling ratios (based on quantification of mass loss) and calcification behavior (by 

quantifying Ca depletion in SBF). 

Characterization of molecular weight by SEC-MALLS revealed that γ-irradiation of dry sodium 

alginate (up to 80 kGy) was by far the most effective treatment to reduce the molecular weight of alginate 

compared to the other methods. The ionizing γ-irradiation degrades alginates by formation of free radicals 

which break glycosidic bonds, [6,21] thereby causing a rapid decrease in molecular weight upon irradiation at 

20 kGy. This decrease in molecular weight leveled off at higher irradiation doses, which is logical given the 

fact that reduction in molecular weight upon chain fission is evidently most effective for polymers of high 

molecular weight. This is corroborated by essentially linear plots of 1/Mw versus dose (Figure 2), which 

corresponds to a random degradation at a constant rate. The relative reduction in molecular weight as 

observed in the current study are close to the values obtained by Lee et al. [27], who reported reductions in 

molecular weight to ∼26% of the original molecular weight of alginate at 20 kGy and 13% at 50 kGy (vs. 

27% and 17% as observed in our study at 20 and 50 kGy, respectively). This results were similar even given 

the fact that alginate was irradiated as dry powder in the current study, since irradiation of aqueous solutions 

- as performed by Lee et al - was suggested to be more effective by Nagasawa.[21] Alsberg [6] performed γ-

irradiation of alginate powders in air and observed slightly higher molecular weights specially after 

irradiation at 20 kGy (∼42% of original molecular weight) with more similar values for 50 kGy (∼21%), and 

80 kGy (∼15%). We speculate that differences the γ-irradiation equipment may have contributed to the 

lower efficacy of γ-irradiation as observed by Alsberg. [6] 

Bouhadir [18] introduced partial periodate oxidation as a means to indirectly reduce the molecular 

weight of alginate, and improve the degradability of alginate-based gels. According to this method, carbon-

carbon bonds of the cis-diol group in the uronate residues (C2-C3 bond) are cleaved, thereby forming the 

corresponding dialdehydes, which are highly susceptible to alkaline β-elimination even at pH 7.4. [17] This is 

the basis for enhanced biodegradability. The decrease in molecular weight observed during periodate 

oxidation may to a certain extent be due to β-elimination, but it is generally known that the main process is 

actually a free-radical induced degradation occurring as a side reaction. It can to some extent be reduced by 

adding free radical scavenges such as n-propanol. [26,28] The results presented herein confirm that oxidation 
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can be used to reduce the molecular weight of alginate to ∼65% of the molecular weight of the original 

alginate. Compared to γ-irradiation, however, the chain fission efficacy of partial periodate oxidation was 

much lower, which stresses that sterilization by γ-irradiation is much more destructive than partial periodate 

oxidation. Regarding the effect of autoclaving, it was observed that the duration of autoclaving hardly 

reduced the molecular weight of the sterilized alginate in the range between 15-25 min, but increasing the 

number of repetitive autoclaving cycles reduced the molecular weight of alginate to values that were even 

lower than those obtained for partial periodate oxidation (i.e. 53% after 3 cycles of 15 min). These results 

confirm that repetitive heating and cooling render the autoclaving process more destructive. Autoclaving is 

itself not a degradation tool, but accelerates other degradation mechanisms due to high temperatures. In 

alginates the underlying mechanisms are: acid hydrolysis, alkaline beta-elimination and free radicals 

(oxidative-reductive depolymerisation). [22] Compared to the highly destructive γ-irradiation, the reduction in 

molecular weight of alginate could be controlled more precisely by varying the number of repetitive 

autoclaving cycles. In addition, alginates with lower pH when dissolved will degrade faster. By controlling 

the Na+/H+ ratio (alginate/alginic acid) before autoclaving would permit a higher degree of control. In view 

of the simplicity of the autoclaving process, it can be concluded that sterilization by repetitive autoclaving is 

a useful tool to sterilize and tailor the molecular weight of alginate-based formulations in a simultaneous 

step. 

Composites composed of treated alginate and hydroxyapatite were soaked in SBF followed by 

monitoring of storage modulus, swelling ratio and calcification behavior. Without treatment, alginate-

hydroxyapatite composites displayed only moderately decreased storage moduli and swelling ratios and 

moderately increased calcium uptake from SBF solutions. Composites containing irradiated alginate, 

however, lost their integrity as evidenced by continuously decreasing storage moduli and swelling ratios as 

well as more pronounced uptake of calcium from SBF. The rate of composite disintegration increased with 

irradiation dose and exposure time, which indicated that composite disintegration directly depended on the 

molecular weight of alginate after γ-irradiation.  Apparently, the amount of calcium as released from 

hydroxyapatite was not sufficient in the current study to compensate for exchange of crosslinking, divalent 
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calcium ions for non-crosslinking monovalent sodium ions. As a consequence, calcium uptake from SBF by 

alginate-hydroxyapatite composites increased with decreasing molecular weight of alginate.  

Although oxidation of alginate resulted in less reduction of molecular weight than γ-irradiation, 

composites containing highly oxidized (4%) alginate also disintegrated within less than 3 days of soaking in 

SBF. Composites made of 1% oxidized alginate revealed slightly reduced storage moduli but similar 

swelling ratios and calcium uptake compared to composites made of untreated alginate. Apparently, high 

degrees of oxidation produced labile bonds which gradually broke (by β-elimination) upon soaking in 

aqueous SBF solutions. As before, the amount of calcium released from hydroxyapatite induced by gradual 

acidification of GDL was not sufficient to counteract the disruptive process of alginate degradation. It has 

previously been shown [29] that periodate oxidation directly influences the gelation of alginates with calcium 

ions, producing weaker gels under otherwise equal conditions.  

Interestingly, the storage moduli of alginate-hydroxyapatite composites were hardly affected by both 

the duration and number of repetitive cycles of autoclaving, since storage moduli only decreased after one 

day of soaking and hardly decreased afterwards irrespective of the duration and number of repetitive cycles 

of autoclaving. Evidently, autoclaving did not impair the stability of the composites on long term even 

though the molecular weights were reduced upon autoclaving to values comparable to or even lower than 

periodate oxidation. Apparently, the hydrolytical stability of the alginate macromers was not affected by the 

autoclaving treatment as opposed to the more destructive γ-irradiation and partial periodate oxidation 

treatments which caused long-term damage and disintegration of the hydrogel matrix. This can also be seen 

in the swelling ratios of the different autoclaved composites which remained almost constant, although a 

slight decrease was observed after 7 days of soaking for composites which were autoclaved more than once 

or for more than 15 min. Furthermore even though there was a decrease in molecular weight this did not 

impact the cross-linking density of the alginate polymer which therefore lead to composites with similar 

storage modulus, but which afterwards lead to more mechanically unstable materials. 

The amount of calcium uptake from SBF moderately increased with increasing number of repetitive 

cycles, whereas increasing autoclaving duration did not affect calcium uptake by alginate-hydroxyapatite 

composites. We suggest that the lower decrease in Mw by increasing autoclaving duration process lead to 
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more stable composites which lead to lower amounts of calcium binding to the alginate phase of the 

composite.  These results indicate that repeated autoclaving of alginate resulted into reduction of molecular 

weight without producing excessive amounts of hydrolytically cleavable moieties that compromise the 

integrity of alginate in aqueous environments. As a result, sterilization of alginate powder by repeated cycles 

of autoclaving appears to be a powerful and mild technique to control the molecular weight of alginate 

without compromising the integrity of resulting alginate-hydroxyapatite composites. 
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5. Conclusion 

In the current study, the effects of γ-irradiation (dry state), partial periodate oxidation (in solution), as 

well as duration and number of repetitive cycles of autoclaving (dry state) on the molecular weight of 

sodium alginate and degradation of alginate-hydroxyapatite composites was investigated systematically. The 

herein presented results show that among the methods tested γ-irradiation is by far the most destructive 

technique characterized by strongly reduced molecular weights and rapid loss of composite integrity upon 

soaking in Simulated Body Fluid (SBF). Partial periodate oxidation was less destructive than γ-irradiation as 

characterized by more moderate decreases in molecular weight, but the production of labile bonds 

compromised the integrity of the resulting composites. Autoclaving was shown to be a powerful tool to 

reduce the molecular weight of alginate in a controllable and mild manner without compromising the 

integrity of the resulting alginate-hydroxyapatite composites, simply by increasing the number of repetitive 

autoclaving cycles. 
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Table 1. Molecular weight and G-content of original alginate powders  

 

 

Mw [kDa] % G residues 

Alginate (EMCM) 237 65-75 

Alginate (FMC BioPolymer) 250 65-75 

 

 
Table 2.  Molecular weight of alginate samples after treatment. 

	

	
Molecular Weight (kDa) 

Irradiation 

0 kGy 237 (100%) 
20 kGy 64 (27%) 
50 kGy 41 (17%) 
80 kGy 38 (12%) 

Oxidation 
0% 250 (100%) 
1% 199 (79%) 
4% 165 (66%) 

Autoclaving 

Non-treated 237 (100%) 
15 min 1X 204 (86%) 
15 min 2X 143 (60%) 
 15 min 3X 110 (46%) 
 20 min 1X 183 (77%) 
 25 min 1X 181 (76%) 
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Figure  1. Extrusion of alginate/HA composite 
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Figure 2. Effect of (A) γ-irradiation, (B) periodate oxidation, (C) duration of autoclaving, and (D) number of 

repetitive autoclaving cycles on absolute Mw of alginate 
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Figure 3. Storage moduli (G’) of alginate/hydroxyapatite composites obtained from physically pre-treated 

alginate after soaking in SBF for up to 14 days;  (A) effect of γ-irradiation, (B) effect of oxidation, (C), 

effect of autoclaving duration, and (D) effect of number of autoclaving cycles. * < 0.05 between each group 

indicated at each time point. 
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Figure 4. Photography of disintegration of alginate-hydroxyapatite composites obtained from γ-irradiated 

and periodate oxidized alginate after soaking in SBF for up to 14 days (representative images of autoclaved 

composites). 
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Figure 5. Swelling behavior of alginate/hydroxyapatite composites upon soaking in SBF; (A) effect of γ-

irradiation, (B) effect of oxidation, (C) effect of autoclaving duration, and (D) effect of number of 

autoclaving cycles. * p-value <0.05 no treatment compared to irradiated composites, a p-value <0.05 no 
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treatment compared to autoclaved 20/25 min 1X, b p-value <0.05 no treatment compared to autoclaved 15 

min2X/3X 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cumulative calcium uptake by alginate-hydroxyapatite composites from SBF as a function of 

time; (A) effect of γ-irradiation and oxidation, (B) effect of autoclaving duration, and (C) effect of number 

of repetitive autoclaving cycles. * p-value <0.05 no treatment compared to 20/50 kGy irradiation, a * p-value 
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<0.05 no treatment compared to 50 kGy irradiation, c p-value <0.05 no treatment compared to autoclaved 15 

min2X/3X, d p-value < 0.05 no treatment compared to autoclaved 15 min 3X 
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Alginate gels are interesting for applications in the biomedical field in view of their efficient 

ionic crosslinking mechanism but the human body lacks enzymes that can degrade the polymer. 

Alginate treated by irradiation, autoclaving or partial oxidation can lead to a more refined control of polymer 

properties and obtention of more degradable injectable alginate/CaP gels for bone regeneration. 

 

 


