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   Insulating particles or drops suspended in carrier liquids may start to rotate with a constant frequency when 
subjected to a uniform DC electric field. This is known as the Quincke rotation electro-hydrodynamic instability. 
A single isolated rotating particle exhibit no translational motion at low Reynolds number, however interacting 
rotating particles may move relative to one another.  Here we present a simple system consisting of two 
interacting and deformable Quincke rotating particle covered drops, i.e. deformable Pickering drops. The drops 
attract one another and spontaneously form a counter-rotating pair that exhibits electro-hydrodynamic driven 
propulsion at low Reynolds number flow.   
 

1. Introduction 
 
    Electric fields can induce steady-state hydrodynamic circulation flows in liquids [1,2].  A particular form of 
such electro-hydrodynamic flow is the Quincke instability, which appears when insulating particles or drops 
suspended in a carrier liquid are subject to a sufficiently high uniform DC electric field [3,4].  The Quincke 
rotation instability has these characteristics:   The rotation axis is always normal to the applied electric field, the 
frequency of rotation and the critical electric field is independent of the size of the bead, and the rotation 
frequency increases with the applied electric field [3,4].  The onset of Quincke rotation in suspensions can lead 
to several remarkable effects such as effective viscosity reduction [5,6] and increased effective electric 
conductivity of suspensions [7]. Quincke rotating colloidal particles have been observed to “roll” with a constant 
velocity on surfaces in liquid crystals and on bubbles [8].   A system of many such interacting self-propelled 
Quincke rotors has served as a model system for collective swarming motion and active matter [9].   
    It has also been demonstrated that emulsion drops can undergo Quincke rotation [10, 11, 12]. Here we  
investigate  the interaction of  two Quincke rotating particle covered drops (i.e. Pickering drops) [13,14] 
suspended in a bulk liquid, and we  find that two such deformable  rotors can spontaneously self-organize into a 
counter-rotating pair, and be  propelled as the result  of their mutual interacting hydrodynamic flow fields.  This 
observation is in agreement with recent models for two-rotor systems of low-Reynolds number swimmers [15] 
[16], and numerical simulations of interacting Quincke rotating particles [17].    
 

2. Electro-hydrodynamic rotation of a single Pickering drop 
2.1 Quincke rotation: Background   
    Quincke rotation of a particle suspended in a liquid is driven by the electric forces acting on the free charges 
that build up at the surface of a particle [4, 5, 6, 17].   The instability only occurs if the Maxwell-Wagner electric 
charge relaxation time of the particle is longer than that of the surrounding fluid, in which case the effective 
dipole moment of the particle is anti-parallel to the applied electric field. The electric field induces a torque on 
this dipole, which can create a rotational instability of the particle.   Such a steady state rotation of a spherical 
particle occurs above a critical electric field strength:   



 

                                                                   𝐸𝑄 = √
2𝜇𝜎ℓ(𝑅+2)2

3𝜀ℓ𝜀𝑝(1−𝑅𝑆)
                                                                                                (1) 

where   𝜇 is the viscosity of the suspending liquid, and   𝑅 =  
𝜎𝑝

𝜎ℓ
, 𝑆 =  

𝜀ℓ

𝜀𝑝
   are dimensionless ratios of electric 

conductivities, and dielectric constants [4,5,6,17] .  The subscript “p” refers to the particle, and “ℓ” to the 
suspending liquid. The angular frequency of the Quincke rotation is:      

                                                                     𝜔 =
1

𝜏𝑀𝑊
√

𝐸2

𝐸𝑄
2 − 1                                                                                               (2) 

 where 𝜏𝑀𝑊 =
𝜖𝑝+2𝜖ℓ

𝜎𝑝+2𝜎ℓ
 is the effective Maxwell-Wagner charge relaxation time of the particle in the liquid   

[4,5,6,17]. Notice that Eqs. (1) and (2)   are independent of the size of the particle.    
 

2.2 Experiments on Quincke rotation of a single particle laden drop 
 
Our experimental system consists of silicone oil drops suspended in castor oil, and the drops are covered with 
polyethylene (PE) beads.  The electric conductivity of  silicone oil is much lower than that of castor oil, and a 
silicone drop in castor oil may thus Quincke rotate [10,11].  The PE particles have an even lower conductivity 
than the silicone oil, which will further enhance the charge build-up. We will show in the following that this 
Pickering drop also exhibit Quincke rotation, however the  dynamics can be more complex than that of a solid 
particle due the deformability of the Pickering particle layer. 
 
 

 

 

FIG. 1.   A sketch illustrating Quincke rotation of a single Pickering emulsion drop covered with electrically 
insulating particles. (a) The free charge build-up at the surface of the drop results in a dipole moment P that is 
oriented anti-parallel to the direction of the applied electric field. (b)   The electric field exerts a torque on the 
dipole, and above a critical field strength EQ, the drop starts to rotate at constant frequency. The arrows indicate 
the direction of the rotation and liquid flow.   

The preparation of the Pickering  emulsion drops was similar to that of reference [19,20,21] :    Silicone oil (Dow 
Corning 200/50 cSt, electric conductivity σsilc ~ 0.3 pS/m, relative permittivity εsilc=2.8, density ρsilc=0.961 g/cm3 , 



viscosity ηsilc =50 cSt)  was mixed with 50 μm polyethylene (PE) particles (Cospheric LLC with electric conductivity 
σPE < 10-20 S/m, relative permittivity εPE ~ 2.1, density ρPE = 1.0 g/cm3).  The suspension of PE particles in silicone 
oil was stirred and ultra-sonicated to avoid particle aggregation. Drops of this suspension was injected by a 
micropipette into a cell (15 x 15 x 30 mm) containing Castor oil (Sigma-Aldrich 83912, density of ρcast = 0.961 
g/cm3, electric conductivity σcast ~ 56 pS/m, relative permittivity εcast = 4.7, viscosity ηcast ~ 1000 cSt).   The vertical 
side walls of the cell consist of two transparent indium tin oxide (ITO) electrodes, in between regular non-
conducting glass side-walls.  Videos and pictures were recorded using a commercial digital camera mounted on a 
stereoscope, and the observation view was perpendicular to the applied DC electric field. The PE particles bind 
irreversibly to the liquid interface due to capillary forces [14, 18]. 
  

    
 

Fig 2. Pickering silicone drops covered with PE particles (50 μm), and suspended in castor oil. The system was 
subject to a uniform DC electric field.  (a)  Quincke rotation of 0.9 mm diameter drops. The electric field strength 
is initially 350 V/mm (slightly above the critical field needed for Quincke rotation), and was changed to 550 
V/mm.  The particle layer on the surface of the drop remained jammed (solid layer). The bright particles are 
differently colored PE particles (50 μm) added to trace the surface flow. ( (b)  Quincke rotation of 2.0 mm 
diameter drops. The electric field strength was initially 350 V/mm. Upon increasing the field strength to 550 
V/mm, the particle layer on the surface of the drop went from solid to fluid, resulting in tank treading like 
dynamics. (c)  Rotation frequency (squared) as a function of field strength (squared) for the solid Pickering drop 
in (a) (triangles) and a single PE particle of diameter 100  µm (squares). Both follow the Quincke rotation 
frequency formula given by Eq. (2). The triangles drawn on the Pickering drops in figure (a) and (b) indicate 
relative positions of tracer particles (PE particles of same size, but different color). (circles) For larger Pickering 
drop tank-treading occurs even at low fields, and the frequency  deviates from the Quincke formula for solid 
spheres  
 
The concentration of PE particles was tuned such that a drop was fully covered when all the beads were at the 
surface.   The experimental critical field for steady Quincke rotation of the Pickering drops was 𝐸𝑄 ≈

340 V/mm, and the frequency of rotation increases with increasing field strength, in agreement with Eq. (2).    
Two different modes of rotation is observed, at low fields  the Pickering drops rotate like a solid shell (Fig 2a), at 
higher fields the particle monolayer goes from a jammed state to a fluid state, with “tank-treading” like 
dynamics (Fig 2b), reminiscent of tank-treading  in fluid bilayer vesicles subject to shear flows [22]. Similar tank-
treading like dynamics has also been computed in simulations of particle-laden drops [22].   We observe that 
larger drops are more prone to electric field induced stretching, resulting in un-jamming of the particle layer and 



tank-treading like dynamics.  For pure drops the electric stretching deformation is proportional to 
𝑎𝜀ℓ𝐸2

𝛾
, where a 

is the radius of the drop, and 𝛾  the surface tension [11], which is a result of balance of electric and capillary 
forces. A similar electro-stretching behavior is expected for Pickering drops studied here, explaining why larger 
drops exhibit more easily tank-treading.  Fig 2c shows that rotation of solid-shell rotating Pickering drops (Fig 2a) 
closely follow the Quincke rotation for solid spherical particles given by Eq. (2).  This is not surprising, since a 
jammed Pickering drop effectively is a solid particle.  From the slope in Fig. 2c we obtain an effective Maxwell 

time  𝜏𝑀𝑊,𝑒𝑥𝑝 ≈ 1𝑠 ,   which is close to the theoretical value   𝜏𝑀𝑊 =
𝜖𝑝+2𝜖ℓ

𝜎𝑝+2𝜎ℓ
≈ 0.9𝑠.  To further check our 

experimental system, we also looked at Quincke rotation of single PE beads of size 100 µm (smallest size for 
which rotation frequency can be measured by our microscopy).  The critical field was found to be 𝐸𝑄 ≈

400 V/mm, in agreement with the theoretical   value given by Eq. (1).    The rotation frequency (squared) was  
plotted as a function of the square of the applied field (Fig 2 c), and again using the equation for Quincke 
rotation we obtain an effective Maxwell time   𝜏𝑀𝑊,𝑒𝑥𝑝 = 0.94 s,  which also is close to the theoretical value.   

When the Pickering drop layer goes from solid to liquid, we see deviations from the Quincke rotation formula, 
leading to more complex dynamics that will be reported in [24]. 
   If the drop is not fully covered, Taylor electrohydrodynamic circulation flows in and around the drop would 
induce the formation of particle ribbons on the drop surface by convective deposition in the flow field [19, 
20,21].  Such flows are not observed around the fully armored drops studied here since the particle layer 
absorbsim the tangential electrostatic stresses.    

 

 3.  Hydrodynamic propulsion of two interacting Quincke rotors 

 
3.1 Self-propulsion of counter-rotating particles:  Theory 

                                                                
 
Fig. 3.   Two possible relative positions of a pair of Quincke counter-rotating solid spherical particles. 
(a) The line joining the particles is parallel with the electric field:  The direction of hydrodynamic propulsion is 
perpendicular to the applied electric field. The dipole-dipole interaction is attractive 
(b) The line joining particles are perpendicular to the direction of the applied electric field:   Hydrodynamic 
propulsion is in the direction of the field. This situation is unstable since the dipole-dipole force between the two 
particles is repulsive in this case. 



  Symmetry arguments imply that a single rotating bead cannot swim at low-Reynolds number (unless it interacts 
with a boundary). However, the combination of two rotors breaks time-invariance symmetry, i.e. reversing the 
direction of rotation results in a different configuration.   Two Quincke rotating spheres interact both via electric 
dipole-dipole interactions, and hydrodynamic interactions.   The general equations describing the motion of two 
Quincke rotating beads was developed in reference  [17],  where the authors also found an approximate series 
expansion solution to the steady state dynamics of  co-rotating beads .  Here we do a similar series expansion for 
two counter-rotating beads. The position of sphere 1 and 2 is given by the vectors 𝑹1 and 𝑹2 respectively.  The 

unit vector connecting the beads is:  𝑹̂ =  (𝑹2−𝑹1)/𝑅. The radius of the beads is a. The direction of the dipole 
of each Quincke rotating sphere is not parallel with the electric field, and the resulting dipole-dipole interaction 
might be attractive or repulsive depending on the position of the beads, and the direction of these dipoles. The 

potential energy of a dipole-dipole interaction is: 𝑉 =
1

4𝜋𝜀ℓ𝑅3 [𝑷1 ∙ 𝑷2 − 3(𝑷1 ∙ 𝑹̂) (𝑷2 ∙ 𝑹̂)].    The direction of 

the dipoles is determined by the rotation direction of the beads. For two counter-rotating beads, the dipole 
component perpendicular to the field will be of opposite sign, as indicated in Fig. 3.  Consider the dipole-dipole 

energy for the two simples cases when 𝑹̂ is either parallel with the electric field (Fig 3a) or perpendicular to it 
(Fig 3b). The unit vectors in the coordinate systems are 𝒙̂ ,  𝒚̂ , and 𝒛̂  (according to Fig 3).    Consider a case of an 

applied electric field  𝑬0 = 𝐸0𝒛̂,   and the particle rotation angular velocity: 𝜴1 = 𝛺1𝒙̂ .  When  𝑹̂ is either 
parallel or perpendicular to the applied field, symmetry then implies that:  𝑷1 ∙  𝒛̂ = 𝑷2 ∙  𝒛̂  and 𝑷1 ∙  𝒚̂ = −𝑷2 ∙

 𝒚̂.   For the case  𝑹̂ is parallel to 𝑬0, the interaction potential is therefore always attractive: 𝑉 =

−
1

4𝜋𝜀ℓ𝑅3
[(𝑷1 ∙ 𝒚̂)2 + 2(𝑷1 ∙ 𝒛̂)2].  For the case 𝑹̂ is perpendicular to 𝑬0   the potential is always repulsive: 𝑉 =

1

4𝜋𝜀ℓ𝑅3
[2 (𝑷1 ∙ 𝒚̂)2 + (𝑷1 ∙ 𝒛̂)2].  For other relative positions the dipole-dipole interaction may be either 

repulsive or attractive, depending on the value of the electric field. 

The general electro-hydrodynamic problem of two interacting Quincke rotating solid spheres has been treated 
in reference [17], the result is a dynamic equation for the dipole moment of sphere 1: 

𝑑𝑷1

𝑑𝑡
=   𝛀1 × {𝑷1 − 4𝜋𝜀ℓ 𝑎3𝛽∞ [𝑬0 −

1

4𝜋𝜀ℓ𝑅3 𝚷 ∙ 𝑷2]} −
1

𝜏𝑀𝑊
{𝑷1 − 4𝜋𝜀ℓ𝑎3𝛽0 [𝑬0 −

1

4𝜋𝜀ℓ𝑅3 𝚷 ∙ 𝑷2]}            (3)        

and torque balance on sphere 1  :  

𝛀1 =
1

8𝜋𝜇𝑎3 {𝑷1 × [𝑬0 −
1

4𝜋𝜀ℓ𝑅3 𝚷 ∙ 𝑷2] −
𝑎3

2𝑅3 𝚷 ∙ [𝑷2 × (𝑬0 −
1

4𝜋𝜀ℓ𝑅3 𝚷 ∙ 𝑷1)]}                                                   (4) 

Where 𝑷1 and 𝛀1are the dipole moment and angular velocity respectively, of sphere 1. Similar equations 

applies for sphere 2. 𝜇 is the viscosity of the exterior liquid,  the coefficients  𝛽∞ =
𝜀𝑝−𝜀ℓ

𝜀𝑝+2𝜀ℓ
   and  𝛽0 =

𝜎𝑝−𝜎ℓ

𝜎𝑝+2𝜎ℓ
  are 

the Clausius-Mossotti factors for spherical particles, and  𝚷 = 𝐈 − 3𝑹̂𝑹̂.  Equations (3) and (4) are valid to order 
1

𝑅3.   Numerical solution of these equations gives quite complex dynamics:  in steady state (
𝑑𝑷1

𝑑𝑡
= 0) the beads 

may either co-rotate, resulting in orbiting motion, or counter-rotate resulting in propulsion [17].   We find a 
steady state series expansion solution for counter-rotating beads.  The solution for the angular frequency of 

sphere 1 and 2 can be expressed in a series expansion in 
1

𝑅
 :    Ω1 = −𝜔 +

𝑐1

𝑅3 + ⋯  and  Ω2 = ω +
𝑐2

𝑅3 + ⋯,  

where 𝜔 is the rotation frequency of a single isolated bead, given by Eq. (2).  The expressions for the coefficients  
𝑐1 and 𝑐2  are complicated, however the sum of the two angular frequencies is a simple expression:                                                      

                                               Ω1 + Ω2 =
3𝑎3

𝜏𝑀𝑊𝑅3
(𝛽0 − 𝛽∞) sin(2𝜃)                                                                           (5) 

, where 𝜃 is the angle between the applied electric field 𝑬0and the vector 𝑹̂ connecting the two beads.  This 

shows that a steady state motion directed along true straight lines require 𝑹̂ to be either in perpendicular    (𝜃 =



𝜋

2
) or parallel (𝜃 = 0) to the applied electric field.  The state perpendicular to the electric field is not stable, since 

the electric dipoles repel. Therefore, the only steady state propulsion (in straight lines) appears to be when the 
two beads are aligned with the applied electric field (Fig 3a), and the beads are propelled perpendicular to the 
electric field. This is in agreement with simulations of reference [17], which see propulsion perpendicular to the 
electric field.  This does not exclude propulsion at other angles; however, the propulsion is not linear since the 
beads counter-rotate at slightly different frequencies. In practice this may be a small deviation from straight 

lines since the difference is of the order 
1

𝑅3.   

     The translational speed of two counter-rotating rotors is in the first approximation: 𝑣 ≈
𝑇𝑒

8𝜋𝜇𝑅2, where 𝜇 is the 

viscosity of the liquid, 𝑅 is the distance between the rotors and 𝑇𝑒 is the externally applied torque on the rotors 

[16,17],  resulting in approximate propulsion speed: 𝑣 ≈
Ω𝑎3

𝑅2 . This equation is valid when beads are far apart, 

however it may give an order of magnitude estimation of the relation between the applied electric torque and 
the swimming motion for beads that are close. The dipole-dipole interaction in the case Fig. 3a is purely 
attractive; to obtain a stable counter-rotating pair the attraction must be counter-balanced either by steric 
(direct contact) or hydrodynamic repulsion due to the rotation. 

 

3.2 Propulsion of counter-rotating Pickering drops:  Experiments 

We prepared two near identical Pickering drops, as described above, and then initiated counter-rotating 
Pickering drops by applying an electric field below the Quincke threshold field, thus inducing a simple dipole 
attraction between the drops.  The drops touch, but coalescence is avoided due to the particle armor.   The field 
was subsequently increased above the threshold for Quincke rotation, which resulted in either a stable drop 
pair, or drop repulsion.  For the stable pairs, the drops may either co-rotate or counter-rotate with the rotation 
axis perpendicular to the electric field, and otherwise it can take any direction in the plane normal to the electric 
field.  This is different from for example magnetic beads in rotating magnetic fields, where all the beads are co-
rotating [25].  We observe hydrodynamic (as visualized in Fig 4 and Fig. 5) propulsion of the two Pickering drops 
at different angles with the electric field (see supporting material movies S1 and S2), sometimes approximately 
normal to the field (see supporting material movie S3). We also observe that propulsion along the electric field 
appears to be unstable in accordance with the discussion above in section 3.1. In all cases the drops are in the 

tank-treading regime, as described in Fig 2b.  To first order, the propulsion velocity is 𝑣 ≈
Ω𝑎3

𝑅2 ≈
0.7𝑠−1(0.5mm)3

(1.3mm)2 ≈

0.05mm/s,  which is close to the experimental propulsion velocity   𝑣 ≈ 0.1mm/s. 

We were not able to obtain Quincke rotating pairs of solid PE beads used here, only with tank-treading Pickering 
drops.  

 

 

 

 

 

 

 



 

 

 

 

 

Fig. 4. Cooperative electro-hydrodynamic self-propulsion of a pair of tank-treading particle armored drops.   a) 
Supporting movie S1: Pickering drops (diameter ≈ 1 mm , separation 𝑅 ≈ 1.3 mm)  covered with 50  µm beads, 
subject to an electric field of 500 V/mm. The rotational angular velocity of the drops is Ω ≈ 0.7𝑠−1, and the 
experimental propulsion velocity is  𝑣 ≈ 0.1 mm/s   b)   Supporting movie S2: Pickering drops (diameter ≈
1.0 mm )  covered with 30  µm beads, subject to electric field 450 V/mm. The rotational angular velocity of the 
drops is Ω ≈ 0.8 𝑠−1, and the experimental propulsion velocity is  𝑣 ≈ 0.1 mm/s    

 

Fig. 5. Experimental hydrodynamic streamlines (tracer particles) around a pair of self-propelled electro-
hydrodynamic counter-rotating Pickering drops (diameter ≈ 1 mm). 

4.  Conclusion.   

We have shown that electro-rotating armored drops may exhibit two dynamic regimes, solid and tank-treading 
rotation.  Two drops may attract one another and form a counter-rotating pair with cooperative hydrodynamic 
propulsive motion. Future directions may include studies of many self-propelled pairs, for example Pickering 
emulsions with high density of drops. Future directions might also include propulsion motion using more 
advanced particle laden drops, such as partly covered drops [26], Janus or patchy shells.
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