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Abstract

We investigate, using non-equilibrium molecular dynamics simulations and theory, the response

of molecular fluids confined in slit pores under the influence of a thermal gradient and/or gravity-

like fields. The gravity-like field induces an inhomogeneous density in the confined fluid, which

results in a net orientation of the molecules with respect to the direction of the field. The orientation

is qualitatively similar to that induced by a thermal gradient. We find that the average degree of

orientation is proportional to the density gradient of the fluid in the confined region and that the

orientation increases with the magnitude of the force. The concurrent application of the external

gravity-like field and the thermal gradient allows us to disentangle the different mechanisms leading

to the thermal orientation of molecular fluids. One mechanism is connected to the density variation

of the fluid, while the second mechanism can be readily observed in molecular fluids consisting of

molecules with mass or size asymmetry, even in the absence of a density gradient, hence it is

connected to the application of the thermal gradient only.
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I. INTRODUCTION

Molecular fluids are widely used in industrial processes as solvents, and in applications

concerned with heat management, and they can be exposed to large thermal gradients. In

ionic solutions, the thermal gradient affects the transport of the solute ions (Soret effect) [1].

However, notwithstanding the large amount of work that has been done on the response

of polar fluids to external electric fields [2] the intrinsic response of the pure solvent to an

applied external field such as a thermal gradient is largely unknown. A better understanding

of the non-equilibrium response of these solvents under thermal and/or chemical potential

gradients is important to advance their use in applications concerned with fluid transport [3]

or heat dissipation and conduction [4] at both nano- and macro-scales.

Recently we discovered that thermal gradients can couple with the internal degrees of

freedom of molecules featuring asymmetry in size and/or mass. The coupling results in a

preferred orientation of the fluids, where one of the atomic sites in diatomic molecules points

towards a hot or a cold source [5]. This phenomenon, which was called “thermo-molecular

orientation” (TMO), can be understood in terms of non-equilibrium thermodynamics (NET).

Further it was shown in Ref. 5 that the orientation of the molecules follows closely the

mass and size dependence of the Soret coefficient in binary mixtures [6, 7]. Simulations

indicate that in simple fluids heavy particles tend to accumulate in the cold region. Similarly,

in heterogeneous molecules, the heavier site points preferentially towards the cold region.

This correlation between the TMO and Soret effects provides a strong guiding principle for

the rationalisation and prediction of the preferred orientation of molecules under thermal

gradients. Diatomic molecules with slightly different geometries and atomic partial charges

that lead to net molecular dipoles have also been studied [8]. In this case the orientation

results in a concomitant polarization of the fluid. This polarization is similar to that found in

water, an effect that was first reported in Ref. 9 and studied further in subsequent works [10–

14].

The theoretical interpretation of molecular orientation under thermal gradients relies on

the phenomenological interpretation of non-equilibrium thermodynamics [15]. NET provides

a route towards establishing whether coupling effects are possible. However this theory does

not provide a microscopic mechanism to explain the origin of such coupling. Computer

simulations provide a route to tackle this problem. Indeed, the recently discovered link
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between the TMO and the Soret effect [5] is a first step towards advancing our molecular

understanding of thermal orientation effects. Further, simulations have been used recently to

advance our understanding of the microscopic mechanism leading to the thermal polarization

of water [14].

The TMO effects investigated so far were observed in systems that involve both thermal

and density gradients. This raises some interesting questions, which we would like to address

in this work. How does the density gradient itself contribute to the TMO response, and can

we observe molecular orientation in a fluid in the absence of a density gradient? These are

fundamental questions, and answering them would take us closer to providing a microscopic

interpretation of the TMO effect. Being able to predict the TMO for different molecular

structures would expand our ability to manipulate fluids with thermal gradients.

Previous work by different authors indicates that density gradients alone can lead to a

preferred molecular orientation. A liquid-vapor interface is an example of a system featuring

a sharp density gradient. It is well known that water molecules reorient at an interface, an

effect that is often interpreted as a result of the maximization of the number of hydrogen

bonds per molecule [16–18]. It has also been shown that polar and non-polar homonuclear

dumbbells feature a tendency to orient with their bond axis parallel to the liquid-vapor inter-

face [19, 20]. One question we would like to address is whether the density gradient induced

by a thermal gradient may contribute to some degree to the molecular orientation. We have

therefore endeavoured to extend our simulations to investigate molecular fluids confined by

lyophobic walls, where the fluid has a weak tendency for adsorption. This simulation set-up

allows us to introduce density gradients by imposing a “gravity”-like force on all of the fluid

atoms, hence inducing a density gradient of varying magnitude. Furthermore, the exam-

ination of the density gradient and orientational effects induced by the applied force and

thermal gradients acting both in concert and in opposition provide a route to disentangle

the roles of density and thermal gradients in the TMO effect.

Our paper is structured as follows. In Section II we present an extension of the non-

equilibrium thermodynamics (NET) theory previously developed to understand TMO. This

implementation of the theory takes into account gravity-like forces and their corresponding

coupling effects. In Section III we describe the force fields and the computational details

of the molecular dynamics simulations performed in this work. In Section IV we present

our results and discuss their interpretation, followed by our conclusions and final remarks
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in Section V.

II. THEORETICAL BACKGROUND

We discuss in the following the theory required to describe the non-equilibrium response

of a molecular fluid when it is subjected to a thermal gradient and/or an external gravity-

like force. The force pushes the particles against a wall inducing a density gradient, which

arises regardless of the presence of a thermal gradient. A thermal gradient will also induce a

density gradient, which can either act in concert with or in opposition to that induced by the

external force. Anticipating the discussion below, we will show that the gravity-like force

can be used to cancel the density variation that appears as a consequence of the thermal

expansion of the fluid.

Our theoretical approach uses classical non-equilibrium thermodynamics [15], which has

been shown to describe well the thermal orientation of polar and non-polar fluids [5, 9, 11, 14]

that were investigated using non-equilibrium molecular dynamics simulations. To take into

account the orientational degrees of freedom in the theory, we use the approach introduced

in Ref. 5. We describe the orientation of the molecules in terms of an orientation vector

~n(~r, t), and we define a harmonic potential energy, E = (C/2) |~n(~r, t)|2, which depends

on the force constant C that determines the “persistence” of the molecular director in

maintaining a preferred orientation. This approach is reminiscent of Landau’s theory of

phase transitions [21], where quadratic and fourth-order contributions in the order parameter

are considered. In our case, ~n(~r, t) is the order parameter.

The external force ~F acts to change the position and the orientation of each molecule. A

new system-dependent parameter D describes the response of the orientation vector to the

force, and it will in general depend on the molecular mass distribution and geometry. The

total energy density E then becomes

E (~r, t) =
C

2
|~n(~r, t)|2 − c(~r, t)~r · ~F −D~n(~r, t) · ~F (1)

where c(~r, t) is the particle density at position ~r and time t. We can now write the entropy

production for a single component fluid subjected to a thermal driving force and a constant
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external force, ~F acting on all atoms, with the internal degree of freedom, ~n(~r, t),

σ(~r, t) =
1

T (~r, t)

∂E(~r, t)

∂~n(~r, t)
· ∂~n(~r, t)

∂t
− 1

T 2(~r, t)
~J ′q(~r, t) · ∇T (~r, t) (2)

= − 1

T (~r, t)

[
C~n(~r, t)−D~F

]
· ∂~n(~r, t)

∂t
− 1

T 2(~r, t)
~J ′q(~r, t) · ∇T (~r, t), (3)

where ~J ′q is the “reduced” heat flow [15]. ∂~n/∂t represents the orientational flux describing

the response of the molecules to the gradient [5]. The associated linear flux-force relations

are given by

~J ′q(~r, t) = − 1

T 2(~r, t)
Lqq∇T (~r, t)− 1

T (~r, t)
Lqn

[
C~n(~r, t)−D~F

]
(4)

∂~n(~r, t)

∂t
= − 1

T 2(~r, t)
Lnq∇T (~r, t)− 1

T (~r, t)
Lnn

[
C~n(~r, t)−D~F

]
. (5)

At the stationary state the heat flux can be written as

~J ′q(~r, t) = −
(
Lqq −

LqnLnq
Lnn

)
∇T (~r, t)

T 2(~r, t)
. (6)

The Lαβ terms in the equations given above are the Onsager phenomenological coefficients

describing the main transport coefficients (α = β) and the coupling between the different

fluxes and gradients (α 6= β). As already noted in Ref. 9, equation (6) shows that the

coupling effects between orientation and thermal gradients results in a reduction of the

thermal conductivity since in the absence of orientational coupling the thermal conductivity

would be defined by Lqq only.

In the absence of external force, ~F = 0, the linear laws reduce to the equations derived

in Ref. 5. As noted there, the assumption that the system reaches a stationary state and

taking a time average 〈~n(~r)〉 of the orientation leads to a linear equation connecting the

average orientation with the thermal gradient,

〈~n(~r)〉F=0 = − Lnq
CLnn

∇T
T
. (7)

In the absence of a thermal gradient, ∇T = 0 but for ~F 6= 0 we get

〈~n(~r)〉∇T=0 =
D

C
~F . (8)

In the general situation with both thermal gradients and the external forces acting on

the fluid we get
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〈~n(~r)〉 = 〈~n(~r)〉F=0 + 〈~n(~r)〉∇T=0 . (9)

We will examine in this paper the three different physical scenarios summarized by Equa-

tions (7-9).

III. COMPUTATIONAL DETAILS

We have investigated a molecular fluid consisting of mass- or size-asymmetric diatomic

molecules, following the models employed by our group in previous works [5, 8, 22]. The

diatomic dumbbells interact via pairwise Lennard-Jones (LJ) interactions with well depth

εLJ and average atomic diameter σLJ (not to be confused with the entropy production defined

previously). We used dimensionless reduced units (denoted by ∗ superscripts) throughout

all the simulations. Real units can be recovered by substituting parameters suitable for real

molecules, for example for carbon monoxide, εLJ = 0.352 kJ mol−1, σLJ = 0.32717 nm, and

mLJ = m1 +m2 = 28 g mol−1. The interatomic bond length matches carbon monoxide [23],

d = 0.128 nm or d∗ = d/σLJ = 0.391 in reduced units. The molecular bond is held fixed

using the SHAKE algorithm [24]. The time step was set to 0.0005 in reduced units.

The atoms in each molecule have a size ratio σ2/σ1, with a mean atomic size σ∗LJ =

(σ1 + σ2)/(2σLJ) = 1.0, and a mass ratio m2/m1 = m∗2/m
∗
1 with the reduced molecular

mass m∗LJ = m∗1 + m∗2 = 2.0. The well depths for each atom were kept the same (ie.

ε∗1 = ε∗2 = ε∗LJ = 1). Lennard-Jones interactions were computed with the truncated and

shifted LJ potential, using r∗cut = 2.5 as the distance cutoff for pair interactions. All the

simulations were performed using the LAMMPS simulations software [25].

A schematic comparing the simulation set-up for our previous work on TMO in bulk

systems with the new set-up for a fluid confined between walls is shown in Figure 1. A

simulation box with Lz approximately three times larger than Lx = Ly was used, with

the temperature gradient applied in the z direction. Two walls were placed at z = 0 and

z = Lz. The molecule-wall interactions were modelled with the integrated Lennard-Jones

9-3 potential [18, 26], Uwall(z), which mimics the interaction of the molecular fluid with a

crystalline solid made up of individual Lennard-Jones particles,

Uwall(z) = εwall

[
2

15

(σwall

z

)9

−
(σwall

z

)3
]

(10)
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TcTh Th Tc Th

FIG. 1: Schematic representation of our implementation of a thermal gradient in 3D bulk fully

periodic (left) and pseudo-2D confined (right) geometries. The latter is periodic in the x and y

directions only. Red and blue colours show the regions where Langevin thermostats are applied

to maintain hot and cold temperatures Th and Tc, respectively. The grey rectangles indicate the

location of the confining walls

The interaction was computed between the wall and all individual atoms lying at a normal

distance z from the wall. The wall potential is designed to mimic a lyophobic surface,

with little fluid adsorption. We set the wall interaction parameters to εwall/εLJ = 0.02 and

σwall/σLJ = 0.6. A distance cutoff of 2.5σLJ was implemented in all of our computations.

The temperature gradients were generated by using Langevin thermostats in two regions

near the walls located at 0 < z∗ < 2.0 and L∗z − 2.0 < z∗ < L∗z. An average thermal

gradient can be defined by the linear approximation ∇T ∗av = (T ∗H − T ∗C)/(L∗z − 4), with T ∗H

and T ∗C being the temperatures of the hot and cold regions, respectively, but we note that the

local thermal gradient may differ from the linear estimate, particularly if very large thermal

gradients are applied. The average temperature of the non-equilibrium simulation is defined

by T ∗av = (T ∗C +T ∗H)/2. Upon application of the thermal gradient, the fluid develops a density

gradient, which results from the thermal expansion of the fluid. For convenience to refer

to specific simulation states we use an average density ρ∗av = Nmol/(L
∗
xL
∗
yL
∗
z) and packing

fraction η∗av = ρ∗av × V ∗mol, but our simulations do always involve a varying density, ρ∗(z),

unless it is stated explicitly otherwise.

A density and pressure gradient can also be created by simply adding a force in a direc-

tion perpendicular to the walls, which acts on each atom in the system. In our simulations

the applied force had the form F ∗a,i = m∗iA
∗, with A∗ being an effective acceleration. This
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TABLE I: Summary of simulation parameters employed in this work

σ2/σ1 m2/m1 Nmol L
∗
x,y L∗z ρ∗av η∗av T ∗av

2 1 770 10.45 32.0 0.22 0.274 2.28

1 20 770 8.0 25.0 0.48 0.391 2.43

force has the functional form of a gravitational force but must be many orders of magnitude

times larger than the standard terrestrial gravity in order to compete with random thermal

fluctuations in a simple molecular fluid. Typically we used values of A∗ corresponding to

about 1012 m/s2 in real units. For comparison, the most powerful modern ultracentrifuges

produce effective accelerations on the order of 107 m/s2. For simulations at constant tem-

perature, only, a Langevin thermostat was applied in the entire simulation box at the same

time. We checked carefully that the temperature was homogeneous in the entire system.

Representative temperature profiles supporting this point are reported in Section IV. We

also verified that the principle of equipartition was upheld in all simulations by separately

computing rotational and translational temperatures.

In Table I we summarize some of the simulation parameters employed in this work. All

the simulations were performed at temperatures and densities far from the coexistence region

of the models investigated. In selecting the thermodynamic conditions, which correspond

to a dense supercritical fluid, we used information on the critical point obtained in our

previous work [8]. Due to the weaker orientational response of the mass asymmetric model,

for this model we chose to use parameters at lower temperatures and higher densities relative

to the critical point, but always avoiding simulations inside the coexistence region. Using

these parameters as a baseline, we then ran simulations in a range of different temperature

gradients and/or with different applied forces. Simulation runs extended as long as required

to obtain well converged results, generally on the order of 108 timesteps for each system.

IV. RESULTS AND DISCUSSION

A. Applied temperature gradient

We start our presentation with the simulation results for systems subjected to thermal

gradients only. We show in Figure 2 the temperature and density profiles for systems
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FIG. 2: Temperature (top) and density (bottom) profiles for size (left) and mass (right) asymmetric

systems, for different temperature gradients, as a function of the z position across the simulation

box. Horizontal dotted lines indicate the range in z∗ over which average orientations were computed

in the lower part of Figure 4.

featuring size or mass asymmetries. The temperature profiles show increasing deviations

from linearity as the temperature gradient increases, in particular near the high temperature

region. The density profiles clearly illustrate the lyophobic character of the wall associated

with the weak fluid-wall interactions. This can be noted in the reduction of the density next

to the wall. As expected the temperature and density (away from the interfacial region)

profiles are flat for ∇T ∗av = 0.

The non-equilibrium simulations give direct access to the equations of state of the simu-

lated systems. By plotting the pairs of density and temperature generated in the stationary
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state it is possible to construct the equation of state. This approach has shown to provide

excellent agreement with the equations of state obtained from equilibrium simulations in

the isothermal isobaric ensemble [27]. It has also been shown that local thermal conduc-

tivities can be obtained, again showing excellent agreement with Green-Kubo equilibrium

computations [28]. These results indicate that the non-equilibrium method employed here

operates within the linear regime. See also below for a further discussion of this point.

We show in Figure 3 the equations of state obtained for the different states investigated

in this work. The equations obtained are very similar to those we obtained previously in

simulations of related systems of bulk fluids subjected to thermal gradients [8], except near

the walls where depletion and/or molecular ordering induced by the walls play a significant

role. The thermal expansion (slope of the curves represented in figure 3) also indicates that

the states simulated here are either supercritical or in the liquid region. Some of the states

at lower densities are closer to the critical point as can be seen from the sigmoidal shape

of the equation of state. For the state closest to the critical point, in the size asymmetric

system with T ∗C = 1.3, the reduced critical temperature is 1.52 [8], but the density in the

cold region, ρ∗C ' 0.3, is considerably above the reduced critical density of 0.15.

The anisotropy induced by the thermal gradient in the fluid, results in a preferred ori-

entation of the molecules in the fluid with respect to the direction of the heat flux. In the

top part of Figure 4 we show 〈cos θz(z)〉, the time-averaged variation in the average cosine

of the angle θz between the molecular orientation vector ~n(~r, t) and the heat flux vector (z

axis), for the same systems shown in Figure 2. We arbitrarily set our molecular director

to point in a direction such that the imposed thermal gradient generates a net negative

orientation in both size and mass asymmetric systems, i.e. from the smaller/lighter atom

to the larger/heavier atom.

Our results clearly show large deviations from isotropic orientations near the walls. This is

particularly evident in the simulation performed in the absence of a thermal gradient, where

any orientational preference is expected to be restricted to the fluid-wall interfacial region.

Our simulations indicate that in the absence of thermal gradient the smaller atom in size

asymmetric molecules tends to approach the wall more closely than the larger one. We note

that as expected, in the absence of a thermal gradient there is no first order orientational

preference for mass asymmetric molecules anywhere in the simulation box. In the presence

of the thermal gradient for both systems the average orientation is anisotropic in the whole
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FIG. 3: Equations of state of fluids under thermal gradients. Labels (2f, 1d and 1b) correspond

to data taken for the named systems in 3D bulk simulations in Ref. 8. The colours of the other

lines lacking symbols are the same as the respective systems in Figure 2. Data points very near

the walls have been omitted for clarity. We also indicate the critical points for the bulk systems

taken from Ref. 8.

confined fluid, and in the size asymmetric case it is perturbed less overall in the center of the

simulation box than near the walls. The direction of the anisotropy induced by the thermal

gradient is consistent with our previous work, and the Soret coefficients computed in binary

Lennard-Jones systems [5].

Following Equation 7, for a given thermodynamic state (defined by a specific temperature

and density) we expect a linear dependence of the orientation with ∇T/T . We show that

this is indeed the case for the small thermal gradients investigated here (see Figure 4). The

response to ∇T ∗/T ∗ is expected to be linear, since ∇T ∗T ∗−1a∗ � 1 for thermal gradients

in the range of 0.02 < ∇T ∗ < 0.1, T ∗ ∼ 2 and the atom effective diameter a ∼ σ∗ ≡ 1,

as is the case for all of the systems we consider in this study. However, if we increase the

gradient beyond this upper limit it may become impossible to find a region in the systems

where T ∗ and ρ∗ are both nearly equal, as we would no longer be able to compare similar

thermodynamic states. For this reason we have excluded the system with the largest thermal

gradient (∇T ∗av = 0.071) from the linear fit in the size asymmetric system.
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From Equation 7 we can extract estimates of Lnq(CLnn)−1 from the slopes of the plots in

the bottom part of Figure 4. We get Lnq(CLnn)−1 = 0.31 for the size asymmetric case, and

= 0.13 for the mass asymmetric case. The same thermal gradient induces a TMO effect 2.4

times larger in the size asymmetric system studied here compared with the mass asymmetric

system. The strength of the TMO signal varies both with the thermodynamic conditions as

well as the model parameters, as has been noted previously [8, 11, 12, 14, 22, 27].

B. Applied force

We have discussed above the thermal orientation behavior of confined molecular fluids

under thermal gradients. Now we consider an alternative set up, where an external force is

applied to induce a density gradient in the absence of a thermal gradient. Hence, we address

in the following the situation described by Equation 8.

We show in Figure 5 the corresponding density and orientational profiles for the systems

with an applied force, F ∗. All these simulations were performed using Langevin thermostats

to prevent the formation of temperature gradients, which may arise otherwise by the appli-

cation of the external field. These density profiles are qualitatively similar to the profiles

generated by the thermal gradient (cf. Figure 2). The main difference is some increase in

the degree of molecular layering in the denser region near the wall at Lz = 0 observed in

the simulations using the “gravitational” force. The molecular orientation is also qualita-

tively similar, with the larger site (in size asymmetric molecules) or heavier site (in mass

asymmetric molecules) pointing in the direction of the density gradient.

The results presented above show that orientational anisotropy can be achieved by forcing

a density gradient on the system in the absence of a thermal gradient. This observation is

consistent with previous results on liquid-vapor interfaces of similar apolar dumbbells [19,

20], where large density gradients exist at equilibrium in the absence of thermal gradients,

and lead to orientational effects driven by the surface tension. It follows from our results

that the stronger the density gradient induced by the external force, F ∗, the larger the

molecular orientation. The degree of orientation, for the applied force and thermal gradient

simulations, is found to be of the same order.

One question that stems from the analysis reported in this section is, how important is the

density gradient in determining the overall degree of orientation of a system in a thermal

12



0 5 10 15 20 25 30

z
*

-0.02

-0.01

0

0.01

0.02

0.03

<
c
o

s
 θ

z(z
)>

∇T=0

∇T
*

av
=0.018

∇T
*

av
=0.029

∇T
*

av
=0.043

∇T
*

av
=0.057

∇T
*

av
=0.071

5 10 15 20 25
-0.01

-0.005

0

0.005

0.01

∇T=0

∇T
*

av
=0.043

∇T
*

av
=0.067

∇T
*

av
=0.095

σ
2
/σ

1
=2.0 m

2
/m

1
=20.0

0 0.01 0.02 0.03

∇T
*
/ T

*

0

0.003

0.006

0.009

0.012

<
c
o
s
 θ

z
>

0 0.01 0.02 0.03 0.04
0

0.001

0.002

0.003

0.004

0.005

FIG. 4: (Top) Variation in the average molecular orientation of size and mass asymmetric fluids,

as a function of the z position in the simulation box. (Bottom) Degree of orientation in the bulk

region as a function of ∇T ∗/T ∗. Points and error bars are derived from averages in a range of

16.5 < z∗ < 22.5 for size asymmetric systems and 13.25 < z∗ < 15.25 for mass asymmetric systems,

shown as the horizontal dotted ranges in the top part of the figure. In the size asymmetric system

(left) the data point for the largest thermal gradient (yellow dotted line/data point, both here and

in Figs. 2 and 3) is not included in the linear fit.

gradient? We investigate this problem in the next section by performing simulations of

systems under the influence of both external forces and thermal gradients.
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FIG. 5: Density profiles (top) and average molecular orientation (bottom) for confined fluids in

different “gravitational” fields F ∗a,i = m∗iA
∗ and ∇T ∗ = 0. The horizontal dotted line indicates the

range in z∗ over which the average orientations in Figure 7 were computed.

C. Application of temperature gradient and force in opposition

When the force is applied in the same direction as the thermal gradient, it will induce

a density gradient in the opposite direction to that produced by the thermal gradient. We

show some of the density profiles corresponding to this coupling in Figure 6. By carefully

tuning the applied force, we can effectively cancel out the effect of thermal expansion on the

density profile, leading to a situation where the density is constant in the bulk region away

from the walls (see e.g. A∗ = 0.15 system (green line) in Figure 6, top right).

In Figure 6 we also plot the resulting orientational profiles. As one would expect, in

the middle of the simulation box the orientational responses driven by the two opposing

influences of the applied force and the thermal gradient go in opposite directions, and we
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find a reversal in the orientation between A∗ = 0.035− 0.05 and A∗ = 0.05− 0.1 for size and

mass asymmetric systems, respectively. In Figure 7 we summarize our results for the average

molecular orientation in a range of different applied temperature gradients and applied forces.

The slopes of the lines in Figure 7 do not vary much regardless of the temperature gradient,

demonstrating that for the range of parameters we study here, the two contributions to the

orientation, F ∗ and ∇T ∗, act independently.

According to Equations 8 and 9, a linear fit of the variation in the orientation as a

function of applied force while keeping ∇T/T constant yields an estimate of the ratio D/C

from the slope of the linear fit, which describes the strength of the coupling between the

applied force and the molecular orientation. The average slope obtained from the set of

lines in Figure 7 is 0.119 ± 0.006 in the size asymmetric case and 0.0514 ± 0.0010 in the

mass asymmetric case. Since the molecular mass m∗ = m∗1 + m∗2 = 2 in both systems, and

the total force on each molecule F ∗mol = (m∗1 + m∗2)A∗, it follows that D/C = 0.060± 0.003

for the size asymmetric system and 0.0257 ± 0.0005 for the mass asymmetric system. The

coupling between the applied force and the molecular orientation is therefore about 2 times

larger for the size asymmetric system investigated, nearly the same ratio as we obtained

for the coupling to the thermal gradient (see Figure 4 and subsequent discussion above).

While direct comparisons are difficult due to the differing average temperatures and packing

fractions of the systems, it is clear that the relative contributions of the external forcing and

the thermal expansion to the molecular orientation depend on the system parameters.

One important result that stems from our study is that in a system with zero density

gradient there remains an overall effect on the orientational profile. In the bottom part of

Figure 7 we show the average orientation in some of the same systems but as a function of

the resultant density gradient. There is clearly a non-zero x-intercept, which we suggest is

connected to an orientational bias that is due solely to the thermal gradient, since we have

eliminated the influence of the density gradient. Furthermore the orientation in the mass

asymmetric case is much larger than in the size asymmetric case with ∇ρ∗ = 0, showing

that the exact balance between these two effects depends on the molecular geometry and

thermodynamic conditions under consideration.
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FIG. 6: Density profiles (top) and orientational profiles (bottom) under the simultaneous action

of gravitational forces F ∗ = m∗iA
∗, and thermal gradients ∇T ∗. The horizontal lines indicate the

range in z∗ over which the average orientations and density gradients in Figure 7 were determined.

V. CONCLUSIONS

We have investigated the non-equilibrium response of single-component diatomic fluids

confined in lyophobic slit pores, under the influence of thermal gradients and/or gravity-like

fields. The non-equilibrium thermodynamic (NET) analysis of this problem shows that mass

gradients can also lead to molecular orientation, and the latter effect can contribute to the

thermal orientation observed under a thermal gradient. We have shown that superimposed

on this there are additional orientation effects due to the density gradient itself, provided that

the fluid is asymmetric. Such effects could in principle be studied in a sufficiently powerful

ultracentrifuge with a very large effective acceleration geff , perhaps in a colloidal suspension

of particles of large mass m and size σ so that the gravitational energy mgeffσ can compete
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FIG. 7: Degree of orientation as a function of gravitational field strength A∗ (top) and induced

density gradient (bottom) at different average temperature gradients. Points and error bars are

derived from averages over ranges in z indicated by the horizontal dotted lines in Figure 6. The

diamonds in the top figure indicate the applied force required to produce zero density gradient in

each temperature gradient.

with the thermal energy kBT . A fluid under a thermal gradient will inevitably develop a

concomitant density gradient, whose origin is connected to the thermal expansion of the

fluid. We have explored this idea by performing boundary driven non-equilibrium molecular

dynamics (NEMD) simulations of molecular fluids consisting of diatomic molecules.

We find that, in both size and mass asymmetric dumbbells, the orientational bias caused

by the application of a “gravitational” field, qualitatively resembles the orientation induced

by thermal gradients. Furthermore, when the two driving forces (“gravitational” and ther-
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mal) are applied together, they can act either in concert or in opposition and both determine

the orientational preference of the fluid. Most importantly, we have shown that the opposed

effects of the two external perturbations, on the molecular orientation on the one hand, and

the density gradient on the other, do not exactly cancel out, so that even under zero density

gradient there remains an orientational bias that is purely driven by the thermal gradient.

Overall, our work shows that thermal expansion plays a significant role in determining the

magnitude of the thermal orientation of molecular fluids. Also, by combining the gravity-

like force and thermal gradients, we have been able to disentangle thermal expansion and

thermal gradient contributions, showing that the thermal orientation should be present in

the absence of density gradients, or in fluids featuring small coefficients of thermal expansion.

Our work advances our understanding of the microscopic mechanisms determining the non-

equilibrium response and orientation of molecular fluids under thermal gradients.
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