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Abstract 14 

Investigations into factors that affect the rate of actuarial senescence are important in order to 15 

understand how demographic rates may vary in wild populations. Although the evidence for 16 

the occurrence of actuarial senescence in wild populations is growing, very few studies have 17 

compared actuarial senescence rates between wild populations of the same species. We used 18 

data from a long-time study of demography of house sparrows to investigate differences in 19 

rates of actuarial senescence between habitats and sub-populations. We also investigated if 20 

rates of actuarial senescence differed between males and females. We found that rates of 21 

actuarial senescence showed large spatial variation. We also found that the onset of actuarial 22 

senescence varied between sub-populations. However, these differences were not 23 

significantly explained by general difference in habitat type. We also found no significant 24 

difference in senescence rates between males and females. This study shows that senescence 25 

rates in natural populations may vary significantly between sub-populations and that failing 26 

to account for such differences may give a biased estimate of senescence rates at the 27 

metapopulation level. 28 
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Introduction 34 

The evidence supporting the hypothesis that senescence (e.g. decline in survival and/or 35 

reproduction with age) does occur in wild populations has become substantial in recent 36 

decades. This has also led to an increasing interest into the underlying mechanisms that may 37 

influence senescence (see Nussey et al. 2013 for a review). The fundamental evolutionary 38 

mechanism(s) explaining the occurrence of actuarial senescence (a.k.a. survival senescence) 39 

has been attributed to the decline of natural selection with age (Medawar 1952; Hamilton 40 

1966). Williams (1957) expanded this work and provided the antagonistic pleiotropy theory 41 

of aging, which states that an allele with a positive effect on reproduction early in life may be 42 

selected even if it has a negative effect on survival later in life. Later, Kirkwood (1977) 43 

proposed the disposable soma theory of aging. Both the antagonistic pleiotropy theory and 44 

the disposable soma theory share the same prediction of a trade-off between reproduction 45 

and/or growth during early life and intensity of ageing later in life (Nussey et al. 2013; 46 

Lemaitre et al. 2015). Stated briefly; as the energy available to an individual is not infinite, 47 

senescence may be expected to start at the age of maturity (but see Brunet-Rossinni and 48 

Austad 2006) and manifest itself within the normal lifespan of the species (Nussey et al. 49 

2013). 50 

 Rates of actuarial senescence (hereafter senescence) in wild populations may be 51 

significantly influenced by the environment. Specifically, if a population is exposed to 52 

environments that increase mortality, this may amplify the rate of senescence under particular 53 

circumstances (Caswell 2007). For instance, it has been shown that a high level of predation 54 

(e.g. Dhondt et al. 1998) or an increased competition between individuals for resources (i.e. 55 

density dependence, e.g. Altwegg et al. 2003) may increase the rate of senescence (Nussey et 56 

al. 2007). Predation and density may even interact with each other in affecting senescence 57 
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rates (e.g. Balbontin and Møller 2015). As these sources of mortality may vary between 58 

populations, one may expect senescence rates to vary accordingly. For example, Kawasaki et 59 

al. (2008) found that the rate of aging in stalk-legged flies (Telostylinus angusticollis) in wild 60 

populations was significantly faster compared to laboratory populations founded from the 61 

same wild population. Similarly, Austad (1993) found that an island population of Virginia 62 

opossums (Didelphis virginiana) had a shallower senescence slope compared to the mainland 63 

population. This difference coincided with a lack of predators on the island (Austad 1993). 64 

Despite of this empirical foundation, there has been a lack of studies investigating 65 

intraspecific spatial variation in senescence rates between different habitats/populations in the 66 

wild (but see Austad 1993; Baker and Thompson 2007;  also see Bouwhuis et al. 2010; 67 

Balbontin et al. 2012 for studies of inter-population variation in rates of reproductive 68 

senescence). The lack of studies may be caused by the requirement for long-term monitoring 69 

of known-aged animals from different populations of the same species 70 

The rate of senescence may vary among groups in a given population (e.g. males and 71 

females). The difference in senescence rates between males and females has become a topic 72 

of increased interest in evolutionary biology (Maklakov and Lummaa 2013; Regan and 73 

Partridge 2013). Life-history theory predicts that the sex with the higher mortality rates 74 

should be the one exhibiting the higher rates of senescence (Williams 1957). Therefore, as 75 

males from polygynous and dimorphic species suffer from high mortality rates during the 76 

mating season due to male-male combat for instance, they should exhibit higher senescence 77 

rates than females (Bonduriansky et al. 2008; Festa-Bianchet 2012). An interspecific 78 

comparison of 35 vertebrate species (Clutton-Brock and Isvaran 2007) provided an overall 79 

support for that prediction, finding that, in general, males had faster rates of senescence than 80 

females. As expected in socially monogamous species, such a difference in senescence rates 81 
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between males and females appeared to be less pronounced (Clutton-Brock and Isvaran 82 

2007). However, it is noteworthy that until now, many of the studies investigating senescence 83 

patterns in the wild have focused on females only (but see: Reed et al. 2008; Brown and Roth 84 

2009; Nussey et al. 2009; Pardo et al. 2013; Cornwallis et al. 2014; Gamelon et al. 2014; 85 

Hayward et al. 2015; Zhang et al. 2015) and evidence for sex differences in rates of 86 

senescence in the wild remains somewhat scarce in the literature (Clutton-Brock and Isvaran 87 

2007; Bonduriansky et al. 2008). 88 

Here, we aimed at filling these gaps in our knowledge by investigating intraspecific 89 

spatial variation and also sex differences in rates and onset of senescence in a wild 90 

metapopulation of house sparrows (Passer domesticus) in a Norwegian archipelago (66.5 º N 91 

12.5 º E). This metapopulation has been intensively monitored by annual capture, mark and 92 

resight of both males and females since 1993. An important feature of this metapopulation is 93 

that some islands contained farms where the birds had the option of sheltering inside cattle-94 

farm buildings whenever the weather is harsh (e.g. during winter). In contrast, other islands 95 

do not have any cattle-farms and the birds have to find shelter around the human settlements. 96 

Therefore, according to the current evolutionary theory of senescence, we expected: i) inter-97 

population variation in rates and onset of senescence with faster and/or earlier senescence in 98 

the populations inhabiting the islands free of cattle-farms compared to the populations living 99 

in more sheltered environments; ii) no sex difference in senescence rates within a given 100 

population for this socially monogamous species (Anderson 2006). 101 

 102 

Materials and methods 103 

Study area and habitats 104 
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The study was carried out in an archipelago consisting of 18 islands covering ca. 1600 km2 in 105 

the Helgeland district in northern Norway (see map in Baalsrud et al. 2014). The house 106 

sparrows on these islands have been systematically captured, marked and resighted several 107 

times during their lifetime since 1993 (e.g. Ringsby et al. 2002; Jensen et al. 2008; Pärn et al. 108 

2012). In this study, we compared two sets of islands which differed in habitat: two islands 109 

with cattle farms (Gjerøy and Hestmannøy) and two islands without cattle farms (Selvær and 110 

Træna). On the farm islands, house sparrows lived in association with dairy farms where they 111 

reproduced, foraged and sheltered (under harsh weather conditions) inside barns and cow-112 

sheds. On these farm islands, the cattle food and seeds from cultivated crops were readily 113 

available for house sparrows throughout the year. On the non-farm islands, where house 114 

sparrows live in association with small human settlements, the shelter provided by the barns 115 

was lacking. In addition, the main food resource on the non-farm islands was seeds from 116 

birdfeeders provided by the local human inhabitants. Although we focus on 4 islands, 117 

observations from the other islands were used to identify and exclude emigrants and 118 

immigrants from the dataset (n = 330). This was done to ensure that the effect of 119 

habitat/island on individual survival remained as constant as possible throughout the lifespan 120 

of individuals. We were thus also able to separate mortality from migration in our analyses.   121 

  122 

Field work and datasets 123 

Field work was carried out during the summer (1 May - 15 August) and autumn (1 September 124 

- 1 November). During field work, house sparrows were captured using mist nets. Upon first 125 

capture, they were banded with a metal ring engraved with a unique id-number and three 126 

plastic color rings (two rings on each tarsus). In addition, we visited nests (nest boxes or 127 

under barn roofs) and marked fledglings (age = 8 - 14 days old). Thus, after individuals had 128 
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been marked, they could be resighted by capturing them, or by observing their unique 129 

combination of color rings through a telescope or binoculars. For detailed description on field 130 

work, see Ringsby et al. (1998), Sæther et al. (1999) and Pärn et al. (2009). 131 

 Our datasets only included individuals that had a known age (i.e. individuals marked 132 

as fledglings or juveniles during May - August). The dataset from farm islands included the 133 

years 1993 – 2013 and contained the resighting history of 3543 individuals (6574 134 

observations). A continuous time series of observations from non-farm islands was available 135 

from 2003 – 2013 (1539 individuals, 2035 observations). Before 2003, populations on the 136 

non-farm islands had experienced a severe decline in population size (Baalsrud et al. 2014). 137 

The dataset used to compare senescence rates among males and females, contained only 138 

individuals that had been resighted and sexed as adults. The sex of individuals was 139 

determined by visual inspection of plumage characteristics. This dataset contained the 140 

resighting history of 1005 individuals (1715 observations).  141 

Survival Analyses 142 

We estimated survival probabilities with capture-mark-recapture (CMR) models (Lebreton et 143 

al. 1992; Kéry and Schaub 2011). Previous studies have found that resighting probabilities 144 

may vary between islands and years in the metapopulation (Ringsby et al. 1999; Holand et al. 145 

2014). We therefore included island, year and the interaction between islands and years in all 146 

models of resighting probability. To account for temporal variation in survival estimates, we 147 

included the effect of years as a random factor in all survival models. An investigation by 148 

Jones et al. (2008) indicated that senescence in house sparrows at Helgeland started at the 149 

mean age of first reproduction (age = 1). However, as the onset of senescence may occur later 150 

than the age of first reproduction (e.g.Weimerskirch 1992; Nussey et al. 2008; Peron et al. 151 

2010), we tested for linear effect of age and also non-linear (i.e. quadratic) change in survival 152 
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probability with increasing ages (i.e. senescence) either starting at age = 1, 2, 3 or 4 in 153 

separate models. Due to low sample sizes at ages > 4 (see Fig. 2), we did not test for onsets 154 

starting at later ages. In details, our analyses have been divided into three parts. First, at the 155 

metapopulation level (i.e. all 4 islands pooled together), we investigated the  relationship 156 

between survival probability (on the logit-scale) and ages. Secondly, we investigated the 157 

difference in senescence rates (i.e. difference in slopes) between the two habitats (farm- vs. 158 

non-farm islands). Thirdly, we investigated if there were significant differences in senescence 159 

rates between islands (Gjerøy, Hestmanøy, Selvær and Træna) in the metapopulation. The 160 

rates of senescence were thus estimated separately for each habitat/island by including the 161 

interaction between habitat/island and age on survival. To examine how survival probability 162 

varied among age classes, we used age as a factor instead of a continuous variable (see Fig. 1 163 

and 2). 164 

To investigate sex-specific pattern of survival, we re-performed the previous analyses 165 

at the metapopulation level, within habitats and within islands by adding “sex” as a factor 166 

(male/female) and tested for differences in senescence rates between males and females by …  167 

We used the model fitting options provided by the programing language BUGS (Lunn 168 

et al. 2000). This language offers several options for creating CMR models in a Bayesian 169 

framework using MCMC simulations to obtain posterior stationary distributions of 170 

parameters (Kéry and Schaub 2011). The models were run in JAGS (Version 3.2.0, Plummer 171 

2003) controlled from R (Version 3.1.1, R Core Team 2014) using the package “JagsUI” 172 

(Version 1.1). This package allows for easy parallel computation of multiple chains on 173 

computers using a cpu with multiple cores. For all models, we used three chains each with 174 

120 000 iterations and a thinning rate of six; where the first 90 000 iterations were discarded 175 

(“burn-in”). Mixing and convergence of chains to a stationary distribution was evaluated by 176 
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visual inspection of time-series plots produced by JAGS and by the Brooks-Gelman-Rubin 177 

criterion (R-hat, Brooks and Gelman 1998). Parameter estimates were obtained as the mean 178 

from the respective stationary posterior distributions and lower/upper limits of the 95 % 179 

Bayesian Credibility Interval (CRI). We applied vague priors for all parameters (see Kéry and 180 

Schaub 2011).  181 

 182 

Results 183 

The first part of our main analysis did not indicate a significant linear or non-linear decline in 184 

survival probability with age in the metapopulation (see Fig. 1, Table 1 and Electronic 185 

Supplementary Material Table 1A). We also found no significant difference in senescence 186 

rates (linear or non-linear) between males and females at the metapopulation level (Electronic 187 

Supplementary Material Table 2A and 3A). 188 

The second part of our main analysis indicated that linear senescence rates were not 189 

significantly different between the two habitat types (see Table 1), starting at age = 1 (Δ β = - 190 

0.01 95% CRI: (- 0.25, 0.22)), age = 2 (Δ β = - 0.18 95% CRI: (- 0.61, 0.22)), age = 3 (Δ β = 191 

- 0.35 95% CRI: (- 1.25, 0.414)) or age = 4 (Δ β = - 1.29 95% CRI: (- 2.99, 0.311)). We also 192 

found no significant difference in non-linear senescence rates between habitats (Electronic 193 

Supplementary Material Table 1A). In addition, we did not detect a significant difference in 194 

senescence rates (linear or non-linear) between males and females either on farm islands or 195 

non-farm islands (Electronic Supplementary Material Table 2A and 3A).  196 

The results from third part of the main analysis indicated that there were significant 197 

differences in linear senescence rates between islands (see Fig. 2 and Electronic 198 

Supplementary Material Table 4A and 5A). Specifically, the senescence rates on Gjerøy and 199 
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Træna were found to be significantly steeper compared to Hestmannøy. There was a 200 

significant linear decline in survival probability on Træna starting at age = 1 and on Gjerøy 201 

starting at age = 2 (see Table 1). We found no significant difference in non-linear senescence 202 

rates between islands (Electronic Supplementary Material Table 1A).We also found no 203 

significant difference in senescence rates (linear or non-linear) between males and females on 204 

any of the four islands (Electronic Supplementary Material Table 2A and 3A). 205 

 206 

Discussion 207 

This study has shown that senescence rates and onset of senescence may vary spatially in a 208 

wild metapopulation. Although the lack of mean difference in senescence rates between 209 

habitats did not support our initial hypothesis, the results of this study suggest that local 210 

environmental conditions may have an important effect on the aging patterns of wild animals. 211 

Failure to account for such variation may lead to an oversimplified view of senescence rates 212 

of a species (Fig. 1 vs Fig. 2). Although the specific causes of heterogeneous senescence rates 213 

between populations may be difficult to detect, the resulting effect on local demography may 214 

influence the population dynamics of the sub-population and the metapopulation as a whole. 215 

Accounting for such heterogeneities may be important for predicting future population 216 

fluctuations of fragmented populations (i.e. metapopulations) in the wild. 217 

  Although the pattern found on one non-farm island fitted the expected pattern of faster 218 

senescence rates and earlier onset, this was not the case on the other non-farm island (see Fig. 219 

2). In addition, senescence rates on the two farm islands were significantly different (see 220 

Table 1 and Electronic Supplementary Material Table 4A and 5A) even though these islands 221 

are only ca. 11 km apart. A distinct difference between the two farm islands was the mean 222 

survival probabilities of the first two adult age classes (see Fig. 2 and Table 1). The relatively 223 
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high survival probability of these age classes on the farm island of Gjerøy may point out a 224 

difference in investment strategies between the two islands. Individuals that invest a 225 

relatively large amount of energy in early reproduction and/or survival may also be expected 226 

to suffer more pronounced senescence in later life (McCleery et al. 1996; Orell and Belda 227 

2002; Reid et al. 2003; Reed et al. 2008; Hammers et al. 2013). However, the lack of 228 

differences in fledgling survival probability among populations (see Fig. 2) appears to 229 

exclude the possibility that the variation observed was caused by a substantial difference in 230 

mortality before maturation (e.g. stronger selection for quality individuals). Alternatively, 231 

differences in natal environments may have caused subsequent changes in the senescence 232 

pattern between the islands that manifested in the adult age classes (Nussey et al. 2007; Reed 233 

et al. 2008; Millon et al. 2011; Cartwright et al. 2014). These differences may be subtle and 234 

very difficult to observe in the wild (Nussey et al. 2013).  235 

As the house sparrow is a socially monogamous species (Anderson 2006), the lack of 236 

difference in senescence found between adult males and adult females appears to support the 237 

pattern found by Clutton-Brock and Isvaran (2007). Although one might expect a general 238 

female biased mortality pattern in birds (Liker and Szekely 2005) to cause a different 239 

senescence rate in females compared to males, this is not the case in our populations (see 240 

Electronic Supplementary Material Table 2A and 3A). Indeed, the overall result from our 241 

analysis did not support the notion of a general pattern of female biased mortality in house 242 

sparrows. Previous studies on house sparrows have also not detected a general sex-bias in 243 

adult survival probability (For review see Anderson 2006). 244 
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Figure legends: 409 

Fig.1 : The mean survival probability of age classes in a metapopulation of house sparrows 410 

on four islands in the Helgeland archipelago, northern Norway. Age = 0 denotes the mean 411 

survival of fledglings on the four islands. Lines indicate upper and lower limit of a 95 % 412 

Bayesian credibility interval of the mean value. Numbers at the upper end of the figure 413 

indicate observed sample sizes for each age class. 414 

 415 

Fig. 2 : The change in survival probability with age in four island populations of house 416 

sparrows in the Helgeland archipelago, northern Norway (1993 – 2013). The dashed line 417 

indicates the predicted linear decline in survival probability starting at age = 1 (Træna) or age 418 

= 2 (Gjerøy). Solid lines indicate upper and lower limit of a 95 % Bayesian credibility 419 

interval of the mean value (open points). Numbers at the upper end of the figures indicate 420 

observed sample sizes for each age class. 421 


