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Population genetic structure and intra-population levels of genetic variation have important 

implications for population dynamics and evolutionary processes. Habitat fragmentation is 

one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene 

flow between populations and will thus also affect genetic structure. We use a natural system 

of island and mainland populations of house sparrows along the coast of Norway to 

characterize the different population genetic properties of fragmented populations. We 

genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The 

level of genetic differentiation was estimated using F-statistics and specially designed Mantel 

tests were conducted to study the influence of population type (i.e. mainland or island) and 

geographic distance on the genetic population structure. Furthermore, the effects of 

population type, population size and latitude to the level of genetic variation within 

populations were examined. Our results suggest that genetic processes on islands and 

mainland differed in two important ways. Firstly, the intra-population level of genetic 

variation tended to be lower and the occurrence of population bottlenecks more frequent on 

islands than the mainland. Secondly, although the general level of genetic differentiation was 

was low to moderate it was higher between island populations than between mainland 

populations. However, differentiation increased in mainland populations somewhat faster 

with geographical distance. These results suggest that population bottleneck events and 

genetic drift have been more important in shaping the genetic composition of island 

populations compared to populations on the mainland. Such knowledge is relevant for a better 

understanding of evolutionary processes and conservation of threatened populations. 
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Genetic variation plays a central role for long term population viability (Lande and 

Barrowclough 1987), adaptation through natural selection (Willi et al. 2006) and speciation 

(Carson and Templeton 1984). Genetic variation is therefore of paramount importance in 

order to understand processes that relate to both conservation and evolution (Falconer and 

Mackay 1996, Storfer 1996). However, because parameters such as population differentiation 

and genetic diversity may vary between different populations according to their demographic 

history, the latitude where they are situated, migration and genetic drift, the genetic properties 

of a given population may not be directly extrapolated to other populations of the same 

species. For instance, a population bottleneck may have drastic effects on the allele 

frequencies of a population (Luikart et al. 1998). The size of the remaining population after 

the bottleneck event affects population structure (and viability) as the rate of loss of alleles 

due to genetic drift is negatively related to population size (Willi et al. 2007). Populations that 

have recently colonized new areas such as the establishment of a new species on islands, 

share the same genetic properties as bottlenecked populations (see e.g. Nei et al. 1975). The 

number of founding individuals is important under such scenarios, because these individuals 

form the genetic basis of the new population (Mayr 1942, Slatkin 1996). Additionally, small 

populations are to a larger extent influenced by demographic stochasticity (random variation 

among individuals in reproduction and survival) and environmental stochasticity (Kaitala et 

al. 2006, Lande et al. 2003). The degree of genetic differentiation between populations 

generally increases with the distance that separates them (Kimura and Weiss 1964, Wright 

1943) due to reduced gene flow between more distant populations (see e.g. Godt et al. 2005), 

and different effects of selection and genetic drift due to the expected decrease in spatial 
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correlation of environmental conditions with increasing distance between populations 

(Balloux and Lugon-Moulin 2002, Koenig 2002). Genetic differentiation is also affected by 

landscape resistance (i.e. topography) as geographic barriers reduce gene flow and increase 

the genetic isolation of the populations (Forman 1995, McRae 2006). Other physical 

parameters are also important; a reduction in genetic diversity when moving north is a 

phenomenon that has been established for a number of taxa (review by Martin and McKay 

2004). 

 Islands create naturally fragmented study systems: isolated islands have discreet 

boundaries with subsequently reduced migration, and populations on islands can therefore be 

easily defined. As a consequence, many of the aforementioned population genetic parameters 

can be known, eliminated or to some degree controlled for. This makes islands suitable for 

addressing questions on inter- and intra-population genetic diversity and effects of isolation 

due to distance and topography. 

 The genetic properties of island populations are characterized by reduced gene flow 

into the population due to lower migration rates, elevated levels of inbreeding (Frankham 

1997, 1998), and depleted genetic variation as a consequence of the founder effect (Slatkin 

1996). Correspondingly, islands often have low levels of genetic variation and high 

probability of loss of alleles due to inbreeding and genetic drift (Eldridge et al. 1999, 

Ellstrand and Elam 1993, Lande 1995). Even island populations that are large often show 

traces of the low initial genetic variation (Hedrick et al. 2001). Island populations that are 

small are more vulnerable to extinction – a situation similar to a small isolated population in 

endangered species (see e.g. Pimm et al. 1993). Island populations of ubiquitous species may 

therefore serve as excellent models for threatened species and extinction scenarios (Ringsby 

et al. 2006) which is particularly interesting to conservation scientists and is currently of 
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increasing importance as habitat fragmentation is an escalating problem and a significant 

threat to biodiversity. With respect to migration, decreasing distance to the mainland and an 

increasing size of the island are both positively related to colonization rate (MacArthur and 

Wilson 2001). Intra-specific immigration rates will therefore most likely depend on the same 

parameters, contributing to increased genetic variation and reduced genetic differentiation on 

large islands close to the mainland. Moreover, island theory is often applicable or extendable 

to metapopulation dynamics (e.g. Kaitala et al. 2006), as patchy habitats found on the 

mainland are quite analogous to islands (Whittaker and Fernàndez-Palacios 2007, MacArthur 

& Wilson 2001). This archipelago-analogy has received some noteworthy criticism (see e.g. 

Haila 2002) but in general mainland habitats are considered to be often larger and less 

fragmented than island habitats (Fahrig and Merriam 1985) and mainland populations are thus 

likely to be less differentiated (Garcia-Ramos and Kirkpatrick 1997) and to carry more 

genetic variation than island populations. A few recent studies on different taxa have 

highlighted these facts, such as a study of the the common shrew (Sorex araneus) on the 

Scottish mainland and adjacent offshore islands (White and Searle 2007); South Island robins 

(Petroica australis australis) on the mainland and islands off New Zealand (Boessenkool et 

al. 2007), silvereyes (Zosterops lateralis) on islands in the southwest Pacific (Clegg et al. 

2002), trumpeter finches (Bucanetes githagineus) on the Canary Islands (Barrientos et al. 

2009) and the black-footed rock-wallaby (Petrogale lateralis lateralis) in Australia (Mason et 

al. 2011).  

 Studying both island and mainland populations of a species in the same geographical 

area is highly interesting because it increases our understanding of evolutionary and 

population-dynamic processes in differently constructed habitats. Identifying general rules 

regarding the structuring of genetic variation among populations with respect to geographic 
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distance and possible dispersal barriers is in turn applicable to e.g. conservation biology of 

many species experiencing habitat fragmentation and decreasing connectivity. Evolutionary 

processes of drift and migration may have different relative importance in island and 

mainland populations and understanding the mechanisms shaping them will improve our 

ability to protect many threatened species and populations.  

 House sparrow populations (Passer domesticus) in middle and northern Norway 

represent an ideal study system for assessment of the above issues. Here, island populations of 

different sizes and different degrees of isolation can be compared to mainland populations 

along a 550 km latitudinal gradient. Few similar studies have been carried out on animal 

species. Specifically, the aims of this study are to examine 1) the intra-population level of 

genetic variation and occurrence of genetic population bottlenecks in mainland and island 

populations, 2) characterize the spatial genetic population structure among fourteen house 

sparrow populations that are situated either on the mainland or on islands over a latitudinal 

gradient and 3) test if population type (i.e. located on island or on mainland) has an effect on 

the first two.  

 13  

Methods 135 

 13  

Study area 137 

The study was carried out on island and mainland populations along the coast of Norway, 

from Gjerøy (66°N, 13°E) in the north to Brattvåg (63°N, 6°E) in the south (see Fig. 1 and 

Table 1). The range of distances between populations was 6 to 543 km. All island and 
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mainland localities had a boreal climate. Island populations (n = 9) were (from north to 

south): Gjerøy, Hestmannøy, Aldra, Løkta, Vega, Leka, Vikna, Storfosna and Harøya. 

Mainland populations (n = 5) were (from north to south): Helgeland, Leirfjord, Brønnøysund, 

Ørlandet and Brattvåg. The estimated population sizes (see method in Data collection and 

sampling) ranged from 34 (Aldra) to 300 (Ørlandet). In this area house sparrow populations 

have experienced both colonization and extinction events (Billing et al. 2012, Ringsby et al. 

2006). For some of the populations we have detailed data on population demography, 

dispersal and inbreeding during the last ca. 15 years prior to sampling (Billing et al. 2012, 

Engen et al. 2007, Jensen et al. 2007, Pärn et al. 2012). Geographic population coordinates 

and specified population data is shown in Table 1. A distance matrix consisting of geographic 

distances between population centra was calculated using mean coordinates at sub-localities 

within each main locality (Appendix A, Electronic Supplementary Material). Note that the 

study area is mostly long and narrow (i.e. one-dimensional), hence 

141 
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ŜTF  ( ŜTF = FST / (1-FST)) 153 

or ˆ
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STD D = DST / (1-DST)) and untransformed geographic distance were used in the 

analyses (see Rousse
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Study species 156 

The house sparrow is a small passerine bird widely spread around the whole globe (Blair and 

Hagemeijer 1997, Summers-Smith 1988, Anderson 2006). It is sexually dimorphic, but the 

mostly brown and grayish plumage is common for both sexes (Summers-Smith 1988). In 

northern Norway the breeding period is constrained to the late spring and summer months 

(generally May to August), and average clutch size is 5 eggs (Husby et al. 2006). Each pair 

lay 1-3 clutches per season (Ringsby et al. 2002) and generation time is roughly two years 

(Jensen et al. 2008). The lifespan of this robust passerine is known to be as long as 9 years in 
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northern Norway but in general it is much shorter (Jensen et al. 2004). Accordingly, in 

Norwegian populations only about 15-20% of fledglings recruit into the adult breeding 

population (Ringsby et al. 1999, 2002). Another characteristic feature with the house sparrow 

is the low dispersal rates. On islands in the northern part of the current study only about 10% 

of all female and male fledglings, respectively, that recruit into the breeding population are 

dispersers (Altwegg et al. 2000, Pärn et al. 2009, 2012). In addition, Tufto et al. (2005) 

estimated relatively short dispersal distances (2-49 km) among island populations of this 

species, with 60% of dispersers moving shorter than ca. 13 km. Although previous studies of 

house sparrows in northern Norway have mainly focused on inter-island dispersal, 

interchange of individuals between island and mainland populations have also been recorded 

in this area (H. Jensen unpublished results). A study of Finnish house sparrows living in a 

more continuous suitable habitat suggests however that dispersal rates and dispersal distances 

are higher in such landscapes (Kekkonen et al. 2011a). Only a few of the populations 

included in this study were thus likely to be within normal dispersal distance from each other, 

but the presence of house sparrow populations between the sampled ones may nevertheless 

reduce the probability of genetic isolation between populations. Another practical feature of 

the study species is its adaptation to human settlement and in particular farming. This restricts 

the suitable habitat to dairy farms and other human settlements, and increases the efficiency 

of sampling. The adaptation is strongly reflected in the behavioral ecology and foraging 

patterns of the species, with diets mainly consisting of seeds from cultivated crops (Blair and 

Hagemeijer 1997, Summers-Smith 1988). In the summer the house sparrows spend much time 

outdoors, but when the weather is harsh (especially in the winter) the sheds become critical 

for survival (Summers-Smith 1988).  
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Adult house sparrows were caught using mist nets and sampled for blood. Only adults were 

sampled and sampling was carried out within one year in each population to reduce any bias 

due to sampling of close relatives (i.e. parents and their nestlings or juveniles). Each 

individual was assigned unique individual ring codes consisting of a numbered metal ring and 

three additional plastic color rings; two rings on each tarsus. In this way, re-sampling of the 

same individuals was omitted, and estimation of population sizes was facilitated. The 

population size was for most populations (4 and 8-14; Table 1) estimated by counting adult 

individuals at the time of sampling (Pärn et al. 2012, Tufto et al. 2005). However, in 

populations that were part of a long-term house sparrow study where a large proportion (> 90 

%) of adult birds were ringed (1-3 and 5-6; Table 1) population size was estimated as the 

number of marked adult individuals present in the population in the year of sampling (Jensen 

et al. 2006). For one population (7; Table 1) we used the population estimate given in 

Skjelseth et al. (2007). In the long-term house sparrow study there was a strong correlation 

between counted adult birds and the number of marked adult birds (data from 1993-1999: N = 

37 island-years, r = 0.959, P < 0.001); the estimated population size was on average 15% 

higher when number of marked birds was used than when counts was used (own unpublished 

results). Adjusting the estimated population sizes in populations that were part of our long-

term study accordingly did however not affect our results. When a bird was first ringed, a 

small blood sample (25μl) was extracted from the underside of the wing where the brachial 

vein crosses the wing bone. Blood samples were stored in 96% ethanol prior to further 

laboratory work (Jensen et al. 2003). During sampling, the total (local) adult population sizes 

were estimated, counting males and females (assuming equal sex ratios) at each sub locality 

(Table 1). The aim was to randomly select at least 40 individuals from each population for 
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sampling, aiming at an equal sex ratio. This sample size is assumed to be sufficiently large to 

detect polymorphisms in most of the populations (see e.g. Sjögren and Wyöni 1994). For the 

two smallest populations (Gjerøy and Aldra), we did not reach the goal of catching >40 

individuals. However, approximately 70% of the total population size was sampled, and we 

assume this sample captured most of the genetic variation present. Most of the house sparrow 

populations were sampled in the breeding season of 2006, but samples from winter 2002 were 

used for Vega, Leka and Vikna. On each locality, all samples were collected within the same 

year (i.e. inter-annual mixing of blood samples does not exist within populations, only among 

populations), thus minimizing any temporal variation in population substructure. For further 

details concerning sampling see Table 1. 

Laboratory analyses 221 

A Chelex (BioRad, USA) resin-based extraction procedure was carried out, making DNA in 

the blood samples available for amplification by means of polymerase chain reaction (PCR). 

The extracted DNA from each individual was used to determine intra-individual genetic 

variation by genotyping at 21 microsatellite loci: Ase18, Fhu2, HrU5, INDIGO 41, Mcyµ4 

(Griffith et al. 2007), Pdoµ1, Pdoµ3 (Neumann and Wetton 1996), Pdoµ4, Pdoµ5, Pdoµ6 

(Griffith et al. 1999), Pdo10, Pdo16, Pdo17, Pdo19, Pdo22, Pdo27, Pdo30, Pdo32, Pdo36, 

Pdo44, Pdo47 (Dawson et al. 2012). PCR amplification of the highly polymorphic 

microsatellite loci was carried out in 10 µL reaction mixture on a “GeneAmp PCR system 

9700” (Applied Biosystems, USA). Products were separated by electrophoresis in an 

automated 16 capillary electrophoretic analysis system: “ABI Prism 3130xl Genetic 

Analyzer” (Applied Biosystems, USA). To visualise alleles, reverse primers were 

fluorescently labelled with FAM, NED, VIC or PET (Applied Biosystems, USA). Detailed 

procedures for genotyping are found in Appendix B, Electronic Supplementary Material.   
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Genotypes of all individuals on the microsatellite loci were scored using the software 

package GENEMAPPER 4.0 (Applied Biosystems, USA). Due to problems in scoring alleles 

at six loci (see Appendix B, Electronic Supplementary Material) the analyses were carried out 

using information on 15 different microsatellite loci. Allele frequencies for none of the 15 loci 

used in the analyses deviated significantly from Hardy-Weinberg expectations (see Appendix 

B, Electronic Supplementary Material). 

Software and statistics  241 

The computer program FSTAT v2.9.3.2 (Goudet 1995) was used to estimate gene diversity 

(i.e. expected heterozygosity) (Nei 1987) and allelic richness within each of the sampled 

populations. Whether latitude, population size, population type (i.e. island or mainland 

population), and any interactions between population type and latitude or population size 

explained any variation in gene diversity or allelic richness was examined running GLMs in 

the software SPSS (SPSS Inc. 1997).  

 We used the Wilcoxon test in the program BOTTLENECK  to test for genetic 

signatures of bottlenecks based on heterozygosity excess in the respective populations. We 

used 70% SMM and 30% IAM in the TPM model, and a TPM variance of 12, as 

recommended for analysis of microsatellites (Piry et al. 1999). 

 The program STRUCTURE  was used to identify genetic clusters without using any 

prior information of the sampling location of the individuals. Two separate analyses were 

carried out in STRUCTURE, both times with allele frequencies as correlated and the 

admixture model. The first analysis was used to infer the most likely range for K. Here, we 

used a burn-in of 10 000 and a MCMC length of 50 000 iterations and the simulated number 

of populations from K = 1 - 14. The upper limit of 14 was chosen as this corresponds to the 

number of sampled populations. Twelve independent simulations were performed of each K 
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267 

to check for consistency across runs. The preliminary results were assessed using the Evanno 

method where the most likely K was determined by the distribution of ΔK . The second run 

was then focused on the most likely range of K as inferred by the first step, in this case with K 

ranging from 2 – 6, this time with a burn-in of 200 000 and 500 000 MCMC iterations. Again 

we performed 12 independent simulations. We used STRUCTURE HARVESTER  and the 

Evanno method to post-process the final results. 

 The R package HIERFSTAT (Goudet 2005) was used to estimate pairwise and overall 

FST among the sampled populations with 95% confidence intervals (CI); if the 95% CI do not 

include zero the estimate is regarded as significantly different from zero at P=0.05. A 

transformation of FST (i.e. ŜTF = FST / (1-FST)) was used instead of FST in the analyses

including geographic distance. According to Rousset (1997), this transformation is linear with 

distance in a one-dimensional landscape, which is likely to be a reasonable approximation for 

the study populations (see Fig. 1). 

 268 

269 

270 

ŜTF  was related to factors such as geographic distance, 

types of populations compared (i.e. mainland-mainland, mainland-island or island-island) 

using the software R (R Development core team 2006). The global model included pairwise 

271 
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273 

ŜTF  as a response variable and geographic distance, types of populations compared and the 

interaction between the two as explanatory variables. We ran LM (linear models; procedure 

lm()) in R to obtain parameter estimates for different models nested within the global model. 

We used the intercepts, slopes, and residuals from these models (in ways described in detail 

below) to examine the expected level of genetic differentiation at very short distances (i.e. 

distance ≈ 0 km), the relationship between distance and genetic differentiation (i.e. “isolation 

by distance”), and to construct significance tests for differences in intercepts and slopes, 

respectively. Importantly, inter-dependence of data points is an inherent property of analyses 

of population structure because pairwise estimates are usually obtained, resulting in each 
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population being included x-1 times (where x is the total number of populations) in the 

analyses. Consequently, the use of tests of significance from traditional LMs was 

inappropriate as the data violated the basic assumption of independence of data points (see 

e.g. Underwood 1997). To obtain a significance test of a model allowing for inter-dependence 

of data points in the analyses we therefore extracted the test-statistic F from the model based 

on the estimated pairwise 
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ŜTF -matrix, and compared this with the distribution of test-statistics 

F obtained when rows and columns in this matrix were randomized 5000 times. The level of 

significance was equal to the number of randomizations giving an F higher than the one 

estimated from the actual data. Our approach is similar to the procedure used in Mantel tests 

(Mantel 1967) but has better flexibility in the patterns of genetic differentiation that can be 

examined. 
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 Furthermore, to examine which intercepts and slopes for the relationships between 

geographic distance and types of populations compared (i.e. mainland-mainland, mainland-

island or island-island) were significant and at the same time allow for inter-dependence of 

data points in the analyses we extracted from the global model either the intercept or slope for 

each type of populations compared, respectively. The residuals from each of these regression 

lines were randomized and bootstrapped 10000 times, and for each round of bootstrapping we 

calculated the difference between groups. If the 95% confidence interval of the distribution of 

differences generated in this way did not include zero the slopes differed significantly from 

each other (P < 0.05). Similarly, the intercepts for each type of populations compared were 

tested against each other by calculating the difference in intercepts for the groups obtained in 

each round of bootstrapping. If the 95% confidence interval of the distribution of differences 

did not include zero the intercepts were significantly different (P < 0.05). The significance of 

any differences in mean pairwise FST of different groups of populations was determined in the 
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same way, by running a LM in R that included only the population type as an explanatory 

variable. The residuals from each of these intercepts were randomized and bootstrapped 

10000 times, and for each round of bootstrapping we calculated the difference in intercept 

(i.e. mean F
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ST) between groups to obtain 95% confidence intervals of the distribution of 

differences. If the 95% confidence interval of the distribution of differences did not include 

zero the means were significantly different (P < 0.05). 

 There has recently been a discussion about the suitability of using FST as a measure of 

genetic population differentiation (e.g. Jost 2008). To examine whether our choice of measure 

for genetic population differentiation affected our results and conclusions we estimated DST 

using the SMOGD software (Crawford 2012) and carried out analyses on genetic structure 

using DST instead of FST. The correlation between FST and DST was strongly positive (r =

0.972, P << 0.001) and results based on DST were similar to results based on FST; analyses 

using DST as a measure of genetic population differentiation are presented in Appendix E, 

Electronic Supplementary Material. 

 

Results 

 

Intra-population genetic variation 324 

The level of genetic variation varied within house sparrow populations along the coast of 

middle- and northern Norway (Table 1). Allelic richness and gene diversity was considerably 

lower in the Aldra population than in any of the other populations (Table 1). This was 

probably due to recent colonization and subsequent high level of inbreeding in this island 

population (see Discussion). In the other populations allelic richness ranged from 7.77 to 

9.22, and gene diversity ranged from 0.775 to 0.823 (Table 1). 
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 Allelic richness was lower in island populations (mean: 8.15, SD = 1.04, n = 9) than in 

mainland populations (mean: 8.92, SD = 0.30, n = 5), but due to the large variance in allelic 

richness among island populations (when Aldra was included) this difference was not 

significant (F = 2.546, df = 1, P = 0.137). When pooling all populations, there was a non-

significant tendency that allelic richness decreased with increasing latitude (β = -0.270 (SE = 

0.168), F = 2.565, df = 1, P = 0.135) and increased with population size (β = 0.007 (SE = 

0.003), F = 4.182, df = 1, P = 0.063). There were no differences between island and mainland 

populations in the effects of either latitude (interaction: F = 0.586, df = 1, P = 0.462) or 

population size (interaction: F = 2.208, df = 1, P = 0.168) on allelic richness. 

 Island populations tended to have lower levels of gene diversity compared to mainland 

populations (Table 1) but this difference was not significant (F = 1.368, df = 1, P = 0.265). No 

significant proportion of variation in gene diversity among populations was explained by 

latitude (F = 0.964, df = 1, P = 0.345). In contrast, there was a significant positive relationship 

between population size and gene diversity (β = 2.2*10-4 (SE = 9.5*10-5), F = 5.176, df = 1, P 

= 0.042).  There were no differences in effects of either latitude (interaction: F = 0.488, df = 

1, P = 0.501) or population size (interaction: F = 2.985, df = 1, P = 0.115) on gene diversity in 

island and mainland populations. 

 Because of the special demographic history of the Aldra population (Billing et al. 

2012) this population had considerably lower allelic richness and gene diversity compared to 

the other populations (Table 1). To examine whether inclusion of this particular population 

affected our results we re-ran the above analyses after Aldra was excluded. Island populations 

then had significantly lower allelic richness than mainland populations, but the significant 

relationship between gene diversity and population size disappeared (see Appendix D, 

Electronic Supplementary Material). The reason for the counter-intuitive result that allelic 
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richness was significantly different when the population with lowest allelic richness was 

removed is that inclusion of the Aldra population caused not only a reduction of the mean but 

also an almost three-fold increase in the standard deviation and standard error of the island 

populations’ mean allelic richness (see Table 1 and Appendix D, Electronic Supplementary 

Material).  

 36  

Genetic signatures of population bottlenecks 361 

The majority of island populations had a significant heterozygosity excess, which is likely to 

indicate a previous population bottleneck (Table 1). On the other hand, none of the mainland 

populations showed significant heterozygosity excess (Table 1), suggesting that none of these 

had gone through a recent population bottleneck. Accordingly, significantly more island 

populations had significant signatures of population bottlenecks compared to mainland 

populations (Fishers’s exact test (two-sided): P = 0.032). 

 36  

Population structure 369 

The software STRUCTURE was used to examine how the sampled populations clustered 

based on the genetic data. The preliminary STRUCTURE run indicated that the most likely 

number of clusters was four; thus the second and more robust simulation was run with K = 2 – 

6. However, in the latter analysis the results suggested that the most likely number of clusters 

was three (Fig. 2). Both island and mainland populations were included in two of these 

clusters, whereas the third cluster included only the island population Aldra (Fig. 2). The 

geographic delimitation of the two large clusters was between Vikna (Pop. nr 7) and 

Storfosna/Ørlandet (Pop. nr 8 and 13) (see Fig. 1).  
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Genetic differentiation among populations 379 

The level of genetic differentiation between house sparrow populations along the coast of 

middle- and northern Norway was low to moderate (Fig. 3; Appendix C, Electronic 

Supplementary Material), with an overall FST of 0.0253 (95% CI: [0.0225, 0.0280]). Aldra 

(Pop. nr 3) and Brattvåg (Pop. nr 14) showed the largest pairwise genetic differentiation (FST 

= 0.077), whereas Brattvåg and Harøy (Pop. nr 9) were the two most genetically similar 

populations (FST = 0.006). Aldra was characterized by being the most genetically 

differentiated population compared to all other populations, as shown by the higher mean 

level of pairwise FST (mean FST = 0.068, SD = 0.006) of this population. The remaining 13 

populations had generally lower levels of pairwise genetic differentiation (mean FST = 0.022, 

SD = 0.008). 

 There were different levels of genetic differentiation within the three types of 

population groups (Fig. 3). The mean pairwise FST of mainland-mainland, mainland-island, 

and island-island population groups were 0.019 (SD = 0.009), 0.026 (SD = 0.016), and 0.035 

(SE = 0.020), respectively. Accordingly, mean FST of the island-island population group was 

significantly larger than mean FST of both mainland-mainland (95% CI for difference: [-

0.0294, -0.0035]) and mainland-island (95% CI for difference: [-0.0181, -0.0018] population 

groups. In contrast, mean FST of mainland-mainland and mainland-island population groups 

was not significantly different (95% CI for difference: [-0.0062, 0.0192]). 
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Relationship between genetic differentiation and geographic distance 400 

In addition to differences in the mean level of genetic differentiation between some of the 401 

three types of population groups, plots of pairwise ŜTF  against geographic distance suggested 402 

also that the three types of population groups had different relationships between genetic 403 

differentiation and geographic distance (Fig. 3). Accordingly, the slopes of relationships 404 

between ŜTF  and geographic distance were significantly positive for mainland-mainland 405 

population pairs (β = 5.097*10-5, 95% CI for slope: [4.706*10-5, 6.024*10-5]) and mainland-406 

island pairs (β = 2.641*10-5, 95% CI for slope: [1.642*10-5, 5.130*10-5]) (Fig. 3). The slope 407 

did however not differ from zero for island-island pairs (β = -1.185*10-6, 95% CI for slope: [-408 

1.730*10-5, 3.866*10-5]) (Fig. 3). 409 

 Furthermore, the slopes of relationships between ŜTF  and geographic distance was 41  

significantly more steep for mainland-mainland population pairs than for island-island pairs 411 

(95% CI for difference: [-6.845*10

0

-5, -1.119*10-5]) (Fig. 3). In addition, the slopes between 412 

mainland-mainland populations and mainland-island populations differed significantly (95% 413 

CI for difference: [1.441*10-5, 4.937*10-5]) (Fig. 3). On the other hand, the slopes did not 414 

differ significantly between mainland-island populations and island-island populations (95% 415 

CI for difference: [-4.612*10-5, 1.919*10-5]) (Fig. 3). This suggests that the genetic 416 

differentiation between house sparrow populations on the mainland increased more rapidly 417 

with geographic distance than the genetic differentiation among island populations. 418 

 The intercepts for relationships between ŜTF  and geographic distance were also 41  

significantly different when comparing relationships for mainland-mainland and island-island 420 

populations (95% CI for difference: [-0.0522, -0.0049]) and for mainland-island and island-421 

island populations (95% CI for difference: [-0.0289, -0.0026)) (Fig. 3). For mainland-422 

9
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mainland and mainland-island populations the slopes were not significantly different (95% CI 423 

for difference: [-0.0104, 0.0360]). This suggests that despite a steeper increase with distance, 424 

the genetic differentiation between mainland populations was smaller than between island 425 

populations at short distances. 426 

 Similar results were obtained when the island Aldra was excluded from the analyses 42  

(Appendix F, Electronic Supplementary Material) and when D

7

430 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

ST was used as measure of 428 

genetic differentiation instead of FST (Appendix E, Electronic Supplementary Material). 429 

 

Discussion 431 

 

Genetic diversity of house sparrows along a latitudinal gradient of the coast of middle and 

northern Norway tended to be lower in island populations compared to mainland populations 

but were not significantly different (Table 1). However, significantly more island than 

mainland populations showed genetic signatures of population bottlenecks (Table 1). Three 

genetic clusters were identified, broadly defining a northern and a southern genetic group of 

house sparrows and one cluster corresponding to the recently colonized island population 

Aldra (Fig. 2). Island and mainland house sparrow genetics was found to be affected 

differently by geographic distance, with island populations having significantly higher levels 

of genetic differentiation than mainland populations especially at shorter distances (Fig. 3). In 

addition, there was a significantly steeper slope for the relationship between genetic 

differentiation and geographic distance among mainland populations than among island 

populations (Fig. 3). These results suggest that different population genetic processes are 

important on islands compared to the mainland for the northern house sparrow. 
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Genetic diversity within populations 

Even though intra-population allelic richness was not dependent on population size, it was 

generally lower in the island populations than in mainland populations, probably because 

bottlenecks were more common on islands (Table 1). The average allelic richness did 

however not differ significantly between island and mainland populations when all islands 

were included in the analyses. Interestingly, this seemed to be due to the large variation 

among islands in allelic richness, which was almost three times the variation among mainland 

populations. Without the island population Aldra, with a very recent and strong population 

bottleneck (see below) and hence particularly low allelic richness (Table 1), there was a 

significant difference in allelic richness between islands and mainland populations (Appendix 

D, Electronic Supplementary Material). This may suggest that differences between island 

populations in their recent population history may be a reason for the large inter-island 

variation in allelic richness (Table 1). In any case, the tendency that allelic richness was lower 

in island populations compared to mainland populations likely reflects the characteristics of 

island populations which result from founder effects (effectively a bottleneck event; e.g. Nei 

et al. 1975) and genetic drift and is in concordance with studies of other island populations 

such as the common shrew (White and Searle 2007). Accordingly, Hartl and Prucek (1994) 

demonstrated that documented bottlenecked populations had lower proportions of 

polymorphic loci than populations without such events reported. Depletion of intra-population 

genetic variation has been found for example in bighorn sheep (Ovis canadensis mexicana) 

after a founder event (Hedrick et al. 2001), and in blackspot sea bream (Pagellus bogaraveo) 

after a population bottleneck event (Stockley et al. 2005). In birds lower genetic diversity has 

been found e.g. in island populations of the South Island robins than in mainland populations 

of the same species (Boessenkool et al. 2007). Lower levels of genetic variation on islands is 
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494 

however not always the case: although trumpeter finch populations on the Canary Islands 

showed evidence of bottlenecks they did not show lower levels of genetic variation than 

populations in Africa or on the Iberian Peninsula (Barrientos et al. 2009). Furthermore, when 

studying the species complex of silver-eyes Clegg et al. (2002) found that genetic drift was 

more important in reducing the genetic diversity on island populations than the founding 

events. These inter-specific differences, and the relatively large intra-specific differences 

within and between island and mainland populations in our study, suggest that it is important 

to consider e.g. time since colonization and the effective size of the population after 

colonization when interpreting differences in levels of genetic variation among populations. 

 The similar levels of gene diversity in island and mainland populations (Table 1) is to 

be expected because allelic diversity is a more sensitive indicator of changes in population 

size than gene diversity (i.e. expected heterozygosity): rare alleles are easily lost during 

periods of low population size but take a relatively long time to be re-introduced to the 

population through mutation or gene flow, whereas the level of heterozygosity is less affected 

by the number of alleles (Nei et al. 1975). The only exception to this pattern was the 

population on the island of Aldra, where also gene diversity was lower than on adjacent 

islands (Table 1; see also Jensen et al. 2007). The house sparrow was extinct on Aldra from 

the mid 1980’s to 1998 when one female and three males re-colonized the island (Billing et 

al. 2012). Subsequent immigration to this island population has been relatively low and the 

level of inbreeding is high (Billing et al. 2012). This island thus provides an example that 

gives further evidence for the importance of founder effects for the genetics of populations on 

islands. Similarly, a global study of genetic variation in house sparrows demonstrated lower 

levels of genetic variation in a recently founded non-insular population in Kenya than in 

European and American populations (Shrey et al. 2011). 
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 These results indicate the vulnerability of island populations or, more generally, 

isolated and recently founded populations to rapid environmental changes due to the 

decreased genetic variability. Because genetic variability is the key to long-term population 

viability, the observed reduced variation may decrease the viability of island populations (Fox 

and Wolf 2006, Willi et al. 2006). Furthermore, reduced variability combined with a higher 

degree of isolation to adjacent populations can lead to a situation where reduced gene flow 

does not counteract the effects of genetic drift so that the intra-population genetic diversity is 

further reduced. 

  

Genetic differentiation between populations 

Island populations had higher levels of inter-population genetic differentiation than mainland 

populations, in particular at short geographic distances (Fig. 3). However, the level of genetic 

differentiation between mainland populations increased faster with geographic distance than 

what was observed between island populations (Fig. 3). We suggest that this may reflect the 

special features of the genetics of island populations, as there is likely to be variation between 

island and mainland populations in the relative importance of different population genetic 

processes. 

The higher average values of FST on islands especially at shorter and average distances 

(Fig. 3) are likely to be a result of the founder effect (see e.g. Louette et al. 2007), lower 

levels of gene flow (White and Searle 2007) and increased genetic drift due to lower 

population sizes and increased levels of inbreeding (Ellstrand and Elam 1993). Accordingly, 

genetic signatures of recent population bottlenecks were found for many of the island 

populations but none of the mainland populations in this study (Table 1). Furthermore, many 

of the island populations in this study are relatively small and may thus display the combined 
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effects of genetic drift and inbreeding. In accordance with this, relatively high levels of 

inbreeding (Billing et al. 2012, Jensen et al. 2007) and low effective population sizes (Engen 

et al. 2007) were found in some of the insular house sparrow populations included in this 

study. In addition, the effects of isolation may be enhanced by a strong barrier to gene flow, 

like water (Hayes and Sewlal 2004). Previous studies of house sparrow populations in the 

same area have shown that there are low levels of dispersal between the island populations; 

natal dispersal predominates and only approx. 10% of all recruits are dispersers (Altwegg et 

al. 2000, Pärn et al. 2009, 2012). Dispersal distances are also short, with approx. 60% of 

dispersers moving less than ca. 13 km (Tufto et al. 2005). In accordance with this the results 

of Kekkonen et al. (2011a) who studied the genetic structure of house sparrows in mainland 

Finland, which represent a comparably continuous suitable habitat, showed much lower levels 

of genetic differentiation than we found in mid- and northern Norway. It is thus likely that the 

impact of geographic barriers represented by open water overrule the effect of geographic 

distance, resulting in a reduced slope among island populations despite the overall higher 

divergence. Previous studies on house sparrows in northern Norway also suggest the 

existence of an interaction between dispersal rate and population size which result in lower 

levels of gene flow when populations are small (Pärn et al. 2012). Accordingly, the level of 

genetic differentiation among Finnish house sparrow populations increased three-fold after 

strong declines in abundance from the 1980s to 2009, probably because reduced population 

sizes resulted in fewer migrants (Kekkonen et al. 2011b). Genetic drift (Engen et al. 2007) 

and inbreeding (Jensen et al. 2007) increase in small insular house sparrow populations in 

northern Norway. In combination, these results may indicate that the effects of gene flow, 

bottleneck events, genetic drift and inbreeding may be more conspicuous on islands than on 

the mainland.  
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The island of Aldra stood out also in the analysis of population differentiation. It 

differed markedly from all other populations included in this study (Fig. 2, 3; Appendix E, 

Electronic Supplementary Material). This relatively extreme genetic differentiation compared 

to the other populations (identified as a separate genetic cluster; mean pairwise F
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ST = 0.068 

between Aldra and other populations) can be explained by the founder effect, as only four 

individuals formed the genetic basis for the current population in 1998 (Billing et al. 2012). 

Similarly, a global study of genetic variation in house sparrows demonstrated a particularly 

high level of genetic differentiation between a recently founded population in Kenya and 

European and American populations (Shrey et al. 2011). A newly founded population 

represents a random sample of the source population (Slatkin 1996) and especially if it is 

colonized by a few individuals it should have relatively high levels of FST when compared to 

other populations. Despite some immigration to the island after the colonization event (Billing 

et al. 2012) the levels of inbreeding (Billing et al. 2012) and genetic drift (Engen et al. 2007) 

in this population were high and sufficient to maintain a high level of genetic differentiation. 

Available evidence from local contacts at many of the sample localities indicate that house 

sparrows have been present for many years prior to sampling, but with varying population 

sizes. Furthermore, the population sizes on two of the other relatively small island populations 

(Hestmannøy and Gjerøy) have fluctuated between approx. 35 and 145 individuals since 1993 

(Jensen et al. 2007, Jensen et al. unpublished results, Sæther et al. 1999,). Although our 

analyses indicate that many of the other island populations have gone through population 

bottlenecks (Table 1), the genetic clustering analyses (Fig. 2) and estimates of pairwise 

genetic differentiation (Fig. 3) suggest that they were not as recent and extreme as the one on 

Aldra. 
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The mainland is in general considered to provide more continuous favorable habitat or 

corridors (Chetkiewicz et al. 2006), which facilitates migration. Consequently, higher levels 

of gene flow can homogenize genetic variation among populations (Aars and Ims 1999, 

Ellstrand and Elam 1993, Kekkonen et al. 2011a). This can result in a steeper slope among 

mainland populations with geographical distance whereas in islands other factors (like genetic 

drift) are more important in creating structure. However, topography may create natural 

geographical barriers to migration on the mainland (Forman 1995) and especially in modern 

times the mainland habitats are constantly being fragmented due to human activities (Fischer 

and Lindenmayer 2007, Vellend et al. 2006). Humans may cause increased fragmentation of 

house sparrow populations because the size and distance between high-quality habitat pathces 

(i.e. dairy farms) increase as small farms close down and agricultural practices are intensified 

(Hole et al. 2002, Kekkonen et al. 2011b, von Post et al. 2012). As a consequence of such 

human-caused habitat loss and fragmentation, mainland habitats have been suggested to start 

to resemble archipelagos more than large, continuous habitats (MacArthur and Wilson 2001, 

but see e.g. Haila 2002). The landscape along the Norwegian coast mainly consists of 

mountains and fjords, which provide natural barriers to gene flow. For example, some sort of 

barrier seems to exist between the populations Stofosna/Ørlandet and Vikna (Fig. 1) as 

populations north and south of this area cluster together genetically (Fig. 2). The landscape 

corresponding to the division between these clusters is characterized by barren mountainous 

country with little human habitation, likely providing a strong barrier to gene flow. The higher 

level of differentiation among island populations than among mainland populations 

nevertheless suggests that the open stretches of water are in general stronger barriers to gene 

flow than topography on mainland (see e.g. Hayes and Sewlal 2004). This is in accordance 

with theories in the field of island biogeography, which predict lower colonization rates of 
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new species to true islands than to empty patches on the mainland (MacArthur and Wilson 

2001). 

 

Implications to conservation biology 

Increased levels of genetic structuring between island compared to mainland populations on 

relatively short spatial and temporal scales has been demonstrated in mammals (e.g. Naitoh 

and Ohdachi 2006; White and Searle 2007), plants (e.g. Yeh and Hu 2005), threatened birds 

(Boessenkool et al. 2007) and now the widespread house sparrow (current study), suggesting 

that this may be a general pattern, and consequently that short-term evolutionary processes 

may be faster on islands. Importantly, we have shown that geographic distance may affect 

genetic differentiation among island populations differently than genetic differentiation 

among mainland populations. Showing how population genetic processes act to shape genetic 

variability on an ecological time scale in different types of populations is important because 

we need to know to what extent small and fragmented populations are able to cope with 

environmental stochasticity and evolve in response to changes in the environment (Frankham 

1996, 2005, Parmesan 2006, Willi et al. 2006, 2007). A better understanding of the distinct 

genetic characteristics of island populations and how these affect population viability will for 

example help us to better manage threatened populations, which are often fragmented and 

isolated. 
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Figure legends 853 
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Figure 1. Map showing the sampled house sparrow populations along the coast of Norway. 

Open circles show the mainland populations (n = 5), whereas arrows point to island 

populations (n = 9). Populations are numbered from north to south within each type (see 

Table 1). Inter-population distances range from 6 to 543 km. 

 

Figure 2. Estimated population structure in house sparrow along the coast of Norway. Each 

sampled individual is represented by a thin vertical line, which is partitioned into three 

segments (black, grey and white) representing the individual’s relative membership in the 

three genetic clusters defined by STRUCTURE. Numbers correspond to populations as 

defined in Table 1 and are ordered from north to south. 

 

Figure 3. The relationships between genetic differentiation ( ŜTF = FST/(1-FST)) and 

geographic distance (km) for house sparrow populations along the coast of middle- and 

northern Norway accounting for types of population groups (data from Aldra was excluded, 

see text for details). Black dots show estimated 

866 

867 

868 

ŜTF  for pairwise mainland-mainland 

populations, open circles show the 

869 

ŜTF -values for mainland-island populations, and black 

triangles show 

870 

ŜTF -values for island-island populations. Lines indicate linear regression li

for the three different population groups. Note the steeper slope for mainland populations 

(solid line; y = 0.005 + x * 5.097*10

nes 871 

872 

-5), and the relatively high general level of ŜTF  for island 873 
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populations (dashed line; y = 0.037 + x * -1.185*10-6). The dotted line shows the regression 874 

for island-mainland populations (y = 0.021 + x * 2.641*10-5).875 



 

Table 1. Name and number of the different house sparrow populations. The numbers correspond to numbers in Fig. 1. Coordinates are 876 

given as mean coordinates of all sub-coordinates within each main locality as degrees north (North) and east (East). Population type 877 

indicates whether the population is located on the mainland or on an island. The number of sampled individuals from each population 878 

is given by Sampled n. The estimated adult population size (Estimated N) and the proportion sampled (Prop. sampled) were estimated 879 

based on the following methods indicated by superscripts: 1) Capture, re-capture and re-sighting of previously ringed individuals, 2) 880 

Observation during sampling, 3) Estimate from Skjelseth et al. 2007. Allelic richness and gene diversity (i.e. expected heterozygosity) 881 

was calculated using FSTAT. Allelic richness was calculated as the mean across loci where locus-specific allelic richness was 882 

calculated using rarefaction and n=23 as minimum sample size. P-values for genetic signatures of bottlenecks based on heterozygote 883 

excess are also provided; P < 0.05 in bold. (§ Sampled in February-March, * Sampled in May-July.) 884 

 



 

 

1 Gjerøy Island 66.622 13.02 32 46 1* 0.70 8.20 0.789 0.068

2 Hestmannøy Island 66.545 12.846 43 114 1* 0.38 8.39 0.793 0.021

3 Aldra Island 66.401 13.108 23 34 1* 0.68 5.53 0.708 0.001

4 Løkta Island 66.167 12.732 48 145 2* 0.33 8.51 0.800 0.151

5 Vega Island 65.655 11.963 48 146 1§ 0.33 7.77 0.793 0.000

6 Leka Island 65.088 11.675 49 114 1§ 0.43 8.75 0.823 0.000

7 Vikna Island 64.913 11.001 49 244 3§ 0.20 8.83 0.814 0.009

8 Storfosna Island 63.67 9.407 49 92 2* 0.53 8.50 0.775 0.555

9 Harøya Island 62.764 6.459 49 152 2* 0.32 8.85 0.807 0.021

10 Helgeland Mainland 66.454 13.086 54 74 2* 0.73 9.09 0.805 0.281

11 Leirfjord Mainland 66.085 12.96 50 134 2* 0.37 8.69 0.811 0.054

12 Brønnøysund Mainland 65.531 12.285 45 200 2* 0.23 8.51 0.801 0.094

13 Ørlandet Mainland 63.716 9.658 48 300 2* 0.16 9.22 0.813 0.533

14 Brattvåg Mainland 62.599 6.555 49 150 2* 0.33 9.08 0.802 0.281

Total 636 2245
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Appendix A 

Geographic distance matrix 

Table S1. Semi matrix consisting of distances (km) between the study populations. The 

distance matrix was calculated using mean coordinates at sub-localities within each main 

locality. Population numbers refer to Fig. 1 and Table 1. The distance between populations 

ranged from 6 km to 543 km. 

1 2 3 4 5 6 7 8 9 10 11 12 13

2 12
3 25 20
4 52 42 31
5 118 107 98 67
6 181 171 160 130 65
7 211 200 192 161 94 37
8 369 358 350 319 252 192 158
9 530 519 514 483 418 363 327 179

10 19 15 6 36 102 165 196 355 518
11 60 51 36 14 66 126 159 317 484 41
12 126 116 104 74 20 57 91 249 418 109 69
13 360 348 340 309 242 181 148 13 192 345 306 238
14 543 532 526 496 430 374 338 187 19 530 495 429 199  



 

 2

Appendix B 

Details concerning microsatellite genotyping 

Each sampled individual was genotyped at 21 microsatellite loci by PCR amplification. PCR 

was carried out separately for each locus. Each reaction mixture (10 µL) included  

approximately 20 mM (NH4)2SO4, 75 mM Tris-HCl (pH 8.8), 0.15 mg mL-1 DNAse free 

BSA, 10mM β-mercaptoethanol, 2.5 mM MgCl2, 0.6 µM of each primer, and approximately 

20 ng of genomic DNA. In addition, each PCR mixture contained 0.14mM dNTPs (Promega, 

USA) and 0.5 units of GoTaq polymerase (Promega, USA). Cocktails of 6 to 8 PCR-products 

were made (Mix1: Ase18, HrU5, Pdoµ1, Pdoµ5, Pdoµ6, Pdo10, Pdo30. Mix2: Fhu2, 

INDIGO41, Mcyµ4, Pdoµ3, Pdoµ4, Pdo36. Mix3: Pdo16, Pdo17, Pdo19, Pdo22, Pdo27, 

Pdo32, Pdo44, Pdo47). To each cocktail a size ladder (GeneScan LIZ 600, Applied 

Biosystems, USA) and a Hi-Di Formamide solution were added (Applied Biosystems, USA). 

Products were separated by electrophoresis in an automated 16 capillary electrophoretic 

analysis system: “ABI Prism 3130xl Genetic Analyzer” (Applied Biosystems, USA). To 

visualise alleles, reverse primers were fluorescently labelled with either FAM (Fhu2, Pdoµ1, 

Pdoµ5, Pdoµ6, Pdo19, Pdo22, Pdo36 and Pdo44), NED (Ase18, HrU5, Pdoµ3, Pdoµ4, Pdo16 

and Pdo27), VIC (INDIGO41, Mcyµ4, Pdo10, Pdo30, Pdo32 and Pdo47) or PET (Pdo17).  

 After the scoring of alleles for the 21 loci in GENEMAPPER 4.0 (Applied 

Biosystems, USA) it was found that Pdoµ6 was extremely polymorphic (having 137 alleles). 

Because some of the programs can not handle markers with more than 99 different alleles this 

locus was excluded. Furthermore, HrU5 and Mcyµ4 gave low quality genotypes, and 

genotypes on these loci were thus only available for a small proportion of individuals. 

Moreover, the Pdoµ4-alleles were especially difficult to define and score due to a complex 

repeat structure (Griffith et al. 1999). These 3 loci were therefore also excluded prior to any 
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analyses. Two of the loci (Fhu2 and Pdo32) had relatively high frequency of null alleles (0.14 

– 0.16) and allele frequencies deviated significantly from H-W equilibrium (P < 0.001). 

Because the inclusion of loci with null alleles in the analyses might have major effects on the 

results (see e.g. Lugon-Moulin et al. 1999), we carried out the analyses after excluding also 

Fhu2 and Pdo32. Hence, the analyses were carried out using information on 15 different 

microsatellite loci.  

 

Table S2. Information on the 15 different microsatellite loci utilized in the analyses and the 

number of different alleles found at each locus is given in Table S2. N denotes the total 

sample size. Observed (HObs) and expected (HExp) heterozygosity were calculated using 

CERVUS 3.0 (Kalinowski et al. 2007). F(Null) denotes the expected frequency of null alleles 

associated with the deviation from Hardy-Weinberg equilibrium (HW) estimated using 

CERVUS 3.0 (Kalinowski et al. 2007). Significance levels: NS: No Significant deviation 

from HW. 

Locus      
Number 
of alleles

N HObs HExp HW F(Null)

Ase18      24 636 0.877 0.897 NS 0.011
INDIGO41 12 636 0.786 0.830 NS 0.026
Pdoμ1       17 636 0.852 0.857 NS 0.003
Pdoμ3       18 636 0.854 0.871 NS 0.009
Pdoμ5       18 636 0.877 0.875 NS -0.001
Pdo10      16 636 0.830 0.848 NS 0.010
Pdo16      12 636 0.810 0.858 NS 0.029
Pdo17      21 636 0.885 0.893 NS 0.004
Pdo19      6 636 0.530 0.554 NS 0.027
Pdo22      13 636 0.717 0.742 NS 0.019
Pdo27      11 636 0.832 0.835 NS 0.002
Pdo30      11 636 0.676 0.690 NS 0.012
Pdo36      17 636 0.819 0.829 NS 0.006
Pdo44      15 636 0.852 0.872 NS 0.011
Pdo47      16 636 0.810 0.816 NS 0.005  
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Appendix C 

Genetic differentiation: FST matrix  

Table S3. Semi matrix consisting of genetic differentiation (FST) between all study 

populations (see Table 1, Fig. 1 and Fig. 2). Pairwise FST values and their 95% confidene 

intervals (in brackets) were calculated using the R-package HIERFSTAT (Goudet 2005). 

1 2 3 4 5 6 7 8 9 10 11 12 13

2
0.0155     

(0.0083-0.0245)                                                                                                                                                                                                                                                                     

3
0.0723    (0.0521-

0.0915)
 0.0621     

(0.0435-0.0827)                                                                                                                                                                                                                                              

4
0.0253     

(0.0144-0.0366)
 0.0204     

(0.0124-0.0291)
 0.0707     

(0.0500-0.0909)                                                                                                                                                                                                                       

5
0.0293     

(0.0176-0.0419)
 0.0242     

(0.0160-0.0343)
 0.0687     

(0.0406-0.1012)
 0.0219     

(0.0139-0.0319)                                                                                                                                                                                                

6
0.0280     

(0.0157-0.0418)
 0.0230     

(0.0127-0.0356)
 0.0741     

(0.0534-0.0958)
 0.0206     

(0.0141-0.0278)
 0.0245     

(0.0155-0.0336)                                                                                                                                                                         

7
0.0255     

(0.0156-0.0364)
 0.0160     

(0.0102-0.0226)
 0.0729     

(0.0504-0.0969)
 0.0191     

(0.0097-0.0298)
 0.0175     

(0.0103-0.0254)
 0.0105     

(0.0070-0.0136)                                                                                                                                                  

8
0.0308     

(0.0213-0.0420)
 0.0219     

(0.0156-0.0287)
 0.0691     

(0.0441-0.0998)
 0.0356     

(0.0232-0.0509)
 0.0438     

(0.0304-0.0595)
 0.0343     

(0.0234-0.0462)
 0.0254     

(0.0168-0.0349)                                                                                                                           

9
0.0338     

(0.0206-0.0483)
 0.0222     

(0.0142-0.0297)
 0.0706     

(0.0538-0.0886)
 0.0307     

(0.0191-0.0435)
 0.0277     

(0.0202-0.0346)
 0.0186     

(0.0134-0.0243)
 0.0177     

(0.0108-0.0254)
 0.0260     

(0.0177-0.0341)                                                                                                    

10
0.0150     

(0.0088-0.0220)
 0.0119     

(0.0077-0.0172)
 0.0536     

(0.0384-0.0695)
 0.0168     

(0.0096-0.0245)
 0.0292     

(0.0191-0.0414)
 0.0190     

(0.0121-0.0260)
 0.0203     

(0.0130-0.0285)
 0.0239     

(0.0140-0.0349)
 0.0274     

(0.0200-0.0350)                                                                             

11
0.0227     

(0.0149-0.0324)
 0.0165    

(0.0094-0.0288)
 0.0651     

(0.0399-0.0922)
 0.0166     

(0.0099-0.0257)
 0.0223     

(0.0148-0.0299)
 0.0132     

(0.0083-0.0184)
 0.0107     

(0.0058-0.0157)
 0.0334     

(0.0232-0.0482)
 0.0234     

(0.0157-0.0332)
 0.0104     

(0.0064-0.0149)                                                      

12
0.0266     

(0.0180-0.0359)
 0.0210     

(0.0136-0.0312)
 0.0646     

(0.0441-0.0884)
 0.0162     

(0.0101-0.0232)
 0.0228     

(0.0136-0.0322)
 0.0123     

(0.0067-0.0181)
 0.0151     

(0.0086-0.0209)
 0.0303     

(0.0173-0.0446)
 0.0245     

(0.0149-0.0349)
 0.0119     

(0.0073-0.0174)
 0.0096     

(0.0044-0.0155)                                

13
0.0225     

(0.0113-0.0352)
 0.0221     

(0.0130-0.0316)
 0.0679     

(0.0478-0.0895)
 0.0236     

(0.0154-0.0332)
 0.0256     

(0.0173-0.0344)
 0.0127     

(0.0082-0.0177)
 0.0120     

(0.0064-0.0182)
 0.0175     

(0.0089-0.0268)
 0.0106     

(0.0050-0.0193)
 0.0200     

(0.0109-0.0307)
 0.0179     

(0.0120-0.0256)
 0.0167     

(0.0108-0.0227)         

14
0.0352     

(0.0218-0.0476)
 0.0265     

(0.0147-0.0387)
 0.0770    

(0.0565-0.0985)
 0.0323     

(0.0195-0.0463)
 0.0271     

(0.0187-0.0356)
 0.0223     

(0.0148-0.0332)
 0.0131     

(0.0086-0.0182)
 0.0228     

(0.0158-0.0299)
 0.0059     

(0.0018-0.0104)
 0.0329     

(0.0222-0.0444)
 0.0291     

(0.0167-0.0464)
 0.0297     

(0.0192-0.0431)
 0.0084     

(0.0022-0.0156)  
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Appendix D 

Intra-population levels of genetic variation – Aldra excluded 

When the Aldra population was excluded from the analyses allelic richness was lower in 

island populations (mean: 8.48 ± 0.36, n = 8) than in mainland populations (mean: 8.92 ± 

0.30, n = 5) and this difference was significant (F = 5.144, df = 1, P = 0.044; model r2 = 

0.319). Accounting for the effect of population type there was also a tendency that allelic 

richness decreased with increasing latitude (β = -0.117 (SE = 0.063), F = 3.513, df = 1, P = 

0.090). In total, population type and latitude explained 49.6% of the variance in allelic 

richness among populations (r2 = 0.496). The non-significant decrease with latitude in allelic 

richness was similar for island and mainland populations (interaction: F = 0.163, df = 1, P = 

0.696). Population size did not have any effect on allelic richness either when accounting for 

the effect of population type (F = 0.808, df = 1, P = 0.390) or not (F = 1.817, df = 1, P = 

0.205). 

 When Aldra was excluded no significant proportion of variation in gene diversity 

among populations was explained by either latitude (F = 0.143, df = 1, P = 0.713) or 

population size (F = 3.135, df = 1, P = 0.104). Neither was there any significant difference in 

level of gene diversity in island and mainland populations (F = 1.202, df = 1, P = 0.296), or 

differences in effects of either latitude (interaction: F = 0.058, df = 1, P = 0.815) or population 

size (interaction: F = 1.098, df = 1, P = 0.322) in island and mainland populations. 
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Appendix E 

Genetic differentiation among populations – analyses based on DST 

Pairwise DST-values were low to moderate (Table S4), with a mean DST of 0.078 (SD = 

0.048). In accordance with results for FST Aldra (Pop. nr 3) and Brattvåg (Pop. nr 14) showed 

the largest pairwise genetic differentiation also for DST (DST = 0.226), whereas Brattvåg and 

Ørlandet (Pop. nr 13) were the two most genetically similar populations (DST = 0.011). Aldra 

was characterized by being the most genetically differentiated population compared to all 

other populations, as shown by the higher mean level of pairwise DST (mean DST = 0.177, SD 

= 0.030) of this population compared to the remaining 13 populations (mean DST = 0.061, SD 

= 0.024). 

 DST also showed different levels of genetic differentiation within the three types of 

population groups. Accordingly, mean pairwise DST of mainland-mainland, mainland-island, 

and island-island population groups were 0.053 (SD = 0.032), 0.070 (SD = 0.044), and 0.094 

(SE = 0.052), respectively. Two of these differences were significant: mean DST of the island-

island population group was significantly larger than mean DST of both mainland-mainland 

(95% CI for difference: [-0.1611, -0.0162]) and mainland-island (95% CI for difference: [-

0.0887, -0.0086] population groups. In contrast, mean DST of mainland-mainland and 

mainland-island population groups was not significantly different (95% CI for difference: [-

0.0304, 0.1112]). 

 

Table S4. Semi matrix showing genetic differentiation (DST) between all study populations. 

Pairwise DST values were calculated using the software SMOGD (Crawford 2010). 



 

 7

1 2 3 4 5 6 7 8 9 10 11 12 13

2 0.037
3 0.189 0.166
4 0.062 0.055 0.183
5 0.077 0.068 0.138 0.066
6 0.069 0.050 0.214 0.059 0.072
7 0.074 0.048 0.193 0.044 0.048 0.036
8 0.080 0.068 0.149 0.094 0.125 0.099 0.067
9 0.094 0.070 0.212 0.095 0.095 0.065 0.053 0.080

10 0.036 0.035 0.138 0.035 0.081 0.056 0.062 0.054 0.099
11 0.068 0.047 0.147 0.048 0.063 0.040 0.024 0.112 0.081 0.029
12 0.071 0.058 0.161 0.046 0.052 0.028 0.041 0.072 0.073 0.030 0.021
13 0.052 0.059 0.182 0.068 0.081 0.034 0.028 0.034 0.022 0.053 0.054 0.047
14 0.098 0.072 0.226 0.095 0.082 0.077 0.037 0.076 0.012 0.105 0.082 0.097 0.011   

 

Relationship between genetic differentiation and geographic distance 

The slopes of relationships between ˆ
STD  and geographic distance were significantly positive 

for mainland-mainland population pairs (β = 1.901*10-4, 95% CI for slope: [1.710*10-4, 

2.366*10-4]) and mainland-island pairs (β = 1.182*10-4, 95% CI for slope: [8.801*10-5, 

1.922*10-4]) (Fig. S1). The slope did however not differ from zero for island-island pairs (β = 

2.902*10-5, 95% CI for slope: [-2.015*10-5, 1.510*10-4]) (Fig. S1). Furthermore, the slopes of 

relationships between ˆ
STD  and geographic distance was significantly more steep for 

mainland-mainland population pairs than for island-island pairs (95% CI for difference: [-

2.143*10-4, -2.936*10-5]) (Fig. S1). In addition, the slopes between mainland-mainland 

populations and mainland-island populations differed significantly (95% CI for difference: 

[3.740*10-5, 1.572*10-4]) (Fig. S1). On the other hand, the slopes did not differ significantly 

between mainland-island populations and island-island populations (95% CI for difference: [-

1.465*10-4, 5.218*10-5]) (Fig. S1). 

 The intercepts for relationships between ˆ
STD  and geographic distance were also 

significantly different when comparing relationships for mainland-mainland and island-island 

populations (95% CI for difference: [-0.0884, -0.0071]) and for mainland-island and island-

island populations (95% CI for difference: [-0.0559, -0.0051)) (Fig. S1). For mainland-
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mainland and mainland-island populations the slopes were not significantly different (95% CI 

for difference: [-0.0222, 0.0574]). 

 These results are fully in accordance with results based on FST and suggest that the 

genetic differentiation between house sparrow populations on the mainland increased more 

rapidly with geographic distance than the genetic differentiation among island populations. 

Furthermore, the results show that the genetic differentiation between mainland populations 

was smaller than between island populations at short distances. 

 

Figure S1. The relationships between genetic differentiation ( ˆ
STD = DST/(1-DST)) and 

geographic distance (km) for house sparrow populations along the coast of middle- and 

northern Norway accounting for types of population groups. Black dots show estimated ˆ
STD  

for pairwise mainland-mainland populations, open circles show the ˆ
STD -values for mainland-

island populations, and black triangles show ˆ
STD -values for island-island populations. Lines 

indicate linear regression lines for the three different population groups. Note the steeper 

slope for mainland populations (solid line), and the relatively high general level of ˆ
STD  for 

island populations (dashed line). The dotted line shows the regression for island-mainland 

populations. 
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Appendix F 

Genetic population differentiation among mainland and island 

populations based on FST – Aldra excluded 

In the following analyses, Aldra was excluded due to its extraordinary colonization history 

and resulting high genetic differentiation from the other populations (see Discussion). After 

exclusion of this population there were different levels of genetic differentiation within the 

three types of population groups (see Fig. S1). The mean pairwise FST of mainland-mainland, 

mainland-island, and island-island population groups were 0.019 (SD = 0.009), 0.021 (SD = 

0.007), and 0.025 (SE = 0.007), respectively. Accordingly, mean FST of the island-island 

population group was significantly larger than mean FST of both mainland-mainland (95% CI 

for difference: (-0.0111, -0.0008)) and mainland-island (95% CI for difference: (-0.0075, -

0.0006)) population groups. Mean FST of mainland-mainland and mainland-island population 

groups was however not significantly different (95% CI for difference: (-0.0032, 0.0068)). 

 

Relationship between genetic differentiation and geographic distance 

In addition to differences in the mean level of genetic differentiation between some of the 

three types of population groups, plots of pairwise ŜTF  against geographic distance suggested 

also that the three types of population groups had different relationships between genetic 

differentiation and geographic distance (Fig. S2). 

 Accordingly, the slopes of relationships between ŜTF  and geographic distance was 

significantly more steep for mainland-mainland population pairs than for island-island pairs 

(95% CI for difference: (-5.115*10-5, -1.067*10-5)) (Fig. S2). In addition, the slopes between 

mainland-mainland populations and mainland-island populations differed significantly (95% 

CI for difference: (9.058*10-6, 4.005*10-5)) (Fig. S2). On the other hand, the slopes did not 
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differ significantly between mainland-island populations and island-island populations (95% 

CI for difference: (-2.687*10-5, 1.266*10-5)) (Fig. S2). This suggests that the genetic 

differentiation between house sparrow populations on the mainland increased more rapidly 

with geographic distance than the genetic differentiation among island populations. 

 Furthermore, the intercepts for relationships between ŜTF  and geographic distance 

were significantly different when comparing relationships for mainland-mainland and island-

island populations (95% CI for difference: (-0.0238, -0.0080)), for mainland-mainland and 

mainland-island populations (95% CI for difference: (0.0028, 0.0180)), as well as for 

mainland-island and island-island populations (95% CI for difference: (-0.0105, -0.0009)) 

(Fig. S2). This suggests that despite a steeper increase with distance, the genetic 

differentiation between mainland populations was smaller than between island populations at 

short distances. 

 

Figure S2. The relationships between genetic differentiation ( ŜTF = FST/(1-FST)) and 

geographic distance (km) for house sparrow populations along the coast of middle- and 

northern Norway accounting for types of population groups (data from Aldra was excluded, 

see text for details). Black squares show estimated ŜTF  for pairwise mainland-mainland 

populations, open circles show the ŜTF -values for mainland-island populations, and black 

triangles show ŜTF -values for island-island populations. Lines indicate linear regression lines 

for the three different population groups. Note the steeper slope for mainland populations 

(solid line), and the relatively high general level of ŜTF  for island populations (dashed line). 

The dotted line shows the regression for island-mainland populations. 
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