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Abstract

Starting with a most general problem on interface waves between two
ideal compressible fluids, treated here as an ullage gas and a liquid, re-
spectively, and separating fast and slow time scales, differential and varia-
tional formalism for an acoustically levitating drop and its time-averaged
shape (the drop vibroequilibrium) is developed. The drop vibroequilibria
can differ from spherical shape; stable vibroequilibria are associated with
local minima of the quasipotential energy whose analytical form is also
derived in the present paper.

1 Introduction

The acoustic levitation [1, 2, 3] has been developing from the 70-90’s as a con-
tactless technology in chemical and pharmaceutical industry [4, 5] of ultra-pure
materials. The technology facilitates preventing the liquid contamination and
intensifying the chemical reactions. The acoustic levitators are also used in
physical measurements of the surface tension and the liquid viscosity [6, 7, 8].
A typical design of an acoustic levitator is schematically shown in Fig. 1. The
levitator consists of an acoustic vibrator and a spheric reflector which create,
altogether, an almost planar standing acoustic wave of the length λ. The acous-
tic wave yields the acoustic radiation pressure [9] which is a time-independent
λ/2-periodic function along the vertical axis. Periodically changing positive
(marked by ‘+’) and negative (‘−’) radiation pressure zones enforce droplets to
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be located in a vicinity of a radiation pressure node with a possible downward
shift d into the ‘+’-zone due to the vertical gravity force.

As long as the equivalent drop diameter D0 = 2R0 (the spherical drop
diameter of the same volume) is much lower of the acoustic standing-wave length
(see, Fig. 1 (a)), the acoustic radiation pressure does not deform the drop shape
so that the drop oscillates relative to its spherical shape as if it levitates in the
zero gravity. Those nonlinear drop oscillations have been extensively studied
by many authors and we refer interested readers to [10, 11, 12, 13, 14] in which
theoretical results are reported utilizing the Lagrange variational formalism.
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Figure 1: A schematic design of acoustic levitators in which an almost planar
standing acoustic wave of the length λ is created along the gravity acceleration
vector g and, therefore, there exists the time-independent acoustic radiation
pressure, pL(x1 + 1

2λ) = pL(x1), which counteracts the gravity providing the
drop levitation. In the zero-gravity, the drop locates at zeros of pL(x1) but a
downward drift d occurs when the gravitation vector is not zero moving the
drop into the ‘+’ zone of pL(x1). The long standing acoustic wave (case a) does
not deform the levitating drop, but when the one-fourth of the wave length is
comparable with the drop size, the time-averaged drop shape becomes flattened
(b).

In the contrast, when the vertical drop size and λ/4 are of the comparable or-
der, the acoustic radiation pressure deforms the drop shape so that its averaged,
visually observed geometry is far from a sphere as schematically illustrated in
Fig. 1 (b). Those acoustically deformed drop shapes and their stability were in-
vestigated, experimentally and theoretically, for instance, in [9, 15, 16, 17]. The
employed applied mathematical model in these references has been at the phys-
ical level of confidence. It empirically involves the free surface problem on the
weightless drop dynamics in which the pressure (dynamic) boundary condition
includes an extra quantity responsible for the acoustic radiation pressure gener-
ated by an external standing acoustic wave in gas. A feedback of the levitating
drop shapes on the external acoustic field has been neglected – the acoustic field
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is assumed to be the same as for a solid levitating sphere. Appearance of the
acoustic radiation pressure in this empirical model can be interpreted as the
so-called vibrational force well-known from the vibrational mechanics [18]. The
papers [19, 20, 21, 22, 23] considered the vibrational hydrodynamic problems of
compressible liquids partly filling a container as an object of the applied func-
tional analysis. They introduced the so-called vibroequilibria, the time-averaged
liquid shapes occurring due to high-frequency vibrational loads. Furthermore,
a series of theorems were proved on the spectral boundary problems describing
the linear eigenoscillations relative to the vibroequilibria as well as the papers
developed the Lagrangian formalism for the contained liquid vibromechanics.

The present paper follows the applied mathematical studies in [19, 20, 23] to
construct a new, mathematically-justified model which describes slow-time mo-
tions of an acoustically levitating drop. The analysis starts with the “ulage gas–
liquid drop” interface problem formulated within the framework of ideal com-
pressible fluids with irrotational flows. Furthermore, fast and slow time scales
are separated in both differential and variational statements. The fast-time av-
eraged interface problem yields a free-surface problem in which the Langevin
acoustic radiation pressure appears, in a natural way, in the dynamic bound-
ary condition. The kinematic boundary condition of this problem implies that
the free surface reflects the acoustic wave. Whereas there are no slow drop
oscillations, the derived free-surface problem transforms to a static problem
whose solution describes a visually-observed, acoustically deformed drop shape.
The shape is called the drop vibroequilibrium. In contrast to the mathematical
model from [15, 16, 17, 9], the drop vibroequilibria change the external vibra-
tional field. This is the first main result of the present paper. Another main
result consists of developing the averaged Lagrange variational formalism and
deriving a functional which can be interpreted as a quasi-potential energy of the
drop vibroeqilibria. The forthcoming studies should deal with generalizing the
spectral theorems on the linear natural oscillations of the acoustically levitating
drops relative to the drop vibroequilibria.

2 Statement of the problem

Fig. 2 schematically shows the “ullage gas–liquid drop” mechanical system con-
fined in a closed rigid box Q = {x ∈ R3 |W (x) < 0} (acoustic levitator), where
W (x) = 0 determines the piece-smooth box boundary and x = (x1, x2, x3) ∈ R3

is the Cartesian coordinate system. The domain Q consists of the ullage gas
Q1(t) and liquid Q2(t) time-dependent domains (Q = Q1(t) ∪ Q2(t)) so that
the interface Σ(t) = ∂Q2(t) = {x ∈ Q2 | ξ(x, t) = 0} is defined by the unknown
function ξ(x1, x2, x3, t) = 0 so that ∇ξ/|∇ξ| is the exterior normal vector with
respect to the drop domain Q2(t). Both gas and liquid are compressible ideal
and barotropic fluids with irrotational flows. The box boundary S = ∂Q falls
into a reflecting surface S1 ⊂ S and acoustic vibrator S0 ⊂ S, i.e. S = S0 ∪ S1.
The gravity acceleration vector is directed downward, against the Ox3 axis.

We introduce the velocity potentials ϕi = ϕi(x, t), the pressure pi = pi(x, t)
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Figure 2: The “ullage gas–liquid drop” mechanical system located in a rigid box
Q. The acoustic vibrator is marked by S0, but S1 is the box surface appearing
as a reflector of the acoustic wave.

and the density ρi = ρi(x, t) field defined in Qi(t), i = 1, 2. The governing
equations for the ideal barotropic fluids [19] read as

ρ̇i + div(ρi∇ϕi) = 0, (1a)

ρi∇
(
ϕ̇i + 1

2 |∇ϕi|
2 + gx1

)
= −∇pi, (1b)

ρi = ρ0i

(
pi
p0i

)1/γi

in Qi(t), (1c)

where g is the gravity acceleration, ρ0i are the mean densities, p0i are the mean
(static) pressures in the fluids (i = 1, 2), and γi, i = 1, 2, are the adiabatic
indexes for barotropic (by definition, the pressure is uniquely a function of the
density) ullage gas and liquid, respectively. The time derivative is denoted
by the dot. The two fluid domains should also satisfy the mass conservation
condition ∫

Qi(t)

ρi dQ = mi, i = 1, 2, (2)

where m1 and m2 are the constant masses of gas and liquid, respectively.
The kinematic boundary conditions are

∂ϕi
∂n

= − ξ̇

|∇ξ|
, i = 1, 2 on Σ(t), (3a)

ρ1
∂ϕ1

∂n
= ρ01V0(x) sin(νt) on S0, (3b)
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∂ϕ1

∂n
= 0 on S1. (3c)

These conditions imply that fluid particles remain on the interface Σ(t) (kine-
matic condition (3a)), define the normal velocity on the acoustic vibrator S0

(condition (3b)) so that ν is the acoustic frequency and V0(x) 6≡ 0 determines
the vibrator (S0) shape, and (3c) implies that S1 is a reflecting surface.

Finally, the compressible fluid interface problem requires the dynamic bound-
ary condition

p2 + Ts(k1 + k2) = p1 on Σ(t) (4)

expressing the pressure balance between the drop and the ullage gas, where the
surface tension is associated with the Ts(k1 + k2) quantity in which ki, i = 1, 2
are the principal curvatures of Σ(t) and Ts is the surface tension coefficient.

The problem (1)–(4) needs the initial conditions

ξ(x, 0) = ξ̃0(x); ξ̇(x, 0) = ξ̃1(x),

ϕi(x, 0) = υi(x); ϕ̇(x, 0) = υ1i(x), i = 1, 2.
(5)

3 The drop vibroequilibrium

3.1 Nondimensional statement

Henceforth, the free-interface problem (1)–(4) is considered in the nondimen-
sional statement assuming the characteristic size D0 = 2R0 (the equivalent drop
diameter) and the characteristic time ν−1 (ν is the circular acoustic frequency).
The normalization suggests

xnew = D−1
0 x; ξnew = D−1

0 ξ; ϕi(new) = D−2
0 ν−1ϕi; pi(new) = ρ0iD

−2
0 ν−2pi,

p0i(new) = ρ0iD
−2
0 ν−2p0i, ρi(new) = ρi0/ρi, mi(new) = miD

−3
0 /ρ0i, i = 1, 2,

(6)

and introduces the following nondimensional parameters

b =
gD2

0ρ02

Ts
, δ =

ρ01

ρ02
, ν2

∗ =
D3

0ρ02ν
2

Ts
, k =

νD0

cg
, and k∗ =

νD0

cl
, (7)

where δ is the “gas–liquid” mean densities ratio, ν∗ is the nondimensional acous-
tic frequency, b is the Bond number, and k and k∗ are the wave numbers of
compressible wave motions in gas and liquid, respectively; cg and cl are speeds
of sound in the corresponding media.

After omitting the subscript new, (1)-(4) transforms to the nondimensional
form

ρ̇i + div(ρi∇ϕi) = 0, (8a)

ρi∇
(
ϕ̇i + 1

2 |∇ϕi|
2 + ν−2

∗ bx1

)
= −∇pi, (8b)

ρi =

(
pi
p0i

)1/γi

in Qi(t), (8c)
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∫
Qi(t)

ρi dQ = mi, i = 1, 2, (8d)

∂ϕ1

∂n
= 0 on S1, (8e)

ρ1
∂ϕ1

∂n
=

sup |V0|
cg︸ ︷︷ ︸
ε

V0(x)

sup |V0|︸ ︷︷ ︸
V (x)=O(1)

1

k
sin t on S0, (8f)

∂ϕi
∂n

= − ξ̇

|∇ξ|
, i = 1, 2, (8g)

p2 + ν−2
∗︸︷︷︸

µµ1ε3

(k1 + k2) = p1 δ︸︷︷︸
µ1ε

on Σ(t). (8h)

A set of small nondimensional parameters is introduced that are marked by
the underbraces.

First, the primary, main small parameter is

ε =
sup |V0|
cg

� 1. (9)

It implies the ratio between the maximum acoustic vibrator velocity and the
sound speed in the ullage gas. Secondly, the density ratio

ρ01

ρ02
= δ = µ1ε, µ1 ∼ 1 (10)

is assumed to be of the same order than ε (µ1 = O(1) is the proportionality
coefficient). Thirdly, the nondimensional acoustic frequency is chosen as high
as to provide the asymptotic relation

ν−2
∗ = µµ1ε

3, µ = O(1). (11)

Fourthly, the wave numbers are

O(ε) = k2
∗ � k2 = O(1) (12)

implying (from the physical point of view) that the acoustic frequency may be
close to lower acoustic resonant frequencies in the ullage gas, k = O(1), but,
because speed of sound in the liquid is higher of that in the ullage gas, the
compressible liquid motions are far from the resonant condition and, in the first
approximation, the drop can be considered as an incompressible liquid.

3.2 Introducing slow and fast time variables

As it is usually accepted in the vibrational mechanics [18], the fast and slow
time scales can be introduced so that the fast time is associated with the nondi-
mensional time t appearing in the non-homogeneous condition (8f) expressing
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the input vibrational signal, but the slow time scale τ should be proportional to
the square-root of the nondimensional potential type forces. The latter forces
are contributed by the surface tension and the gravity. The related quanti-
ties appear in the dynamic interface condition (8h) accompanied by the O(ε3)-
multiplier and, therefore, the slow time variable can be defined as τ = ε3/2t.
The nondimensional solution of (8) takes the form

ϕi = ϕi(x, t, τ), pi = pi(x, t, τ), ρi = ρi(x, t, τ), and ξ = ξ(x, t, τ). (13)

The nondimensional problem (8) contains the small parameters ε, ε3 and,
because of the slow-time component in (13), ε3/2. The standard assumption of
the asymptotic method employing the fast and slow time separation is that (13)
can be posed in the asymptotic series

ϕi =

∞∑
k=0

εk/2ϕ
(k/2)
i (x, t, τ); pi =

∞∑
k=0

εk/2p
(k/2)
i (x, t, τ),

ρi =

∞∑
k=0

εk/2ρ(k/2)(x, t, τ); ξ =

∞∑
k=0

εk/2ξk/2(x, t, τ),

(14)

where the coefficients are smooth functions of their variables. Specifically, the
rational-number superscript indexes are introduced to link the functional co-
efficients with the small parameter powers. The sequence of the indexes are
0, 1/2, 1, 3/2, 2, 5/2, 3, . . ..

3.3 Separating slow and fast time variables

Substituting (14) into (8) leads to the k-family of boundary value problems with

respect to ϕ
(k/2)
i , p

(k/2)
i , ρ

(k/2)
i , ξk/2, i = 1, 2 starting with k = 0. The starting

point implies the O(1)-order approximation which comes from the homogeneous
problem(

ρ
(0)
i

)
t

+ div
(
ρ

(0)
i ∇ϕ

(0)
i

)
= 0; ρ

(0)
i ∇

((
ϕ

(0)
i

)
t

+ 1
2

(
∇ϕ(0)

i

)2
)

= −∇p(0)
i ,

ρ
(0)
i =

(
p

(0)
i

p0i

)1/γi

in Q
(0)
i ;

∂ϕ
(0)
1

∂n
= 0 on S1;

∂ϕ
(0)
1

∂n
= 0 on S0,

∂ϕ
(0)
i

∂n
= −

(ξ0)t
|∇ξ0|

, i = 1, 2; −p(0)
2 = 0 on Σ(0),

where (·)t is the fast-time derivative. The last pressure condition on Σ(0) shows
that the liquid motions are dynamically uncoupled with the compressible gas
flows and, moreover, the drop is not affected by the surface tension. From
physical point of view, this means that the O(1)-order drop motions can only
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slowly deform on the τ -scale and the zero-order solution takes the form

ξ0 = ξ0(x, τ);

∫
Q

(0)
2 (τ)

dQ = m2; ∇ϕ(0)
i = 0, i = 1, 2,

p
(0)
1 = p01; ρ

(0)
1 = 1; ρ

(0)
2 = p

(0)
2 = 0

where ξ0(x, τ) = 0 defines the O(1)-order interface motions Σ(0) = Σ(0)(τ)

which, in turn, defines the slowly-deforming domains Q
(0)
i (τ), i = 1, 2.

Henceforth, the O(1)-order drop motions are associated with the fast-time
averaged drop shape, i.e., by definition:

Σ0(τ) = Σ0(τ) = 〈Σ(t, τ)〉t; Q
(0)
i (τ) = 〈Qi(t, τ)〉t, i = 1, 2. (15)

Furthermore, the higher-order asymptotic problems with respect to ϕ
(k/2)
i , p

(k/2)
i ,

ρ
(k/2)
i , ξk/2, k ≥ 1 would be formulated in the fast-time averaged domains

Q
(0)
1 (τ) and Q

(0)
2 (τ) separated by Σ0(τ).

The problem (8) contains three small input parameters of the order O(ε),
O(ε3/2) and O(ε3), but there are no the O(ε1/2)-order input quantities. This
means that the O(ε1/2)-order approximation is zero. The O(ε)-order approxi-
mation (k = 2) comes from the problem

k2
(
ϕ

(1)
1

)
tt
−∇2ϕ

(1)
1 = 0 in Q

(0)
1 (τ);

∂ϕ
(1)
1

∂n
= −

(ξ1)t
|∇ξ0|

on Σ0(τ),

∂ϕ
(1)
1

∂n
= 0 on S1;

∂ϕ
(1)
1

∂n
=
V (x) sin t

k
on S0,

∂ϕ
(1)
2

∂n
= −

(ξ1)t
|∇ξ0|

; p
(1)
2 = µ1p01 on Σ0(τ),

ρ̇
(1)
2 +∇2ϕ

(1)
2 = 0; ρ

(1)
2 = 0 in Q

(0)
2 (τ),

where the last condition is due to ρ
(1)
2 = k2

∗p
(1)
2 and (12).

As it happened in the zero-order approximation, the dynamic interface con-

dition (here, p
(1)
2 = µ1p01 = const) on the fast-time averaged interface Σ0(τ)

decouples the interface problem into two independent boundary value problems

in Q
(0)
2 (τ) and Q

(0)
1 (τ), respectively. Analyzing the first boundary problem in

Q
(0)
2 (τ) shows that this approximation can only contribute a slow-time drop

deformation which, due to definition (15), is already accounted for by the O(1)-
order component. As a consequence,

ξ1 = 0; ∇ϕ(1)
2 = 0; ρ

(1)
2 = 0; p

(1)
2 = µ1p01.

The second boundary value problem in Q
(0)
1 (τ) has the solution

ϕ
(1)
1 = Φ1(x, τ) sin t; p

(1)
1 = Φ1(x, τ) cos t, (16)
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where Φ1(x) is the so-called wave function of the linear acoustic field in the
ullage gas governed by the Neumann boundary value problem

∇2Φ1 + k2Φ1 = 0 in Q
(0)
1 (τ);

∂Φ1

∂n
= 0 on S1 ∪ Σ0(τ);

∂Φ1

∂n
=
V (x)

k
on S0 (17)

and stated in the slowly-deforming gas domain; the fast-time averaged drop
surface Σ0(τ) plays the role of a reflector.

The interface problem remains decoupled in the O(ε3/2)-order approxima-

tion. For the gas domain Q
(0)
1 (τ), the homogeneous τ -dependent boundary

problem takes the form

∇2ϕ
(3/2)
1 = 0; p

(3/2)
1 =

(
ϕ

(3/2)
1

)
t

in Q
(0)
1 (τ),

∂ϕ
(3/2)
1

∂n
= 0 on S0 ∪ S1;

∂ϕ
(3/2)
1

∂n
= −

(ξ0)τ +
(
ξ3/2

)
t

|∇ξ0|
on Σ0(τ),

but

∇2ϕ
(3/2)
2 = 0; p

(3/2)
2 =

(
ϕ

(3/2)
2

)
t
; ρ

(3/2)
2 = 0 in Q

(0)
2 (τ),

∂ϕ
(3/2)
2

∂n
= −

(ξ0)τ +
(
ξ3/2

)
t

|∇ξ0|
; p

(3/2)
2 = 0 on Σ0(τ)

(18)

describes theO(ε3/2)-contribution to the drop motions which also is τ -dependent.

This means that ϕ
(3/2)
i = ϕ

(3/2)
i (x, τ), i = 1, 2.

Summarizing all asymptotic quantities obtained from the constructed ap-
proximations gives

ϕ2(x, t, τ) = ε3/2 ϕ
(3/2)
2 (x, τ)︸ ︷︷ ︸
ϕ(x,τ)

+o(ε3/2), (19a)

ξ(x, t, τ) = ξ0(x, τ)︸ ︷︷ ︸
ζ(x,τ)

+o(ε3/2), (19b)

ϕ1(x, t, τ) = εΦ1(x, τ)︸ ︷︷ ︸
Φ(x,τ)

sin t+ ε3/2ϕ
(3/2)
1 (x, τ) + o(ε3/2). (19c)

This shows that the lowest-order component of the velocity field in the drop
domain is of the order O(ε3/2); the velocity field does not depend on the fast
time t. In the contrast, the lowest-order component of the velocity field in the
gas domain describes the linear acoustic standing wave for which the slowly-
varying drop surface Σ0(τ) : ζ(x, τ) = 0 is a reflector.

Because the right-hand side of the dynamic interface condition (8h) has
the O(ε)-multiplier, the drop oscillates on the fast-time scale caused by the
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linear acoustic field (16) so that ϕ
(2)
2 = sin t F1(x, τ). The velocity potential in

Q
(0)
1 (τ) takes the form ϕ

(2)
1 = sin(2t)F2(x, τ) + cos(2t)F3(x, τ). However, due

to quadratic terms, the second-order pressure component in Q
(0)
1 (τ) contains

the fast-time averaged quantity

〈p(2)
1 〉t(x, τ) = 1

4

(
k2(Φ1)2 − (∇Φ1)2

)
+ const (20)

expressing the so-called Langevin acoustic radiation pressure.
The O(ε5/2)-order component is of more complicated structure, but it does

not affect the O(ε3)-order approximation which yields the fast-time averaged
dynamic boundary condition(

ϕ
(3/2)
2

)
τ

+ 1
2

(
∇ϕ(3/2)

2

)2

− µµ1(k1 + k2) + µ1µbx1

+ 1
4µ1

(
k2(Φ1)2 − (∇Φ1)2

)
= const on Σ0(τ). (21)

3.4 Slow-time oscillations with respect to the drop vibroe-
quilibrium

Accounting for the asymptotic solution (19), the fast-time averaged dynamic
condition (21) as well as the governing boundary value problems for the lowest-
order quantities in (19), we arrive, finally, at the following free-interface problem

with respect to ζ(x, τ) = ξ0(x, τ), ϕ(x, τ) = ϕ
(3/2)
2 (x, τ) and Φ(x, τ) = Φ1(x, τ)

∇2ϕ = 0 in Ω2(τ);
∂ϕ

∂n
= − ζτ
|∇ζ|

on Γ(τ);

∫
Ω2(τ)

dΩ = m2,

ϕτ + 1
2 (∇ϕ)

2 − µµ1(k1 + k2) + µµ1bx1

+ 1
4µ1

(
k2(Φ)2 − (∇Φ)2

)
= const on Γ(τ),

(22a)

∇2Φ + k2Φ = 0 in Ω1(τ);
∂Φ

∂n
= 0 on S1 ∪ Γ(τ),

∂Φ

∂n
=
V (x)

k
on S0 (22b)

where Ω1(τ) = Q
(0)
1 (τ),Ω2(τ) = Q

(0)
2 (τ), and Γ(τ) = Σ0(τ).

In fact, we have proved the following proposition:

Proposition 1. If the original interface problem (8) has the asymptotic solution
(14), the lowest order terms in (19) depend only on the slow time τ = ε3/2t and
these terms are governed by the free-surface problem (22).

The free-interface problem (22) is the announced mathematical model for the
acoustically levitating drops. It describes slow-time oscillations of an acousti-
cally levitating drop. The problem (22) is similar to the earlier empirical math-
ematical model in [15, 16, 17, 9] and should, perhaps, theoretically clarify the
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vertical vibrations and shape oscillations of droplets [25]. A difference consists
of an extra term in the dynamic interface condition on Γ(τ) expressing the
Langevin radiation pressure which becomes now parametrically depending on
the τ -instant drop shape (due to the zero-Neumann boundary condition (22b)
on Γ(τ)). The latter boundary condition means that the slowly-oscillating drop
surface is, in the lowest-order approximation, a reflector for the linear acoustic
field in the ullage gas.

When assuming that the fast-time averaged drop shape does not oscillate,
we arrive at the static free-interface problem

− µ(k1 + k2) + bµx1 + 1
4

(
k2(Φ)2 − (∇Φ)2

)
= const on Γ0,∫

Ω20

dΩ = m2, (23a)

∇2Φ + k2Φ = 0 in Ω10;
∂Φ

∂n
= 0 on S1 ∪ Γ0;

∂Φ

∂n
=
V (x)

k
on S0. (23b)

The drop shape Γ0 is called the drop vibroequilibria.
The drop vibroequilibria shape is what one can see in acoustic levitators but

the evolution problem (22) describes, in fact, nonlinear motions with respect to
the vibroequilibria. The drop vibroequilibria can be stable or not depending on
input parameters. The stability analysis should normally involve the spectral
problem on linear natural (eigen) oscillations with respect to Γ0, or, alterna-
tively, the extremal problem on the quasi-potential energy as in section 4.

The aforementioned spectral problem has the classical exact Rayleigh so-
lution [26] for the weightless drop when the acoustic field is absent. The
acoustically-deformed levitating drops are not the case and dedicated studies
are required on the natural (eigen) modes and frequencies which differ from
those in [26].

4 Lagrangian formalism for (1)–(4)

We will follow [19] to prove two theorems providing equivalence of (1)–(4) to the
classical Lagrange and the Bateman–Luke variational formulations. The first
case is the classical Lagrange principle.

Theorem 1. When functions ξ, ϕi and ρi, i = 1, 2 are smooth enough, the free-
interface problem (1)-(4) is equivalent to the necessary condition of the extremal
points of the action

G(ξ, ϕi, ρi) =

∫ t2

t1

[T − U −Π] dt

=

∫ t2

t1

{
2∑
i=1

∫
Qi(t)

ρi
[

1
2 (∇ϕi)2 − Ui(ρi)− gx1

]
dQ− Ts|Σ|

}
dt (24)
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subject to the kinematic constraint (1) and assuming the smooth isochronous
variations

δξ|t1,t2 = 0; δρi|t1,t2 = 0. (25)

Here, T is the kinetic energy, Π is the potential energy, and Ui(ρi) is the inner
energy of gas and liquid, respectively. The area is denoted as | · |. The inner
energy of barotropic fluids defines the pressure as

pi
def
= ρ2

i

dUi
dρi

. (26)

Remark 1. Because of constraint (1), the action is a function of ξ and ρi.

Proof. We employ the formula∫
Ω(t)

[ρ̇+ (∇ϕ · ∇ψ)] dQ+
d

dt

∫
Ω(t)

ρϕ dQ−
∫
S0

ρ01V0ϕ sin(νt) dS

= −
∫

Ω(t)

[ρ̇+ div(ρ∇ψ)]ϕdQ+

∫
S1

ρ
∂ψ

∂n
ϕdS +

∫
Σ(t)

ρ
∂ψ

∂n
ϕdS

+

∫
Σ(t)

ρ
ξ̇

|∇ξ|
ϕdS +

∫
S0

[
ρ
∂ψ

∂n
− ρ01V0 sin(νt)

]
ϕdS (27)

following from the Reynolds transport theorem and the Green formulas when
Ω(t), ∂Ω(t) = Σ(t)∪S1∪S0 is an arbitrary domain, Σ(t) (ξ(x, t) = 0) is a piece
of the time-dependent boundary, but ϕ(x, t) and ψ(x, t) are smooth functions.

Using the kinematic constraint (1) with ϕ = ϕ1, ψ = ψ1 for Ω(t) = Q1(t),
the right-hand side of (27) equals to zero. Analogously, when ϕ = ϕ2 and
ψ = ψ2 in Ω(t) = Q1(t), ∂Ω(t) = Σ(t), the right-hand-side is also zero. After
integration by t from t1 to t2 of the remaining left-hand sides and subtracting
the results from the action, we come to

G(ξ, ϕi, ρi) =

∫ t2

t1

{
2∑
i=1

∫
Qi(t)

ρi
[
−ϕ̇i − 1

2 (∇ϕi)2 − Ui(ρi)− gx1

]
dQ

−Ts|Σ(t)|+
∫
S0

ρ01V0ϕ1 sin(νt) dS

}
dt−

2∑
i=1

(ρiϕi)|t2t1 . (28)

Now, assuming the kinematic constraint (1) is satisfied, one can compute
variations of G by ρi and ξ employing (28). Variations by ρi give

δρiG =

∫ t2

t1

[∫
Qj(t)

δρj

[
−ϕ̇j − 1

2 (∇ϕj)2 − gx1 − Uj(ρj)− ρj
dUj
dρj

]
dQ

−
∫
Qj(t)

ρj [δϕ̇j + (∇ϕj · ∇δϕj)] dQ+

∫
S0

ρ01V0δϕ1 sin(νt) dS

]
dt

− [δρjϕj + ρjδϕj ]|t2t1 = 0, j = 1, 2. (29)
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Accounting for (27), (25) and (1) leads to

−ϕ̇j − 1
2 (∇ϕj)2 − gx1 − Uj(ρj)− ρj

dUj
dρj

= 0. (30)

Taking the gradient action and using (26) give (1b).
Computing the ξ-variation of (28), accounting for (25) and using formulas[24]

for variations of the Σ(t) area by ξ give, altogether,

δξG =

∫ t2

t1

[
2∑
i=1

∫
Qi(t)

ρi[−δϕ̇i − (∇ϕi · ∇δϕi)] dQ

+

∫
Σ(t)

2∑
i=1

(−1)i
δξ

|∇ξ|
ρi
[
−ϕ̇i − 1

2 (∇ϕi)2 − gx1 − Ui(ρi)
]

dS

−Ts
∫

Σ(t)

[−k1 − k2]
δξ

|∇ξ|
dS +

∫
S0

ρδϕ1V0 sin(νt) dS

]
dt−

2∑
i=1

(ρiδϕi)|t2t1 = 0.

(31)

Employing the formula (27) within ϕ and δϕ transforms (31) to the form

δξG =

∫ t2

t1

[{∫
Σ(t)

2∑
i=1

(−1)iρi
[
−ϕ̇i − 1

2 (∇ϕi)2 − gx1 − Ui(ρi)
]

+ Ts[k1 + k2]

}
δξ

|∇ξ|
dS

]
dt = 0, (32)

which leads to the dynamic condition (4) provided by (30) (following from the
condition δρjG = 0, j = 1, 2).

Another variational formulation is associated with the so-called Bateman–
Luke variational principle [24] for a compressible fluid. Specifically, this varia-
tional principle is not restricted to the kinematic constraint. The Bateman–Luke
action takes the form

B(ξ, ϕi, ρi) =

∫ t2

t1

{
2∑
i=1

∫
Qi(t)

ρi
[
−ϕ̇i − 1

2 (∇ϕi)2 − gx1 − Ui(ρi)
]

dQ

−Ts|Σ(t)|+
∫
S0

ρ01V0ϕ1 sin(νt) dS

}
dt (33)

which is the same as expression (28) but without the last summand.

Theorem 2. When functions ξ, ϕi and ρi, i = 1, 2 are smooth enough, the free-
interface problem (1)-(4) follows from the necessary condition of the extremal
points of the action (33) subject to the isochronous smooth variations

δξ|t1,t2 = 0; δϕi|t1,t2 = 0; δρi|t1,t2 = 0. (34)
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Proof. The theorem immediately follows from the already computed variations
of (28) by ρj , ξ as well as the formula for variations by ϕj :

δϕj
B =

∫ t2

t1

[
−
∫
Qj(t)

ρj [δϕ̇j + (∇ϕj · ∇δϕj)] dQ+

∫
S0

ρ01δϕjV0 sin(νt) dS

]
dt

=

∫ t2

t1

[∫
Qj(t)

[ρ̇j + div(ρj∇ϕj)]δϕj dQ

−
∫
S1

ρj
∂ϕj
∂n

δϕj dS −
∫

Σ(t)

ρj

[
∂ϕj
∂n

+
ξ̇

|∇ξ|

]
δϕj dS

−
∫
S0

(
ρ1
∂ϕ1

∂n
− ρ01V0 sin(νt)

)
δϕ1 dS

]
dt+ ρjδϕj |t2t1 = 0. (35)

We should account for (34) and the fact that S0 = S1 = ∅ for j = 2 in (35).

5 Quasipotential energy of the drop vibroequi-
librium

In section 3.4, we showed that the nondimensional problem (8) has the asymp-
totic solution (19) whose lowest-order terms describe slow-time motions with
respect to the drop vibroequilibrium. The slow time variable is τ = ε3/2t and
the lowest-order terms are governed by (22). In this section, we separate slow
and fast time variables in the variational formulations from section (4) to derive
the quasi-potential energy of the drop vibroequilibrium governed by (23).

Theorem 3. Finding the fast-time averaged solution from the classical Lagrange
variational formulation (Theorem 1) is equivalent to description of the extremal
points of the nondimensional functional

〈G∗(ξ, ϕi, ρi)〉t = const+ ε3/2G(ζ, ϕ) +O(ε2),

within

G(ζ, ϕ,Φ) =

∫ τ2

τ1

{∫
Ω2(τ)

[
1
2 (∇ϕ)2 − µµ1bx1

]
dQ− µµ1|Γ(τ)|

+
µ1

4

∫
Ω1(τ)

[
k2Φ2 − (∇Φ)2

]
dQ− µ1

2k

∫
S0

ΦV (x) dS

}
dτ (36)

subject to the kinematic constraint

∇2ϕ = 0 in Ω2(τ);
∂ϕ

∂n
= − ζτ
|∇ζ|

on Γ(τ) (37a)

∇2Φ + k2Φ = 0 in Ω1(τ);
∂Φ

∂n
= 0 on S1 ∪ Γ(τ);

∂Φ

∂n
=
V (x)

k
on S0 (37b)
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for isochronous smooth variations δζ|τ1,τ2 = 0 where ζ(x, τ) = 0 governs the
slow-time oscillations of the drop surface Γ(τ) (Ω2(τ) and Ω1(τ) are liquid and
gas domains, respectively, separated by Γ(τ)) on the slow-time scale.

Proof. According to Theorem 1, finding the solution of (1)-(4) (nondimensional
statement (8)) is equivalent to description of the extremal points of the action
(24). Adopting the nondimensional variational statement, substituting (19) into
variational and differential formulations of Theorem 1 and choosing |t2 − t1| >
ε−3/2, we get 〈G(ξ, ϕi, ρi)〉t = const + ε3/2G(ζ, ϕ) + O(ε2) and the kinematic
constraint (37).

Let ζ, ϕ be a local extrema point of the action (36) subject to (37). Obvi-
ously, ζ and ϕ satisfy (22). Taking (19) in the nondimensional formulation of
Theorem 1 gives, within to higher-order terms, an extremal point of G∗.

Theorem 4. Finding the fast-time averaged solution from the Bateman–Luke
variational formulation (Theorem 2) is equivalent to finding the extremal points
of the time-averaged nondimensional action

〈B∗(ξ, ϕi, ρi)〉t = const+ ε3/2B(ζ, ϕ,Φ) +O(ε2),

where

B(ζ, ϕ,Φ) =

∫ τ2

τ1

{∫
Ω2(τ)

[
−ϕτ − 1

2 (∇ϕ)2 − µµ1bx1

]
dQ− µµ1|Γ(τ)|

+
µ1

4

∫
Ω1(τ)

[
k2Φ2 − (∇Φ)2

]
dQ− µ1

2k

∫
S0

ΦV (x) dS

}
dτ, (38)

subject to isochronous smooth variations

δζ|τ1,τ2 = 0; δϕ|τ1,τ2 = 0; δΦ|τ1,τ2 = 0.

Proof. The proof is similar to that in the previous theorem.

Remark 2. The fast-time averaged variational formulation of the Bateman–
Luke type leads to Theorem 4 which can be treated as the Bateman–Luke varia-
tional formulation for the weightless drop dynamics levitating in the zero-gravity
and affected, altogether, by the surface tension and the Langevin radiation pres-
sure.

Assuming the τ -independent solutions in Theorems 3 and 4 leads to the
quasi-potential energy of the mechanical system. This means that:

Theorem 5. Finding the stable drop vibroequilibria from (23) is equivalent to
finding the local minima of the quasi-potential energy functional

U = µ|Γ0|+ µb

∫
Ω10

x1 dQ− 1

4

∫
Ω10

(
k2Φ2 − (∇Φ)2

)
dQ+

1

2k

∫
S0

V (x) Φ dS

(39)

15



subject to ∫
Ω20

dQ = m2 = const (40)

and

∇2Φ + k2Φ = 0 in Ω10;
∂Φ1

∂n
= 0 on S1 ∪ Γ0;

∂Φ1

∂n
=
V (x)

k
on S0. (41)

6 Conclusions

Employing the differential and variational formulations of an interface problem
for two compressible fluids, we studied the fast-time averaged motions of an
acoustically levitated drop. A new mathematical model is derived describing
slow-time motions of the drop with respect to the visually-observed quasi-static
drop shapes which are called the drop vibroequilibria. The derived mathe-
matical model is qualitatively similar to the physically-postulated models in
[15, 16, 17, 9]. They all introduce the Langevin radiation pressure quantity ap-
pearing in the dynamic boundary condition on the drop surface. However, there
is a novelty in our new mathematical model – it expresses the important fact
that the acoustical field geometry parametrically depends on the drop shape.

Along with the differential formulation of the mathematical model, we present
a series of theorems on the Lagrange variational formalism and derive a func-
tional responsible for the quasipotential energy of the mechanical system.

The forthcoming analysis should, probably, focus on the small-magnitude
drop oscillations with respect to the vibroequlibria, i.e. on the corresponding
spectral theorems which can be considered as a generalization of the famous
Rayleigh [26] results. Another open problem consists of appropriate numerical
methods for solving the problem on the drop vibroequilibria. Theorem 5 should
facilitate constructing the numerical methods.
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