
1 1 

GAS-FIRED POWER PLANTS: INVESTMENT TIMING, 

OPERATING FLEXIBILITY AND CO2 CAPTURE 

STEIN-ERIK FLETEN1,a , ERKKA NÄSÄKKÄLÄa,b 

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and 

Technology, NO-7491 Trondheim, Norway, stein-erik.fleten@iot.ntnu.no 

bSystems Analysis Laboratory, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland, 

erkka.nasakkala@hut.fi 

 

We analyze investments in gas-fired power plants based on stochastic electricity and natural gas 

prices. A simple but realistic two-factor model is used for price processes, enabling analysis of 

the value of operating flexibility, the opportunity to abandon the capital equipment, as well as 

finding thresholds for energy prices for which it is optimal to enter into the investment. We 

develop a method to compute upper and lower bounds on plant values and investment threshold 

levels. Our case study uses representative power plant investment and operations data, and 

historical forward prices from well-functioning energy markets. We find that when the decision 

to build is considered, the abandonment option does not have significant value, whereas the 

operating flexibility and time-to-build option have significant effect on the building threshold. 

Furthermore, the joint value of the operating flexibility and the abandonment option is much 

smaller than the sum of their separate values, because both are options to shut down. The 

effects of emission costs on the value of installing CO2 capture technology are also analyzed. 
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1 Introduction 

 In the next 20 years, fossil fuels will account for 75% of all new electric power 

generating capacity, and 60% of this is assumed to come in the form of gas-fired power plants 
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(see IEA, 2003). Thus many companies in the electricity and natural gas industries are 

considering investments in such plants. At the same time, the restructuring of electricity and gas 

markets has brought price transparency in the form of easily available spot- and forward prices. 

This article offers an approach to analyze gas-fired power plant investments, using the 

information available on electricity and natural gas futures and forward markets. 

 

 A gas-fired power plant may be interesting not only from the point of view of meeting 

increased power demand. Consider a company owning an undeveloped gas field at a distance to 

major gas demand hubs; most of the gas reserves in the world are in the category of stranded 

gas. Building natural gas pipelines is very costly, and the unit cost of gas transportation 

decreases rapidly with the capacity of the pipeline. This means that locating a gas-fired power 

plant at the end of a new pipeline improves the economy of scale in transmission of natural gas. 

 

 The research question addressed here is that of an energy company having an 

opportunity to build a gas-fired power plant.  

 How high should electricity prices be compared to gas prices, before the company 

starts building the plant?  

 Does it matter whether the plant is baseload, running whatever the level of electricity 

and gas prices, or cycling, running only when electricity price is above the fuel cost?  

 How does the opportunity to abandon the plant influence the decision to invest?  

 How do greenhouse gas emission costs affect profitability? 

These questions differ from those in Näsakkäla and Fleten (2005), who use the same 

methodology and data, but a different model and analysis. Whereas that paper looks at 

investment and technology upgrade, the current one examines investment, operational flexibility, 

abandonment and CO2 capture technology installation. 

 

 Whether a new power plant will be run as a baseload plant, or ramped up and down 

according to current energy prices, depends more on the state of the local natural gas market 

than the technical design of the plant itself. New gas plants will often be the combined cycle gas 

turbine (CCGT) type, which can be operated both as baseload and cycling plants. The operating 

flexibility is often constrained by the flexibility of the gas inflow. If there is little local storage 

and/or alternative use of the natural gas, the plant operator will seldom find it profitable to 

ramp down the plant. 
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 The operating cash flows in a gas-fired power plant depend on the spark spread, 

defined as the difference between the price of electricity and the cost of gas used for the 

generation of electricity. The long-maturity swaps on electricity and gas, e.g. three-year swaps, 

give the exact and certain market value of constant electricity and gas flow (disregarding the 

credit and liquidity risk). A baseload plant operates with constant electricity and gas flow, so a 

baseload plant can be valued with long-term swaps2. On the other hand, a cycle plant can react 

to short-term variations in the spark spread by ramping up and down, leading to non-constant 

electricity and gas flow. Therefore, the short-term dynamics of the spark spread are needed for 

the valuation of a cycling plant. The short-term dynamics can be estimated by using short-

maturity swaps, for example. 

 

 Long-term investments, such as in power plants, are never undertaken due to non-

persistent spikes in the spark spread. Rather, investment decisions are based on long-term price 

levels, called equilibrium prices here. Using a real options approach (or ‘contingent claims 

approach’ in the language of Dixit and Pindyck 1994), we compare the current equilibrium price 

estimate to a computed investment threshold, reflecting that at this threshold level of 

equilibrium price the value of waiting longer is equal to the net present value received if 

investment is commenced (McDonald and Siegel 1986). When the equilibrium price increases to 

the investment threshold, the implementation of the power plant project should be started. As it 

is difficult to characterize the ramping policy of a gas-fired power plant precisely, instead of 

giving an exact value of the plant, we give upper and lower bounds for the plant value. These 

bounds are used to calculate upper and lower bounds for the investment thresholds. 

 

 Brekke and Schieldrop (1999) and Abadie and Chamorro (2006) consider power plants 

which can burn two different types of fuel. Deng, Johnson and Sogomonian (2001) use electricity 

and fuel futures to value gas-fired peak load plants. Siddiqui and Maribu (2009) consider 

sequential vs direct investment in small gas-fired power and heating systems. Deng and Oren 

(2003) and Tseng and Lin (2007) take into account ramping, startup costs and non-constant 

operating efficiency, and the former show that the overvaluation made when ignoring these 

operational characteristics is small when operating efficiency is high. For this reason we abstract 

from the mentioned characteristics. This paper contributes, first, by presenting a case study of 

real option analysis that is hopefully interesting for many. Second, it provides upper and lower 

                                        

2 Swaps with maturities beyond a few years is typically not available. Long-term prices then have to be 

estimated or extrapolated. We use the approach suggested by Schwartz (1997) who consider i.a. long-

maturity oil prices. 
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bounds for investment thresholds and plant values that depend on the degree of operating 

flexibility of the plant. Finally, our approach to modeling uncertainty, which is empirically 

realistic, reduces the dimension to just one. This greatly facilitates relatively simple real option 

analysis. Compared to Näsakkäla and Fleten (2005), who study technology choice among 

upgradable power plants, the second aspect is new. 

 

 We illustrate the use of our model by applying it to the energy markets in 

Scandinavia. The electricity markets there have been restructured since the late 1980s. 

Naturally, our model can be applied to other energy markets as well. Our case study indicates 

that the difference between cycling and baseload plant values is considerable, i.e. the value of 

being able to ramp up and down is significant. We also find that the addition of an 

abandonment option does not dramatically change the investment threshold. This means that 

when investments in gas-fired power plants are considered, a good overall view of the investment 

problem can be made by disregarding the abandonment option, whereas the operating flexibility 

and time-to-build options have significant effect on the investment threshold. In our case study, 

using investment cost data from 2000, we find that building a CO2 capture plant and piping 

CO2 off to permanent storage or in oil fields for increased recovery is not a cost-efficient way of 

reducing greenhouse gas emissions at carbon price levels of 25 $/tonne CO2. 

 

 The model generalizes beyond the case of gas-fired power plants. Any investment 

involving a relatively simple transformation of one commodity to another could be analyzed 

using this framework. The spread between output price and input costs is then an important 

source of uncertainty. Examples include the transformation of natural gas into liquefied natural 

gas, a methanol factory, and a biodiesel factory. 

 

 The paper is organized as follows. We present the model of price uncertainty in 

Section 2, where we also argue why it is important to incorporate information in swap prices 

into real options analyses. In Section 3 upper and lower bounds for the plant value are 

calculated, whereas in Section 4 the investment problem is studied. Section 5 illustrates the 

model using an example, and in Section 6 discusses the results of the example. Section 7 

concludes the study. 
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2 The energy price process 

 As the indicator of the profitability of a gas-fired power plant and as the driver of 

uncertainty in our model, we use the spark spread. This is defined as the difference between the 

output price and the input cost 

 e H gS S K S  , (1) 

where S is the spark spread, eS  the electricity price per unit of energy (MWh), the heat rate 

HK  is the amount of gas required to generate one MWh of electricity, and gS  is the price of 

gas. The quantity of gas is measured in MWh gross caloric value. The heat rate, given in 

MWhgas/MWhel, measures the efficiency of the plant: the lower the heat rate, the more efficient 

the facility. A modern gas-fired power plant will typically be of the so-called combined cycle 

type (CCGT). The efficiency of such a plant wears down over time (but is restored and even 

improved with replacements and refurbishments), and is reduced when the plant is running on 

half capacity. Still, the use of a constant efficiency is considered plausible for long-term analyses 

(see Deng et al., 2001). 

 

 The spark spread is the contribution margin of a gas-fired power plant. It can be both 

positive and negative, and it may have a number of empirical properties including seasonality, 

mean reversion, jumps and/or spikes, and seasonality and/or stochasticity in the variance.  

 

 Seasonality is caused by the underlying seasonality in demand for electricity and gas, 

and in hydropower-rich systems also by seasonality in supply. Mean reversion is caused by time 

lags in the adjustments by energy producers to varying price levels: An increase in the spark 

spread attracts high cost producers to the market putting downward pressure on prices. 

Conversely, when prices decrease some high cost producers will withdraw capacity temporarily, 

putting upward pressure on prices. As these entries and exits are not instantaneous, prices may 

be temporarily high or low, but will revert toward a long-term spark spread level. Mean 

reversion can also be inherited from reversion in related energy commodities such as oil and coal. 

Possible jumps can occur in spark spread due to the sudden inflow of unexpected information 

regarding future supply or demand. Spikes, rapid large price movements followed quickly by 

large opposite movements, are due by the non-storable nature of electricity (and costly and 

capacitated storage of natural gas) causing tight market situations when demand is close to the 

system capacity. 
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 Uncertainty in spark spread is caused by uncertainty in electricity and natural gas 

prices. There may be uncertainty not only in short-term spark spreads, but also in the average 

spark spread over a typical lifespan of a power plant. This long-term uncertainty is due to 

advances in gas exploration and production technology, changes in the discovery of natural gas, 

improved power plant technology, and political and regulatory effects. For example, unexpected 

development in the cost of alternative power generation technology, such as nuclear power, may 

lead to a persisting change in electricity prices.  

 

 We want to arrive at a model for spark spread that captures those of the above-

mentioned properties that are important in investment evaluation and decision making. At the 

same time, the model must be parsimonious enough to facilitate actual investment and real 

option analysis. Since we do not aim to support hedging of risks in the cash flows of this project, 

the model does not have to map directly from prices on observable swap contracts as is done in 

forward curve models such as that of Heath, Jarrow and Morton (1992) (HJM). We finally 

arrive at the following model, which is based on Ross (1997), Pilipović (1998), and Schwartz and 

Smith (2000): 

ASSUMPTION 1. The spark spread is a sum of a short-term deviation and an equilibrium price 

  ( ) ( ) ( )S t t t   , (2) 

where the short-term deviation ( )t  is assumed to revert toward zero, following an Ornstein-

Uhlenbeck process 

  ( ) ( ) ( )d t t dt dB t      . (3) 

The equilibrium price ( )t  is assumed to follow an arithmetic Brownian motion process 

  ( ) ( )d t dt dB t      , (4) 

where  ,  ,  , and   are constants. ( )B  and ( )B   are standard Brownian motions, with 

correlation dt dB dB   . 

 

The modeled spark spread can be positive or negative, and it is mean reverting. The following 

corollary expresses the distribution of the future spark spread values. 

 

COROLLARY 1. When spark spread has the dynamics given in (2)-(4), prices are normally 

distributed, and the expected value and variance are given by 
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 ( )( ) e ( ) ( ) ( )T t
t
E S T t t T t  (5)

 

2

2 ( ) 2 ( )( ) 1 e ( ) 2 1 e
2

T t T t

t
Var S T T t . (6) 

PROOF: See Schwartz and Smith (2000). 

 

 Corollary 1 states that the spark spread is a sum of two normally distributed 

variables: short-term deviation and equilibrium price. The expected value of the short-term 

deviation converges to zero as the maturity T t  increases and so the expected value of the 

spark spread converges to the expected value of the equilibrium price. The mean-reversion 

parameter   describes the rate of this convergence. The maturity in which a short-term 

deviation is expected to halve is given by 

  
 

1 2

ln 0.5
T


  . (7) 

 The spark spread variance caused by the uncertainty in the equilibrium price 

increases linearly as a function of maturity, whereas the spark spread variance due to the short-

term deviations converges toward 2 2 . Note that the decreasing forward volatility structure, 

typical for commodities, is tied to the mean-reversion in the spot prices (see Schwartz, 1997). 

 

 This model has the advantage of avoiding the need for explicitly specifying the 

correlation between electricity and natural gas prices. On the other hand, neither the short-term 

deviation   nor the equilibrium price   are directly observable, but must be estimated from 

electricity and gas swap prices. These swap prices provide the risk-adjusted expected future 

spark spread value, so swap prices can be used to infer the risk adjusted dynamics of short-term 

deviation and the equilibrium price. The expected short-term deviation decreases to zero when 

the maturity increases, so the long-maturity swaps give information about the equilibrium price. 

When the maturity is short, the short-term deviation has not yet converged to zero. Hence, the 

difference between long- and short-maturity swaps provides information about the short-term 

dynamics. Based on this simple idea Schwartz (1997) proposes a Kalman filter-based estimation 

for the parameters of multi-factor commodity price process. We use the procedure to estimate 

the spark spread process. The resulting model (2)-(4) becomes adjusted for risk, so that we can 

use risk-neutral pricing. 

 

 If there are no swap prices available, the short-term deviation and the equilibrium 

price dynamics must be estimated. One method is using a history of spot prices. However, when 
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derivative prices are not available as spanning assets, finding the appropriate discount and 

growth rates for real option analysis is more challenging and tends to become more ad-hoc (see 

Section 4.3 of Dixit and Pindyck, 1994).  

 

 This model captures mean reversion, and short- and long-term uncertainty, but not 

seasonality, jumps/spikes and non-constant variance. We discuss each of the non-captured 

properties in turn.  

 

 Seasonality is present in both electricity and gas prices, and in some regions the peak 

prices of the two commodities may both be in the winter due to their use for heating. So for 

spark spread, the seasonality may to a degree be canceled out, since the spark spread is a 

difference and the seasonality of electricity and gas may follow similar patterns. This is found by 

Näsäkkälä and Fleten (2005). The estimated spark spread process, displayed in Figure 1 by a 

black line, supports the hypothesis of no seasonality in the data. We remark that introducing 

seasonality may help the decision maker to pinpoint the time of year the various investment and 

disinvestment decisions should be made. However, in practice there will be other concerns that 

determine the time of the year the construction and operational decisions will be made.  

 

 If jumps and/or spikes are introduced into the spark spread model, it would become 

more complex. Jumps and spikes is present in our data only to a small degree, and we have 

chosen to exclude it, instead we refer to Deng (2005), who performs model comparisons and finds 

that, although spikes are important for valuation in many cases, ignoring spikes leads to low 

valuation errors for efficient power plants and when the price processes exhibit mean reversion. 

 

 We have not included more sophisticated variance features as we opted for simplicity 

and also there was a lack of option price data to support such an approach. Thus, to the extent 

spark spread variance change when electricity or gas prices change, it cannot be captured by our 

model. This issue is discussed further in Näsäkkälä and Fleten (2005).  

 

 The traditional way of modeling spark spread is to use separate processes for 

electricity and natural gas prices, whereas this subsection has introduced a two-factor model for 

direct modeling of the spark spread. Direct modeling of the spark is also discussed by Eydeland 

and Wolyniec (2003). We use the spark spread model to provide value formulas for the power 

plant once it is installed.  
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3 Gas plant valuation 

 In this section we calculate upper and lower bounds for the value of the gas-fired 

power plant. The following assumption states the operational characteristics of such a plant. 

ASSUMPTION 2. The degree to which the plant can or will be ramped up and down is not known. 

The costs associated with starting up and shutting down the plant can be amortized into fixed 

costs. 

 Although the operation and maintenance costs of a gas-fired power plant may vary 

from year to year, they do not vary much over longer time periods, so it is realistic to assume 

that the fixed costs are constant.  

 The ramping policy of a particular plant depends on local conditions associated with 

plant design and gas inflow arrangement. The degree to which the power plant can or will be 

ramped up is assumed unknown; there are unknown constraints on ramping. Instead of giving an 

exact specification of the ramping policy, we use upper and lower bounds for the gains associated 

with ramping. The lower bound LV  can be calculated by assuming that the plant cannot exploit 

unexpected changes in the spark spread, i.e. a baseload plant. The following lemma gives the 

value of that case. 

LEMMA 1. At time t, the lower bound of the plant value ( , ) ( , )LV V     is given by the value of 

a baseload plant 

 

 

 

( )
( )

2 2

( )

( ) 1( ) ( ) e ( ) ( )
( ( ), ( )) e

1 e

T t
r T t

L

r T t

r T tt t E t t E
V t t C

r r r r r r

G

r




   
 

 

 
 

 

    
       

     

 

 (8) 

where T t is the remaining lifetime of the plant, 
_

C  is the capacity of the plant, E is the 

emission cost, and G are the fixed costs of running the plant. 

PROOF: The value of a baseload plant is the present value of expected operating cash flows 

  

   

  

( )

( ) ( )

( ( ), ( )) ( )

( ) ( ) ( )

T

r s t

L t

t

T

r s t s t

t

V t t e C E S s E G ds

e C e t t E s t G ds



 

  

 

   

   

     





. (9) 

Integration gives (8). Q.E.D. 
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 The lower bound is just the discounted sum of expected spark spread values less 

emission and fixed costs. Thus, the lower bound is not affected by the short-term and 

equilibrium volatilities   and  , and is hardly at all affected by the speed of mean reversion, 

.  

 

 An owner of a gas-fired power plant may be able react to adverse changes in the spark 

spread by temporarily shutting down the plant. The value of a cycling plant is the discounted 

sum of expected spark spread values less emission and fixed costs plus the option value of being 

able to ramp up and down. The value of the up and down ramping is dependent on the response 

times of the plant, and is maximized when ramping up and down can be done without delay. In 

other words, the upper bound UV  for the plant value can be calculated by assuming that the up 

and down ramping can be done without delay, i.e. by assuming that the plant produces 

electricity only when the spark spread exceeds emission costs. 

LEMMA 2. At time t, the upper bound of the plant value ( , ) ( , )UV V     is given by the value 

of an ideal cycling plant 

2( ( ) )

2 ( )( ) ( )

( ( ), ( ))

( ) ( )
( ) 1 e

2 ( )

U

E S s E
T

Var S st tr s t r T t
t

t t

V t t

Var S s E S s E G
C e e E S s E ds

rVar S s

(10) 

where  is the normal cumulative distribution function, and G are the fixed costs of running 

the plant. The expected value ( )
t
E S s  and variance  ( )tVar S s  for the spark spread are given in 

Corollary 1. 

PROOF: See Appendix A. 

 

 The more the spark spread varies, the more valuable the option to ramp up and down 

is, and therefore the value of the cycling plant increases as a function of the variance of the 

spark spread. Increases in this variance can come about with increased short-term variance 
2, 

long-term variance 
2 or correlation , and decreased speed of mean reversion . The difference 

between the upper and lower bounds for the plant value is due to the option to temporarily shut 

down over the lifetime of the power plant. An increase in the starting level of the short-term 

deviation (0) will not affect plant values much, since its effect quickly fades off, but in principle 

the option to shut down temporarily becomes more out-of-the money, i.e. less valuable. For the 

same reason, the shut-down option also becomes less valuable if the start level of the equilibrium 

price (0) increases, or the emission costs E go down, or the growth rate of the equilibrium price 
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 goes up. One can also see this by recognizing that such changes in the spark spread 

parameters increase the expected spark spread and will affect the value of a baseload plant more 

positively than a cycling plant, because the cycling plant is sometimes shut down.  

 

 It may be helpful to know the power plant value if the spark spread process is even 

simpler, e.g. a Brownian motion with drift.  

ASSUMPTION 1’. The spark spread process Z follows 

 dZ dt dW    (3’) 

where dW is a Brownian motion. 

Here  is the growth of the spark spread and  is the standard deviation. By integration, the 

value of a baseload plant in this case is 

        ( ) ( ) ( )( ( )) 1 e 1 e 1 ( ) 1 eB r T t r T t r T t

L

C G
V Z t Z E r T t

r r r

      
         

 

 (8’) 

The value of a cycling plant consists of the baseload value plus the options to shut down and 

ramp up again. To conserve space, its formula will not be shown. However, its value is shown in 

Figure 1 below. 
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Figure 1 Power plant value bounds, for the basic two-factor model and for a simplified model 

using Brownian motion with drift. The value of an idealized cycling plant is expressed as VU, 

whereas a baseload plant has value VL. 

 We have used parameter estimates from Section 5. In Figure 1 the starting value of 

the spark spread Z(0), the growth  and the standard deviation  are chosen to match the long-

term behavior of the data. The lower bound coincides with that of the two-factor model. As 

expected, the upper bound using a one-factor model is lower than the corresponding bound for 
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the two-factor model, because the one-factor model is unable to capture the value of short-term 

variations.  

 

 

 To summarize: As we are not able to precisely characterize the shutdown/startup 

ability of the plant, we do not calculate the exact valuation formula for the gas-fired power 

plant, but provide bounds for the plant value. The lower bound is given by the baseload plant 

(Lemma 1) and the upper bound is given by the ideal cycling plant (Lemma 2). Decisions 

regarding the opportunity to invest and abandon the plant are analyzed in the next section. 

4 Investment analysis 

 In this section we calculate bounds for the investment thresholds when the gas plant 

value has the bounds given by Lemma 1 and Lemma 2. The following assumption characterizes 

the state variables affecting the investment decisions. 

ASSUMPTION 3. The investment decisions are made as a function of equilibrium price. In the 

investment decisions the lifetime of the plant is assumed to be infinite, and construction occurs 

instantly. 

Assumption 3 states that when the gas plant investments, i.e. building and abandonment, are 

considered the decisions are made as a function of the equilibrium price  , i.e. the current short-

term realization (0) is disregarded in investment decisions. In principle, investment decisions 

under two-factor dynamics depends on both factors, however, in practice short-term deviations 

fade away quickly, and have insignificant bearing on the decision to invest or to abandon. 

Assumption 3 makes this explicit.  

 The parameters governing the short-term dynamics, i.e. short-term volatility   and 

mean reversion  , still affect the value of the plant, and thereby they also affect the investment 

decision. This means that the short-term parameters are important in the investment decision, 

even though the particular realization of the short-term deviation (0) does not matter when 

investment decisions are made. The omission of the short-term realization is motivated by the 

fact that gas-fired power plants are long-term investments, and a gas plant investment is never 

made due to a non-persistent spike in the price process. In valuing the plants for investment 

purposes we will therefore set the short-term deviation (0) to zero. The assumption that 

investment decisions are made as a function of equilibrium price is a realistic approximation of 

the investment decision process if the expected lifetime of the short-term deviation is 
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considerably smaller than the expected lifetime of the plant. In Section 5 we use a speed of mean 

reversion of  = 2.6, which means, with (7), that the short-term deviation is expected to halve 

in about three months. Since this is insignificant compared to the expected lifetime of the plant, 

the approximation obtained by omitting the short-term realization in the investment decision is 

realistic.  

 The infinite lifetime assumption is motivated by the fact that the lifetime of a plant is 

often increased by upgrading and reconstructions, and by downward shifts in the maintenance 

cost curve (see Ellerman, 1998). Once a power plant has been built, with very long-lived 

transmission lines and gas pipelines connecting to the rest of the system, it is often most 

economical to extend the lifetime of the power plant. This assumption also allows the analysis to 

be parsimonious. The upper and lower bounds for the plant value as a function of lifetime will be 

illustrated in Section 5.  

 Finally, in reality there is a time-lag between the investment decision and the time 

the plant can start to operate, around two years. The instantaneous construction assumption 

helps keep the exposition simple. The effects of time-lags is studied by e.g. Majd and Pindyck 

(1987). 

 

 Building the plant becomes optimal when the equilibrium price rises to a building 

threshold I . When waiting is optimal, i.e., when I  , the investor has an option to postpone 

the building decision. The value of such a time-to-build option is given by the following lemma. 

LEMMA 3. The value of an option to build a gas-fired power plant is 

  1

0 1( ) , I

W
F Ae when

r

      , (11) 

where 1A  is a positive parameter to be determined and W are constant payments that the firm 

faces to keep the build option alive. The parameter 1  is given by 

  

2 2

1 2

2
0

r  



  




  
  . (12) 

PROOF: See Appendix B. 

 

 Growth-related parameters of the option pricing formulas that come from the spark 

spread model, e.g.  and , are adjusted for risk, since the spark spread dynamics is estimated 

using swap prices, which themselves reflect the price of risk.  
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 The time-to-build option value increases exponentially as a function of the equilibrium 

price. The parameter 1A  depends on the value of the plant and on the investment cost I. As we 

are not able to state the gas plant value exactly, we cannot state the exact building threshold, 

but the following proposition provides a method to calculate upper and lower bounds 

IL I IU     for the building threshold.  

PROPOSITION 1. The lower bound of the building threshold 
IL I   is given by  

  0( ) (0, )IL ILF V I  
U

 (13) 

  0 ( ) (0, )IL U ILdF V

d

 

 





, (14) 

whereas the upper bound I IU   is given by 

  0( ) (0, )IU L IUF V I    (15) 

  0 ( ) (0, )IU L IUdF V

d

 

 





. (16) 

PROOF: This is a special case of Proposition 2 and the proof will be omitted. 

 

 The equations in Proposition 1 cannot be solved analytically but a numerical solution 

can be attained. For example, to find the lower bound one substitutes (10) and (11) into (13) 

and (14) and solve the latter two nonlinear equations for A1 and IL.  

 

 Note that the short-term deviation is set to zero in Proposition 1. The reason is, as we 

have argued, that its starting value is unimportant since its effect is quickly faded away due to 

mean reversion. One cannot know its value when the equilibrium price reaches the building 

threshold, and its value has arbitrarily been set to zero. 

 

 The more valuable the plant becomes, the more eager the firms are to invest, thus the 

lower bound for the building threshold is given by the upper bound of the value of the plant and 

vice versa. In particular, the upper and lower bounds are calculated for the building threshold by 

finding the prices that satisfy the value-matching and smooth-pasting conditions under the most 

pessimistic and optimistic scenarios, respectively. The upper threshold uses VL because it 

assumes that the plant is completely inflexible, and therefore requires the highest possible price 

to entice investment. By contrast, the lower threshold uses VU because it assumes an ideal 

cycling plant; hence it requires a lower price to entice investment. 
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 Next we will consider how the investment decision changes if there is an opportunity 

to abandon the gas plant and realize the salvage value of the plant J. In this case, when a 

decision to build is made the investor receives both the gas plant and an option to abandon the 

plant. As the lifetime of the plant is assumed to be infinite, there is a constant threshold value 

A  for the abandonment, i.e. abandoning is not optimal when A  . The following Lemma 

states the value of such an abandonment option. 

LEMMA 4. The value of an abandonment option is 

  2

1 2( ) AF D e when      (17) 

where 2D  is a positive parameter to be determined. The parameter 2  is given by 

  

2 2

2 2

2
0

r  



  




  
  . (18) 

PROOF: The proof is similar to that of the build option (Appendix B), but now the option 

becomes less valuable as the spark spread increases. Q.E.D. 

 

 The abandonment option value decreases exponentially as a function of the 

equilibrium price. The parameter 2D  depends on the salvage value J. Again we are not able to 

state the exact building and abandonment thresholds, but the following Proposition gives upper 

and lower bounds for the thresholds, i.e. IL I IU     and AL A AU    . 

PROPOSITION 2. The lower bounds for the building and abandonment thresholds IL   and 

AL   are given by  

  0 1( ) (0, ) ( )IL U IL ILF V F I      (19) 

  1( ) (0, )AL U ALF V J    (20) 

  0 1
( ) (0, ) ( )IL U IL IL

dF V dF

d d

  

  


 


 (21) 

  1
(0, )( )

0U ALAL
VdF

d



 


 


, (22) 

whereas the upper bounds IU   and AU   are given by 

  0 1( ) (0, ) ( )IU L IU IUF V F I     , (23) 

  1( ) (0, )IU L IUF V J   , (24) 

  0 1( ) (0, ) ( )IU L IU IUdF V dF

d d

  

  


 


 (25) 
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  1( ) (0, )
0AU L AUdF V

d

 

 


 


. (26) 

PROOF: See Appendix C. 

The equations in Proposition 2 cannot be solved analytically either, but a numerical solution can 

be attained. The less valuable the plant is, the more eager the firms are to abandon the plant. 

Thus the upper bound of the abandonment threshold is given by the lower bound of the plant 

value, and vice versa. 

 

 To summarize: in this section we have derived a method to calculate the lower and 

upper bounds for the building and abandonment thresholds. If the abandonment option is 

ignored the building threshold is given by Proposition 1. When both building and abandonment 

are studied the thresholds are given by Proposition 2. Next we present the case study. 

5 Application 

 It is estimated that over the period 2001-2030 about 2000 GW of new natural gas-

fired power plant capacity will be built (see IEA, 2003). Our method can be used to estimate 

benchmark values of such investments. In this example we concentrate on the possibility to 

build a natural gas-fired power plant in Norway. The main reason to concentrate on this 

particular case is the availability of good spark spread and investment cost data. Norwegian 

energy and environmental authorities have given a number of licenses to build gas-fired power 

plants and we take the view of an investor having one of these licenses. 

 

5.1 Data and estimation 

 The costs of building and running a natural gas-fired power plant in Norway are 

estimated by Undrum et al. (2000). With an exchange rate of 7 NOK/USD, a combined cycle 

gas turbine (CCGT) plant costs approximately 1620 MNOK, and the maintenance costs G are 

approximately 50 MNOK/year. We estimate that the costs of holding the license W are 5% of 

the fixed costs of a running a plant. In Undrum et al. (2000) approximately 35% of the 

investment costs are used for capital equipment. We assume that if the plant is abandoned all 

the capital equipment can be realized on the second-hand market, i.e. the salvage value of the 

plant J is 567 MNOK. The estimated parameters are for a gas plant whose maximum capacity is 

415 MW. We assume that the capacity factor of the plant is 90%, thus we use a production 

capacity of 3.27 TWh/year. Table 1 contains a summary of the gas plant parameters. 
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Table 1: Characteristics of the gas-fired power plant. 

Parameter  W  
_

C  G  I  J  

Unit MNOK/year TWh/year MNOK/year MNOK MNOK 

Value 2.5 3.27 50 1620 567 

 

 Näsäkkälä and Fleten (2005) use electricity data from Nord Pool (The Nordic Power 

Exchange) and gas data from International Petroleum Exchange (IPE) to estimate spark spread 

dynamics for a combined cycle gas turbine plant whose efficiency is 58.1%, i.e. the heat rate is 

HK = 1.72 MWhgas/MWhel, which corresponds to 5.9 Btu/kWh. The spark spread parameters 

are summarized in Table 2. 

Table 2: Spark spread parameter estimates. 

Parameter  r            
0  0  

Unit   NOK/MWh  NOK/MWh NOK/MWh NOK/MWh NOK/MWh 

Value 0.06 2.6 2.18 -0.21 382.2 47.8 52.9 62.3 

 

 

 For short-maturity swaps, giving information about the short-term dynamics, they use 

monthly swap contracts with 1-month swap term/tenor. For long-maturity contracts, giving 

information about the equilibrium price dynamics, they use contracts with 1-year swap term and 

1 to 3 years to maturity. One could consider using finer granularity to capture short-term 

variations. If one could obtain daily or even hourly spot price data, the large variations in the 

very short run would mean that the estimate of the upper bound would increase significantly, 

because these large variations would be absorbed by increased estimates on short-term variance. 

However, we do not have spot price data for natural gas, and the shortest-maturity product is 

the nearest month. Furthermore, using the shortest maturity futures/forward as a proxy for the 

spot price has been common practice in empirical investigations on commodity prices, see 

Schwartz (1997). Last but not least, we find it unrealistic to go too far toward the idealized 

peaking plant given our choice of a CCGT – a single cycle gas turbine is the preferred 
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technology for an idealized peaking plant. A cycling CCGT plant will probably be held on or off 

for several days (or weeks) in a row. 

 

 A cycling plant is valued as a sum of operating options. These options are typically 

not traded, so an exact replicating portfolio cannot be set up. However, the traded swaps do 

provide information about risk adjusted values and serve as ‚spanning assets‛ in the Dixit and 

Pindyck (1994) terminology. This issue is discussed by Deng, Johnson and Sogomonian (2001). 

The valuation estimates from our model are as consistent as possible with the observed swap 

prices. 

 

5.2 Plant and option values, and decision thresholds 

 When emission costs E are assumed to be zero, and the lifetime of the plant T  is 

assumed infinite, the lower bound for the plant value LV , given by Lemma 1, is 4542 MNOK. 

Correspondingly, the upper bound for the plant value UV , given by Lemma 2, is 7539 MNOK. 

The plant value as a function of the lifetime T  is illustrated in Figure 2. Figure 2 indicates how 

the plant value gradually stabilizes to a given level as the lifetime increases. In traditional 

engineering economic analyses, the lifetime of such a plant is often around 25 years, however as 

argued earlier, in practice power plans tend to be upgraded and refurbished, greatly extending 

the effective project life. 
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Figure 2 Plant value as a function of the lifetime of the plant. 

 We consider the investment decision next. Solving the equations in Proposition 1 

gives that the building threshold I , when abandonment is not considered, is somewhere 

between [46.3; 165.3] NOK/MWh. When also the abandonment option is taken into account the 

building threshold A

I  is in the interval [43.8; 134.3] NOK/MWh, and the abandonment 

threshold A

A  is between [-362.8; -131.6] NOK/MWh. In the latter case the thresholds are 
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calculated by solving the equations in Proposition 2. Note that when solving these nonlinear 

equations numerically, we simultaneously determine the constants in the option value functions, 

e.g. A1 in (11) and D2 in (17). If there is an option to abandon, some of the investment costs can 

be re-couped if the investment turns unprofitable, so the addition of an abandonment option 

makes earlier investment more favorable. The abandonment option also narrows the gap 

between the upper and lower bounds of the building threshold. The abandonment makes the 

flexibility in the plant less valuable because the possibility to abandon partly provides the same 

kind of hedge against low spark spreads as the option to shut down temporarily. This is an 

option interaction effect and the result is found to be robust against a change in the spark 

spread model toward Assumption 1’ (Brownian motion).  

 

 The bounds of the plant value and investment thresholds are summarized in Table 3. 

In both cases the current equilibrium price 0 , given in Table 2, is within the building interval, 

so the building decision depends on the ramping policy. 

Table 3: Plant value and investment thresholds. 

Variable  00,V   I  A

I  A

A  

Unit MNOK NOK/MWh NOK/MWh NOK/MWh 

Value [4540; 7537] [46.3; 165.3] [43.8; 134.3] [-362.8; -131.6] 

 

 For comparison we calculate the thresholds with a net present value method, i.e. we 

assume that the plant is built when the expected value of the plant is equal to investment costs 

and the abandonment is done when the plant value is equal to the salvage value. In this case 

only the options to postpone the investment decisions are ignored, and thus the uncertainty in 

the spark spread process still affects the investment decisions by changing the value of operating 

flexibility. This method gives that the investment threshold NPV

I  is in the interval [-178.2; 8.7] 

NOK/MWh and the abandonment threshold NPV

A  is in the interval [-271.8; -10.6] NOK/MWh. 

The options to postpone have positive value, so the building threshold increases and the 

abandonment threshold decreases when the options to postpone are included. The net present 

value calculations indicate that it is optimal to invest with the current equilibrium price, 

whatever the ramping policy is. 
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 Figure 3 illustrates the option values 0F  and 1F  and the plant value V  as a function 

of equilibrium price . The black lines are the bounds of the plant value, and the gray lines are 

the option values. Abandonment option values are indicated by dashed lines, whereas the 

bounds of the building option are gray solid lines. Bounds for the investment thresholds are 

indicated by vertical lines; the solid vertical lines are the bounds of the building threshold, and 

the dashed vertical lines are bounds of the abandonment threshold. The value of the build 

option increases exponentially as a function of the equilibrium price until it is optimal to build 

the plant. The abandonment option value decreases exponentially as a function of equilibrium 

price. There are four pairs of value-matching and smooth-pasting conditions, and the easiest to 

spot is perhaps for the investment trigger for the cycling plant (upper bound), where the 

investment option slope and value equals the plant slope and value less investment cost. For the 

cycling plant the abandonment option value and slope is close to zero, but for the base load 

plant the abandonment option has a bearing in the contact conditions. Note also that the 

abandonment option value slope at the trigger point equals the negative of the slope of the plant 

value. The gap between the bounds of the build option is small compared to the gap between 

bounds of the abandonment option. This is explained as follows: The cycling plant can react to 

decreasing prices by ramping down the plant. Therefore, the wedge between the bounds of the 

plant value increases as the equilibrium price decreases. As the bounds for the option values are 

determined by the bounds of the plant value, the upper and lower bounds of the abandonment 

option diverge when equilibrium price decreases. 
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Figure 3 Plant and option values. The solid black lines display the upper and lower bounds for a 

power plant that has been put online. Before the investment has taken place, one holds the option 

to invest, whose value is F0 and is indicated with solid gray lines. These option values are valid 

for equilibrium prices below the investment threshold which is in the interval [IL; IU]. Note how 

e.g. the upper option bound curve becomes parallel to the VU line at = IL (smooth pasting). 

Dashed gray lines indicate the value of the abandonment option, F1, valid for equilibrium prices 

above the abandonment threshold [AL; AU]. 

 

5.3 Sensitivity analyses 

 Next we study how the thresholds change as a function of some key parameters. In 

Figure 4 the thresholds are illustrated as a function of equilibrium volatility  . The gray lines 

are the bounds of the building threshold and the black lines are the bounds of the abandonment 

threshold. An increase in the equilibrium volatility increases the building threshold, but at the 

same time the abandonment threshold decreases, i.e. uncertainty makes waiting more favorable. 

In Figure 4 the gap between the bounds of the abandonment threshold increases as function of 

uncertainty. An increase in the equilibrium volatility does not change the value of a baseload 

plant, but it increases the value of a cycling plant. When the equilibrium price is small and the 

market becomes more volatile, the more valuable the cycling plant is compared to the baseload 

plant, and the broader the gap between the bounds of the abandonment thresholds becomes. On 

the other hand, when the equilibrium price is high, the difference between peak and baseload 

plant values is not sensitive to changes in equilibrium volatility, so the gap between upper and 
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lower bounds of the building threshold does not increase much as a function of equilibrium 

volatility. 
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Figure 4 Investment thresholds as a function of equilibrium volatility. The solid lines correspond 

to build (gray) and abandon (black) thresholds for a baseload plant, and the dashed lines 

correspond to build (gray) and abandon (black) thresholds for a cycling plant. 

 Increasing the equilibrium volatility increases option value, as can be seen in Figure 5. 

One might think that the investment option value of a cycling plant increases more than the 

option value of a base load plant since a cycling plant value increases while a base load plant 

value is unchanged. However, there is an effect balancing this, namely the change in the 

abandonment option value. For a cycling plant the abandonment value does not change much 

(due to the interaction with the operating flexibility), but for a base load the abandonment 

option is sensitive to increases in equilibrium volatility.  
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Figure 5 Investment option value as a function of equilibrium volatility. The option value 

bounds are evaluated at 0 = -15 NOK/MWh, for which the investment option is kept open 

even for the lowest investment threshold.  
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 Figure 6 illustrates the thresholds as a function of emission costs E. In Figure 6 the 

unit of emission cost is NOK/MWh, whereas it usually is quoted in USD/tonne. The CO2 

production of the gas-fired power plant is 363 kg/MWhel. With an exchange rate of 7 

NOK/USD, an emission cost of 10 NOK/MWh corresponds to 3.94 USD/tonne. In Figure 6 

the thresholds increase linearly, with slope one, as a function of emission costs. So, if the 

emission costs are increased by one NOK/MWh, both thresholds are also increased by one 

NOK/MWh. This is a consequence of a normally distributed equilibrium price. Change in 

emission costs can be seen as a change in initial value of the equilibrium price. Even though 

we have used constant emission costs, there is uncertainty in future levels of emission costs. 

An easy way to model the uncertainty in the emission costs is to increase the equilibrium 

uncertainty. This means that not just an increase in the expected value of emission costs, but 

also uncertainty in emission costs postpones investment decisions, i.e. it increases the building 

threshold and decreases the abandonment threshold. 
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Figure 6 Investment thresholds as a function of emission costs. The solid lines correspond to 

build and abandon thresholds for a baseload plant, and the dashed lines correspond to build and 

abandon thresholds for a cycling plant. 

 

5.4 The implied value of CO2 capture technology 

 Undrum et al. (2000) evaluate different alternatives to capture CO2 from gas turbine 

power cycles. They estimate that the costs of installing equipment to capture CO2 from flue gas 

using absorption by amine solutions are 2140 MNOK. Given the investment costs in Table 1, the 

cost of a low-carbon-emitting gas power plant is 3760 MNOK. Figure 7 illustrates the thresholds 

as a function of investment costs when the salvage value is 35% of the investment costs, i.e. J = 

0.35I. The resale value of a plant with CO2 capture technology is 1316 MNOK. 
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Figure 7 Equilibrium price thresholds as a function of investment costs. The investment threshold 

is within the gray lines, and the abandonment threshold is within the black lines. The solid lines 

correspond to build and abandon thresholds for a baseload plant, and the dashed lines correspond 

to build and abandon thresholds for a cycling plant. When the gas fired power plant is to be built 

with CO2 capture technology in place, the total investment is 3760 MNOK, and the investment 

threshold are as high as [131;181] NOK/MWh. 

 In Figure 7 it is indicated that the threshold to build a gas turbine with CO2 capture 

equipment is in the interval [131.0; 181.0] NOK/MWh. In Table 2 the current equilibrium price 

is estimated at 62.3 NOK/MWh. Therefore, with the current costs of CO2 capture equipment it 

is not optimal to invest in such equipment. To simplify the following analyses, let us assume 

that the building threshold is in the middle of its upper and lower bounds, i.e. at 156 

NOK/MWh. An ordinary gas-fired power plant needs to pay emission costs, whereas a low-

carbon plant does not. To find the level of emission cost that makes the energy manager 

indifferent between the two alternatives, we find the emission cost that is so high as to make the 

building threshold equal in both cases. Once the emission costs are around 65 NOK/MWh, the 

average of the upper and lower bounds of the building threshold, for a plant without CO2 

capture equipment, is 156 NOK/MWh. By assuming that all emission costs are caused by CO2, 

and by ignoring the reduced efficiency of the plant when the greenhouse gas capture equipment 

is in place and uncertainty in CO2 emission costs, we find that it is optimal to install the CO2 

capture equipment when emission costs are greater than 65 NOK/MWh, i.e. 25.6 USD/tonne. 

 

 Next we consider how much the investment costs need to be lowered in order to make 

the energy manager want to choose to install carbon capture equipment, using the current 

emission cost level. At the time of analysis the carbon emission market has not begun its 

activity, however, the estimate is that emission costs will be somewhere between 5 USD/tonne 

and 20 USD/tonne, where the lower range is most likely. Figure 5 indicates that when emission 
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costs are 8 USD/tonne, i.e. 20.3 NOK/MWh, the threshold to build a plant without CO2 

capture equipment is in the interval [64.1; 154.6] NOK/MWh. By assuming again that the 

building threshold is the average of the upper and lower bounds, we see that building threshold 

for a gas plant without CO2 capture equipment is 109.4 NOK/MWh. Considering Figure 7, the 

(average) building threshold for the plant with CO2 capture equipment is lowered from 156 

NOK/MWh to 109.4 NOK/MWh if the investment costs are lowered to 2215 MNOK. Therefore, 

if the costs of building a gas plant with CO2 capture equipment are lowered by 1540 MNOK, it 

is optimal to build a gas plant with such equipment.  

 

 Since we have ignored the reduced efficiency of the power plant when CO2 capture 

equipment is installed, this latter figure (1540 MNOK) can be seen as a lower bound for the 

amount of subsidies needed to entice investment in this greenhouse gas technology. Another 

reason for 1540 MNOK to be an underestimation of the subsidies needed is the fact that emission 

costs are uncertain, and the attachment of a CO2 capture plant can be postponed indefinitely 

beyond the investment in the power plant itself. Attaching green technology is hence a real 

option that will not be triggered before the net present value is well above the investment cost. 

 

6 Discussion 

 To make this model work as decision support, one must run the estimation process 

regularly to update the parameters to the current market prices and recent dynamics. This 

includes getting information on what is the current long-term equilibrium price to monitor 

whether a (dis)investment is to be triggered. Of course, the equilibrium price is almost 

observable via the prices of long-term swaps. 

 

 We find that the gap between upper and lower bounds of the investment thresholds is 

rather large. This indicates that the cycling plant value differs considerably from the baseload 

plant value. Our case study also indicates that the addition of an abandonment option does not 

dramatically change the building threshold. Therefore, as a first approximation for the 

investment decision it is plausible to ignore the abandonment option, but the operating 

flexibility should not be disregarded. 
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 In our case study, even with zero emission costs, it is not optimal to build a baseload 

plant. However, it is optimal to build a rather efficient cycling plant. If the postponement option 

is also omitted, i.e. building is commenced when the expected value of the plant is equal to 

investment costs, the situation changes. In this case it is also optimal to build a baseload plant. 

Thus, the option to postpone has a significant effect on the building decision. 

 

 There are some issues that have been disregarded in the modeling, but should be 

considered when the Norwegian case is analyzed more thoroughly. First, we have used the UK 

market as a reference for gas. There is lot of natural gas available in the Norwegian continental 

shelf. Due to the physical distance from the Norwegian coastline to the UK, the gas price at a 

Norwegian terminal will be equal to the UK price less some transportation costs. It is estimated 

that this adjustment is around 0.10NOK/Sm3, where one Sm3 is equal to 9.87 kWh, this means 

that by using price quotes from IPE, we underestimate the spark spread by around 17 

NOK/MWh. This issue is clogged by the fact that pipeline capacity is fully utilized in the winter 

season. Second, there is also a possible tax effect that has not been considered. Oil and gas 

companies operating on the Norwegian shelf have a 78% tax rate, while onshore activities are 

taxed at 28%. If a gas producer invests in a gas power plant, it can sell the gas at a loss with 

offshore taxation, and buy the same gas, now in the form of electricity, as a power plant owner 

with onshore taxation. Finally, we have assumed that building a power plant occurs instantly. 

Analyzing these issues is left for future work. 

 

 The theory developed rests on an assumption that the energy company has an 

exclusive license, i.e. a monopoly right to invest. One may be concerned with how competition or 

other forms of market failure in the electricity or gas markets affect the results. However, as long 

as the information in efficient market prices of derivatives contracts is incorporated in the 

analysis, these concerns are unfounded. Efficient swap prices will reflect any market failure. Of 

course, in practical cases there will be basis risk, for example due to electricity or gas being 

delivered or purchased at a different location or due to the quality of the gas that is underlying 

the forward contracts. Another problem is that long-term contracts may not be available. For a 

discussion of these issues, see e.g. Fama and French (1987). 

 

 We have modeled the CO2 emission cost as a constant. In Europe, where the emission 

trading scheme is in effect, it would have been pertinent to model this as a stochastic process. 

However, adding more factors to the model would erode the simplicity of the valuation and 
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decision rule calculations. This argument is also valid for more complicated commodity price 

models involving e.g. oil and coal prices for explaining electricity price dynamics.  

7 Conclusions 

 We use real options theory to analyze gas-fired power plant investments. Our 

valuation is based on electricity and gas forward prices. We have derived a method to compute 

upper and lower bounds for the plant value and investment thresholds when the spark spread 

follows a two-factor model, capturing both the short-term mean-reversion and long-term 

uncertainty. 

 

 In our case study we take the view of an investor having a license to build a gas-fired 

power plant. Our results indicate that the abandonment option and the operating flexibility 

interact so that their joint value is less than their separate values, because an option to 

permanently shut down overlaps with the option to temporarily shut down and vice versa. 

However, the case study indicates that the addition of the abandonment option does not 

dramatically change the bounds of the building threshold. On the other hand, the difference 

between the upper and lower bounds of the investment thresholds is considerable, so the 

operating flexibility has a significant effect on the building decision. When investments in gas-

fired power plants are considered, a good overall view of the investment problem can be made by 

ignoring the abandonment option, whereas the operating flexibility and time-to-build option 

should not be disregarded. 
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Appendix A 

 A cycling plant operates only when the spark spread exceeds emission costs. The value 

of the plant, at time t, is the expected cash flows less operational costs G  

  ( )( ), ( ) ,
T

r s t
U

t

V t t e Cc s s G ds , (A1) 

where T  is the lifetime of the plant, C  is the capacity of the plant, and ,c s s  is the 

expected value of spark spread exceeding emission costs at time s, i.e. 

 , max ( ) ,0 ( )
E

c s s E S s E y E h y dy . (A2) 

In (A2) ( )h y  is the density function of a normally distributed variable y, whose mean and 

variance are the mean and variance of the spark spread at time s, given in Corollary 1. A spark 

spread process that is different from that of Assumption 1 will lead to different statistical 

moments or a different distribution. For clarity we rewrite the mean and variance here 

 ( )( ) e ( ) ( ) ( )T s
s
E S T s s T s  (A3) 
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Integration gives 
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, ( )

2 ( )

E S s E
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s

s

Var S s E S s E
c s s e E S s E

Var S s
, (A5) 

where  is the normal cumulative distribution function. Equations (A1) and (A5) give the 

value of the cycling plant 
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Appendix B 

 

 When it is not optimal to exercise the build option, i.e. when I  , the option to 

build 0F  must satisfy following Bellman equation3 

   0 0( ) ( ) , IrF dt E dF Wdt when      . (B1) 

Using Itô’s lemma and taking the expectation we get following differential equation for the 

option value 

  
2

2 0 0
02

( ) ( )1
( ) 0,

2
I

d F dF
rF W when

d d


 
    

 
     . (B2) 

A solution to the differential equation is a linear combination of two independent solutions plus 

any particular solution (see Dixit and Pindyck, 1994). Thus, the value of the build option is 

  1 2

0 1 2( ) e e , I

W
F A A when

r

         , (B3) 

where 1A , 2A  are unknown non-negative parameters to be determined, and 1  and 2  are the 

roots of the fundamental quadratic equation. This fundamental quadratic is found by 

substituting the general solution F() = Ae –W/r  into (B2), and is given by  

  2 21
0

2
r       (B4) 

This gives 

  

2 2

1 2

2
0

r  



  




  
   (B5) 

  

2 2

2 2

2
0

r  



  




  
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3 Risk neutral pricing is employed, called contingent claims analysis by Dixit and Pindyck (1994). The right 

hand side is the fair return from holding the option over dt, whereas the left hand side is the sum of the 

capital gain and (negative) dividends from holding the same option. This approach assumes that the 

underlying market is arbitrage-free and complete. In this context, it means assuming that there are no 

arbitrage opportunities among the traded energy contracts, and that these contracts span all relevant spark 

spread risks. Although the former is realistic, the latter clearly does not hold in an absolute sense, e.g. one 

cannot perfectly hedge a monthly (much less hourly) spark spread operational option that expires three 

years from now. However, traded swap prices hint at where the unique pricing measure (following from 

completeness) may lie. It becomes the role of the pricing model (2)-(4) to fill in the missing information. In 

essence we assume that the pricing model describes the spark spread dynamics adjusted for risk. 
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The build option value approaches zero as the spark spread decreases, i.e. 2A  must be equal to 

zero, so 

  1

0 1( ) e , I

W
F A when

r

      . (B7) 

 

Appendix C 

 

 It is optimal to exercise the build option when the option value becomes equal to the 

values gained by exercising the option (I is investment cost) 

  0 1( ) (0, ) ( )I I IF V I F     . (C1) 

Correspondingly, it is optimal to abandon when values gained by abandoning (the salvage value 

J) are equal to values lost 

  1( ) (0, )A AF V J   . (C2) 

The smooth-pasting conditions must also hold when the options are exercised (for an intuitive 

proof see Dixit and Pindyck, 1994 and for a rigorous derivation see Samuelson, 1965) 

  0 1
( ) (0, ) ( )I I I

dF V dF

d d

  

  


 


 (C3) 

  1( ) (0, )
0A AdF V

d

 

 


 


. (C4) 

The building and abandonment thresholds I  and A  as well as the option parameters 1A  and 

2D  for all plant values V  must satisfy (C1)- (C4). It remains to show that an increase in the 

plant value decreases the investment and abandonment thresholds. Let us denote 

   1 2 0 1, , ( ) (0, ) ( )U

I I I IG A D F V F I        (C5) 

   2 1, ( ) (0, )L

A A AG D F V J     , (C6) 

where 1A  and 2D  are the parameters of investment and abandonment options and I  and A  

are the investment thresholds when the plant value is V . By denoting the partial derivatives 

with subscripts, the value-matching and smooth-pasting conditions for plant value V  are 

   1 2, , 0U

IG A D   (C7) 

   2, 0L

AG D   (C8) 

   1 2, , 0
I

U

IG A D    (C9) 

   2, 0
A

L

AG D   . (C10) 
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When the plant value V  is changed by df , differentiation gives 

      
1 21 2 1 1 2 2 1 2, , , , , ,

I

U U U

A I D I I IG A D dA G A D dD G A D d df       (C11) 
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Differentiation of the smooth-pasting condition gives 
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Equations (C10), (C12), and (C14) give, for the change of the abandonment threshold 
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The second equality is obtained by calculating the derivatives of the abandonment option given 

in (17). Before abandonment, in the value-matching condition,  2,L

AG D  approaches zero from 

above (starting e.g. from  2 0, , ( )L

I I IG D F I J         ), thus  2,LG D  must be 

convex in  . When the plant value is increased by a positive amount, i.e. 0df  , we get 

  0Ad  . (C16) 

Hence when the plant value increases the abandonment threshold decreases.  

Equations (C9), (C11), (C13) and (C15) give the change in the building threshold 
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where the second equality is obtained by calculating the derivatives of the build and 

abandonment options given in (11) and (17). Before building, in the value-matching condition, 

 1 2, ,U

IG A D  approaches zero from above (e.g.  1 2 0, , ( ) 0U

A AG A D F I J     ), thus 

 1 2, ,UG A D  must be convex in   near the threshold. When the plant value is increased with 

a positive amount, i.e. 0df  , we get 

  0Id  . (C18) 

   Q.E.D. 
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Figure 8 illustrates, for the case reported in Section 5, the bounds for the value functions G in 

(C5) and (C6).  
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Figure 8 Bounds for “excess” option value. GU is investment option value less its underlying, i.e. 

F0 – V – F1 + I, and is convex near the investment threshold. GL is abandonment option value 

less its underlying, i.e. F1 + V – J, and is convex. Note all smooth pastes at an excess value of 0.   
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